2010年江苏省徐州市中考数学试题(含答案)

合集下载

2011年江苏省徐州市中考数学试卷及参考答案

2011年江苏省徐州市中考数学试卷及参考答案

2011年江苏省徐州市中考数学试卷及参考答案注意事项:1.本试卷满分l20分,考试时间为I20分钟.2. 答题前前将自己的姓名、准考证号用0.5毫米黑色墨水签字笔写在本试卷和答题卡上,3. 考生答题全部涂、写在答题卡上,写在本试卷上无效,考试结束,将本试卷和答题卡一并交回。

一、选择题(本大题共有10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1,2-的相反数是 A .2B. 2-C.12D. 12-考点:相反数.分析:根据相反数的定义:只有符号不同的两个数就是相反数,进行判断. 解答:解:根据相反数的定义,-2的相反数是2.故选A . 点评:本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断.2. 2010年我国总人口约为l 370 000 000人,该人口数用科学记数法表示为 A .110.13710⨯B .91.3710⨯C .813.710⨯D .713710⨯考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 解答:解:用科学记数法表示数1370000000为1.37×109.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.估计11的值A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间 考点:估算无理数的大小.分析:先确定的平方的范围,进而估算的值的范围. 解答:解:9<=11<16,故3<<4;故选B .点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题,属于基础题.4.下列计算正确的是A .22x x x ⋅=B .22()xy xy = C .236()x x = D .224x x x +=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂乘法、积的乘方、幂的乘方的性质计算后利用排除法求解.解答:解:A 、应为x •x2=x1+2=x3,故本选项错误;B 、应为(xy )2=x2y2,故本选项错误;C 、(x2)3=x2×3=x6,故本选项正确;D 、应为x2+x2=2x2,故本选项错误.故选C .点评:本题主要考查幂的运算性质,熟练掌握相关知识点是解题的关键.5.若式子1x -在实数范围内有意义,则x 的取值范围是A .1x ≥B .1x >C .1x <D .1x ≤ 考点:二次根式有意义的条件.分析:根据二次根式有意义的条件判断即可.解答:解:根据二次根式有意义的条件得:x-1≥0,∴x ≥1,故选A点评:本题考查了二次根式有意义的条件:(1)二次根式的概念.形如(a ≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数. (3)二次根式具有非负性.(a ≥0)是一个非负数.6.若三角形的两边长分别为6 ㎝,9 cm ,则其第三边的长可能为A .2㎝B .3 cmC .7㎝D .16 cm 考点:三角形三边关系.分析:已知三角形的两边长分别为6cm 和9cm ,根据在三角形中任意两边之和>第三边,或者任意两边之差<第三边,即可求出第三边长的范围. 解答:解:设第三边长为xcm .由三角形三边关系定理得9-6<x <9+6, 解得3<x <15.故选C .点评:本题考查了三角形三边关系定理的应用.关键是根据三角形三边关系定理列出不等式组,然后解不等式组即可.7.以下各图均由彼此连接的六个小正方形纸片组成,其中不能..折叠成一个正方体的是考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.能组成正方体的“一,四,一”“三,三”A B C DA B C DA'B'C'D'(第9题)“二,二,二”“一,三,二”的基本形态要记牢.解答: 解:选项A 、B 、C 都可以折叠成一个正方体;选项D ,有“田”字格,所以不能折叠成一个正方体.故选D .点评:考查了展开图折叠成几何体,只要有“田”字格的展开图都不是正方体的表面展开图.8.下列事件中,属于随机事件的是 A .抛出的篮球会下落 B .从装有黑球、白球的袋中摸出红球 C .367人中有2人是同月同日出生 D .买一张彩票,中500万大奖 考点:随机事件.专题:应用题.分析:随机事件就是可能发生,也可能不发生的事件,根据定义即可判断. 解答:解:A 、抛出的篮球会落下是必然事件,故本选项错误;B 、从装有黑球,白球的袋里摸出红球,是不可能事件,故本选项错误;C 、367人中有2人是同月同日出生,是必然事件,故本选项