毫米波第三章微带传输线

合集下载

微波技术与天线--刘学观-第3.2节

微波技术与天线--刘学观-第3.2节
圆形介质波导中的截止以w=0作为分界,这是因为当 w<0时在介质波导外出现了辐射模。
《微波技术与天线》
第三章 微波集成传输线之•介质波导
要使w=0同时满足(3-2a)或(3-2b),必须有J0(u)=0。
可见圆形介质波导的TE0n和TM0n模在截止时是简并的, 它们的截止频率均为:
fc0n
0nc 2a r 1
《微波技术与天线》
第三章 微波集成传输线之•介质波导
2.介质镜像线(dielectric image line)
对主模HE11来说,由于圆形介质波导的OO平面两侧场分布具有对 称性,因此可以在OO平面放置一金属导电板将不致影响其电磁场分 布,从而可以构成介质镜像线。
圆形介质 镜像线
矩形介质 镜像线
《微波技术与天线》
第三章 微波集成传输线之•介质波导
H形波导中传输的模式取决于介质条带的宽度和金属 平板的间距,合理地选择尺寸可使之工作于LSM模,此 时两金属板上无纵向电流,此模与金属波导的TE0n模有 类似的特性,并且可以通过与波传播方向相正交的方向 开槽来抑制其它模式,而不会对该模式有影响。在H形 波导中,其主模为LSE10e,其场结构完全类似于矩形金 属波导的TE10模,但它的截止频率为零,通过选择两金 属平板的间距可使边缘场衰减到最小,从而消除因辐射 而引起的衰减。
《微波技术与天线》
第三章 微波集成传输线之•介质波导
波导 (waveguide)
用来约束或引导电磁波的结构。通常,波导专指各种形状的空心金属 波导管和表面波波导(介质波导),前者将被传输的电磁波完全限制在 金属管内,又称封闭波导;后者将引导的电磁波约束在波导结构的周 围,又称开波导。 当无线电波频率提高到3000兆赫至 300吉赫的厘米波波段和毫米波波 段时,同轴线的使用受到限制而采用金属波导管或其他导波装置。波 导管的优点是导体损耗和介质损耗小;功率容量大;没有辐射损耗; 结构简单,易于制造。波导管内的电磁场可由麦克斯韦方程组结合波 导的边界条件求解,与普通传输线不同,波导管里不能传输 TEM模, 电磁波在传播中存在严重的色散现象,色散现象说明电磁波的传播速 度与频率有关。表面波波导的特征是在边界外有电磁场存在 。其传播 模式为表面波。

第三章 微波传输线

第三章  微波传输线

微波技术与天线
第三章 导波与波导
导模
①在导行系统横截面上的电磁场呈驻波分布,且是完全确定的。这一 分布与频率无关,并与横截面在导行系统上的位置无关; ②导模是离散的,具有离散谱,当工作频率一定时,每个导模具有唯 一的传播常数; ③导模之间相互正交,彼此独立,互不耦合; ④具有截止特性,截止条件和截止波长因导行系统和模式而异。
TM:
Z TM
kc 0
p
fc
kc 2
c 2 kc
2 2
2 2 1 fc / f 1 / c
fc d g 1/ 1 1 d f c
kc2 0
2 k 2 kc2 0
c
g
c
1) k 2 kc2

p
rr
rr
g
0 rr
这种导行波的特点是相速大于平面波速,即大于该媒质中的光速,而群速则 小于该媒质中的光速,同时导波波长大于空间波长。这是一种快波。
12:23
电子科技大学电子工程学院
D
2 R0
g pT p f
12:23
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
E0t ZTE H0t ez
H0t YTE ez E0t
TE:
Z TE
1 j k ZTEM YTE
1 ZTEM YTM j k
1 2 PTE ZTE 2 2 kc

s
Hz
2
1 2 dS ZTE 2 2 kc

s
H 0 z dS

微带传输线微带电容微带电感设计

微带传输线微带电容微带电感设计
航空航天领域
在航空航天领域,对微带元件的高 可靠性、高稳定性和轻量化等要求 更高,因此该领域的发展潜力巨大。
THANKS FOR WATCHING
感谢您的观看
耦合器、振荡器等。
在通信系统、雷达系统、卫星通 信等领域,微带线电容被用于实 现信号的传输、处理和转换等功
能。
此外,微带线电容还可以用于制 作传感器、天线、功率放大器等 电子器件,具有小型化、集成化、
高性能等优点。
03
微带电感设计
微带线电感的基本原理
微带线电感是由微带线绕成一定 形状的电感器,其工作原理基于
薄膜工艺
发展薄膜工艺,降低微带 元件的介质厚度,提高元 件性能。
3D打印技术
利用3D打印技术制造微带 元件,实现个性化定制和 快速原型制作。
新应用领域的开发
物联网领域
随着物联网技术的快速发展,微 带元件在物联网设备中的应用将
更加广泛。
医疗电子领域
由于微带元件具有小型化、低功耗 和高集成度等特点,其在医疗电子 领域的应用前景广阔。
优化设计的应用实例
微带传输线
在无线通信系统中,通过优化微带传输线的设计,实现信号的高 效传输。
微带电容
在滤波器、振荡器等电路中,优化微带电容的设计可以提高电路的 性能。
微带电感
在射频识别(RFID)标签、无线传感器网络等领域,优化微带电 感的设பைடு நூலகம்有助于提高识别准确性和通信距离。
05
微带传输线、微带电容 、微带电感的未来发展 趋势
微带传输线、微带电 容、微带电感设计
目录
• 微带传输线基本理论 • 微带电容设计 • 微带电感设计 • 微带传输线、微带电容、微带电感的
优化设计 • 微带传输线、微带电容、微带电感的

精选微波技术基础知识

精选微波技术基础知识
本课内容
1、第三章、微波集成传输线常用集成传输线的种类和主要特点2、第四章介质波导和光波导
1、传播条件和波型2、特性阻抗3、波长,相速4、功率容量5、衰减
了解
微波集成传输线
微波集成传输线的最大特点是 平面化
五种重要的传输线:带状线(Stripline)微带线(Microstrip line)槽线(Slotline)鳍线(Finline)共面线(Coplanar line)
式中
微波集成传输线-带状线
带状线—优缺点和应用
1、改变线宽一个参数就改变电路参数(特性阻抗)。2、在馈线、功分器,耦合器,滤波器,混频器,开关的设计中,体积小,重量轻,大批量生产的重复性好。3、立体电路的设计,适用于多层微波电路,LTCC等,辐射小。4、封闭的电路,调试难。5、电路需要同轴或波导馈入,引入不连续性,需要在设计时补偿。6、在多层电路设计中,存在不同节点常数的介质之间的连接,介质与金属导体的连接,分析方法非常复杂,尤其对3D电路,尚缺少各种不连续性的模型和相关设计公式,采用全波分析法或者准静态场分析。
毫米波鳍线混频器
介质波导和光波导
当毫米波波段→亚毫米波段→太赫兹波段时普通的微带线将出现一系列新问题1)高次模的出现使微带的设计和使用复杂2)金属波导的单模工作条件限制了其横向尺寸不能超过大约一个波长的范围。这在厘米波段和毫米波低频段不成问题。但到毫米波高频段,单模波导的尺寸就显得太小,不仅制造工艺困难,而且随着工作频率的提高,功率容量越来越小,壁上损耗越来越大,衰减大到不能容忍的地步。因此,对毫米波段的高端及来说,封闭的金属波导已不再适用。于是,适合于毫米波高频段、亚毫米波的传输线 —— 介质波导等非封闭式的传输线(或称开波导)便应运而生
微波集成传输线-微带线

电磁场课件第三章微带传输线

电磁场课件第三章微带传输线

但当频率f低于某一个临界值时,微带线 的色散可以不予考虑,其临界频率的近 似值为
0.95
f0 (r 1)1/4
z0 (GHz) h
2 微带尺寸设计考虑
当工作频率提高时,微带线中除了传输 TEM模以外,还会出现高次模。据分析,当微 带线的尺寸w和h给定时,最短工作波长只要 满足如下条件时,就可保证微带线中只传 输TEM模。
• 上述采用方法是一种非常好的近似方法。
三 微带线的损耗特性
• 微带线的损耗,在相同工作频率下要比同 轴线和金属波导管大得多。
• 微带线属于半开放式结构,除了导体损耗、 介质损耗外还存在辐射损耗(利用微带线 半开放式结构的辐射特性可以构成微带天 线)。
• 只有当介质基片的相对介电常数 很大,导 带宽度 大于介质基片厚度 ,且工作频率较 低时才可忽略ຫໍສະໝຸດ 射损耗问题。yt h
x
微带线及其坐标
二 微带线的传输模式
1 分布参数 • 和平行双线同轴线一样,只要微带线工组
模式是TEM波,可以定义微带线的分布参 数单位长度的电阻和电感、电导和电容。 • 可是由于微带线结构的特殊性很难得到其 简单的表达式。
2 TEM波传输线传输特性
根据平行双线和同轴线的传输特性,当 传输线周围填充同一种介质传输TEM波时, 传输线的传输特性可以概括为:
mmiinn
2w 2h
r r
min 4h r 1
五 微带线的工程应用
微带线作为一种导行电磁波的机构, 由于其自身结构特点不能用于大功率传输 系统,而且也不适合用于长距离作为传输 线。前面已经说到,它更适合于构造成各 种微波电路元件,并与其它微波器件、元 件组合,作为小型平面化和集成微波电路 单元。这对于微波电路和设备的小型化、 集成化具有重要的意义。

微波传输线

微波传输线

第三章 微波传输线
一、矩形波导中传输波型及其场分量
由于矩形波导为单导体的金属管,波导中不可能传输 TEM波,只能传输TE波或TM波。
(一)TM波
d 2 X x dx 2 d 2Y y dy
2 2 kx X x 0 2 ky Y y 0

三、交变电磁场的能量关系 对于一封闭曲面S,电磁场的能量关系满足复功率 定理,即 1 E H ndS P j 2 W W 2
S L m e
第三章 微波传输线
3-3 理想导波系统的一般理论 导波系统中的电磁波按纵向场分量的有无,可分为 以下三种波型(或模): (1) 横磁波(TM波),又称电波(E波): Hz 0, E z 0 (2) 横电波(TE波),又称磁波(H波): (3) 横电磁波(TEM波):
辅助方程
D E B H J E
第三章 微波传输线
场量的瞬时值与复数振幅值之间的关系为
E x , y , z, t E x , y , z cos t Re E x , y , z e j e j t Re E x , y , z e j t
第三章 微波传输线
二、波的传播速度和色散
1. 相速和相波长
相速是指导波系统中传输电磁波的等相位面沿轴向 移动的速度。 dz vp dt 若将等相位面在一个周期T内移动的距离定义为相 波长,则有
p v pT 2 T
第ቤተ መጻሕፍቲ ባይዱ章 微波传输线
对于TEM波,相速为 其相波长为 对于TE波和TM波, 相速为 相波长为

复数表示式为

第三章微波传输线PPT课件

第三章微波传输线PPT课件

Microwave Technology and Antenna
2020/10/1
copyright@Duguohong
16
特性阻抗
有效介电常数εe就是介质微带线的分布电容C1和 空气微带线的分布电容C0之比
v0
1 LC 0
vp
1 LC 1
C 1 eC 0
e
C1 C0
Z0
Z
a 0
e
结论:微带线特性阻抗的计算归结为求空气微带
13
特性阻抗
微带线的特性阻抗
Z0
L 1 C v pC
1 v p LC
Microwave Technology and Antenna
2020/10/1
copyright@Duguohong
14
特性阻抗
空气微带线
Z
a 0
1 v0C0
介质全填充 实际微带线
v0/ r vp v0 C0C1 rC0
2020/10/1
copyright@Duguohong
6
传输模式
边界条件
nˆ (E 2 - E 1 ) 0 nˆ (H 2 - H 1 ) J s nˆ (D 2 - D 1 ) s nˆ (B 2 - B 1 ) 0
Ex1 Ex2,Ez1 Ez2 Hx1 Hx2,Hz1 Hz2
空气与介质分界面上必然存在场的不连续 场沿空气与介质分界面也不均匀
微带线不能传输 纯TEM 模
由于纵向场分量较小 Microwave Technology
an准d AnTtenEnaM模
2020/10/1
copyright@Duguohong
10
传输模式

毫米波电路中的传输线技术优化说明书

毫米波电路中的传输线技术优化说明书

毫米波电路中的传输线技术性能优化罗杰斯公司技术市场工程师袁署光摘要在高频电路设计中,可以采用多种不同的传输线技术来进行信号的传输,如常见的同轴线、微带线、带状线和波导等。

而对于PCB平面电路,微带线、带状线、共面波导(CPW),及介质集成波导(SIW)等是常用的传输线技术。

但由于这几种PCB平面传输线的结构不同,导致其在信号传输时的场分布也各不相同,从而在PCB材料选择、设计和应用,特别是毫米波电路时表现出不同的电路性能。

本文将以毫米波下通用的PCB平面传输线技术展开,讨论电路材料、设计等对毫米波电路性能的影响,以及如何优化。

1. 引言几年前,毫米波电路还仅仅用于航天、卫星通信、通信回传等特殊专有的领域。

然而,随着无线通信技术的飞速发展,对更高的数据传输速率、更小的传输延迟、更宽的带宽等需求促使毫米波频段逐渐被用在移动通信覆盖例如,802.11ad WiGig,5G等领域;随着主动安全驾驶和未来无人驾驶技术的发展,汽车对测距测速的要求越来越高,毫米波也被使用在如77GHz的汽车雷达领域。

但是,对于设计工程师来说,毫米波电路的设计与低频段射频电路设计存在着显著的不同。

毫米波频段下不同传输线技术的色散辐射或高次模、阻抗匹配、信号的馈入技术等都将直接影响电路最终的性能。

2. 常用传输线技术微带线是最为常用且结构最简单的传输线技术而被广泛使用。

它仅仅依靠上层铜箔形成的信号线路、中间层介质和下层铜箔形成接地平面即可构成。

结构非常简单且易于加工,性价比高,并能够满足不同结构的表面安装要求,如图1所示。

接地共面波导(GCPW)结构与微带线相似,但在上层铜箔导体的两侧有接地平面,且通过金属过孔将上层和底层地平面相连。

带状线的结构与微带线或共面波导线均不同,它的信号导体位于中间层,而上、下两层是接地平面而中间填充介质,几乎可以看作是扁平的同轴线结构。

如图1中场力线分布,微带线与GCPW的信号传播方向上并不存在场分量。

电磁场课件-第三章微带传输线

电磁场课件-第三章微带传输线
导波速度
在微带线中,导波速度受到介质和导 体材料的影响,不同材料的微带线具 有不同的导波速度。
传播常数与衰减
传播常数
传播常数是描述电磁波在传输线中传播特性的参数,包括相位常数和衰减常数。
衰减
在微带线中,电磁波会因为介质和导体材料的损耗而发生衰减,衰减的大小与传输线的长度和频率有 关。
04 微带线的传输模式
降低介质损耗的方法包括选择低损耗的介质材料、降低介质温度和减小电场强度 等。
色散特性
色散是指不同频率的信号在传输过程中具有不同的相速度和 群速度的现象。在微带线中,色散主要与介质的介电常数和 电导率等因素有关。
了解色散特性对于设计高性能的微带线系统和避免信号失真 非常重要。通过优化微带线的结构和参数,可以减小色散效 应,提高信号传输质量。
03 微带传输线的电气特性
电场分布
电场分布特点
在微带线中,电场主要分布在导体和介质之间,而导体内部 电场强度较小。
电场分布与传输模式
电场的分布与传输模式有关,例如在准TEM模式下,电场主 要分布在导体两侧,而在其他模式下,电场分布可能更加复 杂。
阻抗与导波速度
阻抗计算
微带线的阻抗可以通过其几何尺寸和 介质参数计算得出,阻抗值与传输线 的特性阻抗有关。
微带线的宽度通常在几毫米到几十毫 米之间,根据传输信号的频率和介质 基片的电气性能来选择合适的宽度。
厚度
微带线的厚度通常在几微米到几百微 米之间,较薄的介质基片可以减小线 路的介质损耗,提高传输效率。
介质基片
种类
常用的介质基片有氧化铝、陶瓷、聚四氟乙烯等,根据应用场景和性能要求选 择合适的介质基片。
响。
应用场景
01
02
03

毫米波传输线平面传输线

毫米波传输线平面传输线
第章毫米波传输线平面传输线
电子科技大学电子工程学院《毫米波理论与技术》讲义
2.1 引言
➢毫米波传输线的要求 ➢损耗低; ➢弱色散,单模传输; ➢具备一定的功率容量; ➢本钱低; ➢便于电路和系统集成; ➢体积小、重量轻。
电子科技大学电子工程学院《毫米波理论与技术》讲义
2.1 引言 ➢微波常用传输线
式〔精度5%〕:

Z0=59.952×ln(4h/d)/sqrt(εe)
➢ 其中εe=0.475× εr
+0.67,d=0.536w+0.67t。
➢ 金属屏蔽腔影响
➢ 考虑屏蔽效应后,特性阻抗要下降,当上 盖高度电>子5科h技,大侧学电壁子与工微程学带院间《毫距米>波5理w论时与,技术可》以讲义忽
2.2.1 微带线
易受浆料影响
较差,误差 <3μm
成本低
易受基板材质影 响
易受丝网张力及 使用次数影响, 对准性较差
电子科技大学电子工程学院《毫米波理论与技术》讲义
2.2平面传输线
对于金属材料的要求: 〔1〕高的导电率; 〔2〕低的电阻温度系数; 〔3〕对基片的附着性能好; 〔4〕好的刻蚀性和可焊接 性; 〔5〕易于淀积和电镀。
Ex d Ex a
下标d和a分別表示交界面的 介质侧及空气侧。
电子科技大学电子工程学院《毫米波理论与技术》讲义 33
2.2.1 微带线
➢微带线无法传播TEM波说明
利用Maxwell 方程式可得
( H )xd( H )xa
在直角坐标系展开,且利用交界 面两侧磁场强度法线方向分量连 续的条件(假定介质的μr=1)
➢准静态分析:步骤2
放入介质,利用数值方法〔如:保角变换、有限差分、 积分方程和变分法〕求出其单位长电容C,每单位长电感 仍为L0,于是微带线的特性阻抗与相位传播常数分别为:

微波技术基础MicrowaveChap03微带传输线B3

微波技术基础MicrowaveChap03微带传输线B3

f0
0.95
r 1 1/4
Zc h
§3-2 微带线 六、微带传输线尺寸选择
微带线工作于准TEM模,当频率升高、微带线的尺寸与波长可比拟时,微 带线中还会出现两种高次模:波导模与表面波模 。 高次模的出现会使微带的工作状态恶化,必须设法抑制
• 波导模是存在于导体带与接地板之间的一种模式,包括TE和TM两种模式
cZch Rs
8.68
2
1
we 4h
2
1
h we
h we
ln
2h t
t h
,
1 w2 2 h
we h
2
8.68
ln
2e
we h
2
0.94
we h
we
we / h / 2h 0.94
1
h we
h we
ln
2h t
t h
,
w h
2
d
27.3
q r re
tan g
r Ey1 Ey2 H y1 H y2 ( r 1)
§3-2 微带线——一、微带线中的模式:
• 介质边界两边电磁场均满足无源Maxwell方程组
H jwE
H z1 y
H y1 z
jw0 r Ex1
H z2 y
H y2 z
jw 0Ex2
Ex1=Ex2
H z1 y
H y1 z
r
• 表面波 是一种其大部分能量集中在微带线接地板表面附近的介质中、 并沿接地板表面传播的一种电磁波。表面波也有TE和TM两种模式
• 对两种模式均假定其场量在x方向是均匀不变的,只在y方向有变化 模的下标只有一个数字,如TEn,TMn 下标n表示场量沿y方向的驻波分布n+1个半驻波

微带传输线《微波技术与天线》课件典型实例

微带传输线《微波技术与天线》课件典型实例
微带传输线《微波技术与 天线》课件典型实例
• 微带传输线概述 • 微带传输线的分类 • 微带传输线的性能参数 • 微带传输线的应用实例 • 微带传输线的未来发展
01
微带传输线概述
定义与特点
定义
微带传输线是一种在介质基片上 制作的一维传输线结构,通常由 金属导带和接地板组成。
特点
具有较小的体积和重量,易于集 成到微波集成电路中,成本较低 ,适用于高频信号传输。
工作原理
电磁波在微带导带和接地板之间传播,通过导带和接地板之间的电容效应实现信号 的传输。
导带和接地板之间的电场主要集中在导带与接地板之间的狭缝中,磁场则主要集中 在导带附近。
随着频率的升高,电磁波的传播常数增大,导致相位速度减小,从而产生相位失真。
应用场景
01
02
03
微波集成电路
微带传输线广泛应用于微 波集成电路中,作为信号 传输线、元件间连接线等。
传播常数
总结词
传播常数是描述微带传输线中电磁波传播特性的参数,它由相位常数和衰减常数组成。
详细描述
传播常数是描述微带传输线中电磁波传播行为的参数,它由相位常数和衰减常数组成。 相位常数决定了电磁波在传输线中的相速度和相位移,而衰减常数则表示电磁波在传输 过程中的能量损失。传播常数是微带传输线设计中的关键参数,它影响着信号的传输距
离和信号质量。
损耗
总结词
损耗是微带传输线中信号能量损失的参数,主要包括 导体损耗、介质损耗和辐射损耗。
详细描述
损耗是微带传输线设计中必须考虑的重要参数。在信 号传输过程中,由于导体电阻、电介质损耗以及辐射 等因素,信号能量会逐渐损失。导体损耗主要是由于 传输线中导体的电阻引起的能量损失;介质损耗是由 于电介质材料的损耗引起的能量损失;而辐射损耗则 是由于传输线中电磁波向空间辐射引起的能量损失。 了解和减小这些损耗是提高微波传输系统性能的关键 。

第3章微波传输线-PPT精品

第3章微波传输线-PPT精品

(3―4―4)
第3章 微波传输线
式中vpo和vpe分别表示奇、偶模的相速度。对于耦 合带状线,由于周围介质是均匀的,因此奇、偶模速度相
等,即
vpv vpe
v0
r
(3―4―5)
奇、偶模的相波长为
vpo vpe
0 r
(3―4―6)
第3章 微波传输线
对于耦合微带线,由于周围介质是非均匀的,和微带 线相同,我们引进奇、偶相对等效介电常数分别为εreo、 εree。利用准静态方法可求得相对介电常数分别为1(空 气)和εr(介质基片)的耦合微带线中每条导带单位长度上 对地的奇、偶模电容C0o(1)、C0e(1)和C0o(εr)、C0e(εr),则 耦合微带线的奇、偶模等效介电常数分别为
(3―4―11)
v pe
0 rree
(3―4―12)
第3章 微波传输线
图3―4―5和3―4―6分别表示薄带侧边耦合带状 线的奇、偶模阻抗Z0o、Z0e与耦合带状线尺寸s/b、w/b 的列线图。图中s为耦合带状线中心导带间的间距,b为 两接地板间的距离,w为中心导带的宽度。由图可根据 已知的Z0o、Z0e很方便求得s/b和w/b。
第3章 微波传输线
第3章 微波传输线
3―1 引言 3―2 带状线 3―3 微带传输线 3―4 耦合带状线和耦合微带线 3―5 金属波导传输线的一般理论 3―6 矩形波导 3―7 圆波导
第3章 微波传输线
3―1 引言
微波传输线是用来传输微波信号和微波能量的传 输线。微波传输线种类很多,按其传输电磁波的性质可 分 为 三 类 :TEM 模 传 输 线 ( 包 括 准 TEM 模 传 输 线 ), 如 图 3―1―1(1)所示的平行双线、同轴线、带状线及微带线 等双导线传输线;TE模和TM模传输线,

微带线类传输线分析1

微带线类传输线分析1

(25)
(α ) 分别表示在 y=d 处导带上 x 方向和 z 方向未知电流密度的变换式。 (α ) 和 J J z x
整理边界条件,消去 Ae , B e , Ah , B h ,得到:
(α ) + Z (α , k ) J (α ) = (α ) + V (α ) Z11 (α , k z ) J V x 12 z z 1 2 (α ) Z (α , k ) J (α ) + Z (α , k ) J (α ) = U (α ) + U
(2)
由于 E 和 H 的无旋性,可以得到 Helmholtz 方程:


∇2 E + k 2 E = 0 ∇2 H + k 2 H = 0
引入辅助矢量: 矢量磁位 A 矢量电位 F
(3)


在 Lorentz 规范的约束下,它们也满足 Helmholtz 方程:
∇2 A + k 2 A = 0 ∇2 F + k 2 F = 0 ∇ 2ψ + k 2ψ = 0
z i z i
ie dψ = ih H j ωε − α k zψ x i dy ih dψ e Hy = −αωε iψ i − jk z dy = H ( k 2 − k 2 )ψ h
z i z i
(18)
在各个区域内,谱域位函数可以写成如下形式: 区域①
1e = Ae sinh ( γ 1 y ) ψ 1h = Ah cosh ( γ 1 y ) ψ
y W
② ①
ε2,µ2 ε1,µ1 d x
o
图 1 标准微带线结构示意图 引入矢量位函数,并利用变量分离:

第三章 微波传输线 4微带线

第三章 微波传输线 4微带线

2
e
(
f
)
r
1
4F
e
1.5
e
式中
F
4h
r 0
1 0.5 [1 2ln(1
w h
)]2
第3章 微波传输线
z0 (
f
)
z0
e( f ) e
1
1
e e( f )
5)
微带线的高次模有两种模式: 波导模式和表面波模式。 波 导模式存在于导带与接地板之间, 表面波模式则只要在接地板 上有介质基片即能存在。
可忽略介质衰减。但当用硅和砷化镓等半导体材料作为介质基
片时, 微带线的介质衰减相对较大, 不可忽略。
4)
前面对微带线的分析都是基于准TEM模条件下进行的。 当频率较低时, 这种假设是符合实际的。
第3章 微波传输线
然而, 实验证明, 当工作频率高于5GHz时, 介质微带线的特 性阻抗和相速的计算结果与实际相差较多。这表明, 当频率较 高时, 微带线中由TE和TM模组成的高次模使特性阻抗和相速
基片 打孔 蒸发 光刻 腐蚀 电镀 图 23-2 微带工艺
一般地说,微带均有介质填充,因此电磁波在其中传 播时产生波长缩短,微带的特点是微。
第3章 微波传输线
常用的基片有两种:
氧化铝Al2O3陶瓷 r=90~99 聚四氟乙烯或聚氯乙烯 r=2.50左右。
容易集成,和有源器件、半导体管构成放大、混频和振荡。
第3章 微波传输线
同理可得
EZ1 y
r
Ez 2 y
j
(1
1
r
)
E
y
2
可见,当εr≠1时, 必然存在纵向分量Ez和Hz, 亦即不存在纯 TEM模。但是当频率不很高时, 由于微带线基片厚度h远小于
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
准静态法将准TEM模按TEM模考虑,忽略了色 散模,即 TE 和 TM 模,要求 w,h<<λ ,因此只 在较低频率时适用 在毫米波频段,类微带线传输的是 TE+TM 混 合模,色散影响较为显著,采用准静态法的误 差很大,但可以在准静态分析结果的基础上作 修正
特性阻抗和有效相对介电常数 随w/h的变化情况

n
n L
横向传输线法
图3.4的类微带线是在 y方向上的分层介质结构,可视 为沿y方向分段均匀的传输线,利用传输线理论来简化 分析 在y=y0(导体条带处)应看作有一电流源
I dV dy Yc d 2V 2 2V I s ( y y0 ) dy Yc dI VY I ( y y ) c s 0 dy
类微带线的电容
C [ f ( x)dx]2
s1

s1 s1
G ( x, y; x0 , y0 ) f ( x) f ( x0 )dxdx0
f(x)为导体条带s1上的电荷分布
泛函的概念
实变函数是以实数为自变量的函数 复变函数是以复数为自变量的函数 泛函是以函数为自变量的函数 泛函分析(Functional Analysis)的特点是它不但把 古典分析的基本概念和方法一般化了,而且还把这些 概念和方法几何化了。例如,不同的函数可以看作是 “函数空间”的点或矢量,这样最后得到了“抽象空 间”这个一般的概念。它既包含了以前讨论过的几何 对象,也包括了不同的函数空间。
εr↑,w↑,h↓→εre↑,Zc↓
特性阻抗和有效相对介电常数 随频率的变化情况
两种边界条件
E-wall H-wall
G0
G 0 n
Dirichelet Newmann
类微带结构边界条件确定的解
类微带结构边界条件三种情况对应的解的形式
x=0和x=L处均为E-wall x=0处E-wall,x=L处H-wall x=0和x=L处均为H-wall
Gn x ( x) sin( n x ) L x Gn x ( x) sin[(2n 1) ] 2L x x Gn ( x) cos[(n 1) ] L
倒置微带
εr1=1;h2=0;h3=h, εr3=εr;h4=0; L=∞
屏蔽微带
h1=0;h2=h,εr2=εr;h3=0;h4=h',εr4=1
§3.2 类微带结构的准静态分析
类微带线的传输模
在工作频率较低时为准TEM模,可采用准静态分析 在工作频率较高时为TE+TM混合模
准TEM模
纵向场分量较横向场分量小得多,且随着频率 f 降 低而减小,当 f→0 时纵向场分量趋近于 0 ,即趋近 于TEM模
准静态分析步骤小结
将准TEM模按TEM模考虑,将特性阻抗的求解 转化为静电容的求解 建立Green函数并分离变量,由边界条件先得 出Gnx(x) 用横向传输线法求Gny(y) 对电容的变分表示式求泛函极值,得到导体条 带上的电荷分布,从而得出电容值
对称耦合微带结构的准静态分析
对奇偶模分别考虑
准静态法的限制
1 2G( x, y; x0 , y0 ) ( x x0 ) ( y y0 )

这里假设类微带线的导体条带无限薄,即忽略其厚度的影响,t → 0
Green函数的解
前述Green函数的解有如下分离变量的形式
G Gn x ( x)Gn y ( y )
n 1
这里假设介质材料无耗、各向同性、非磁
导波
按传播环境,电磁波可分为
自由空间波 导波
由传输媒介引导,在其边界附近或边界之间传播 的电磁波
导波结构(传输媒介)
导波结构的基本能
引导或限制电磁波的传播 构成电路的基本元件
经典的传输媒介
平行双导线(不能用于毫米波) 同轴线(可用至毫米波低频端) 波导(可用于毫米波)
传输线
平行双线 同轴线
微带线
Yc , V Gn n ( y), n n 2 , Is sin(n x0 ) L n
由于电压与Green函数满足同样的边界条件
设y=y0处的导纳为Y(可用横向传输线法计算),则
Gn n ( y) Is 2 sin( n x0 ) Y n Y
电容的变分表示式
矩形介质波导 介质镜像波导
H波导、槽波导
§3.1 微带结构的一般形式
微带印制电路板
1 基本微带结构
开放微带
2 变形微带结构
悬置微带 倒置微带 屏蔽微带
3 类微带结构
分区域填充不同介质
类微带结构
开放微带
h1=0;h2=h,εr2=εr;h3=0;h4=∞ ,εr4=1; L=∞
悬置微带
εr1=1;h2=h,εr2=εr;h3=0;h4=∞,εr4=1; L=∞
准静态分析
准静态的含义
在工作频率较低时,准TEM模可近似看作TEM模来 分析,故称为准静态分析
特性阻抗和有效相对介电常数
Zc 1 c CC
a

Zca
re
2
C re a 0 C g
Green函数
物理意义 对于置于 (x0,y0) 处的单位电荷, Green 函数 (指什么物理量?)满足Poisson方程
上面第一种情况对应于我们所讨论的类微带结构,代 入Poisson方程得 两边同乘 sin(n πx/L) 后在 (0,L)积分,并利用正弦函 数的正交性
d 2 2 y dy 2 n Gn ( y) L sin(n x0 ) ( y y0 ),
d x 2 y n x 1 G ( y )sin( ) ( x x0 ) ( y y0 ) n 2 dy L L n 1
矩形波导
圆波导
集成传输线
集成化对传输线的要求
便于集成无源和有源器件 低成本设计和生产
微波毫米波电路的发展
波导电路→混合集成→ 单片集成→ 三维集成
毫米波传输线
毫米波传输线分类
平面传输线
微带、悬置微带、倒置微带 共面波导、共面带线、槽线
准平面传输线 波导
鳍线(准TE10)
矩形波导 圆波导
介质波导
相关文档
最新文档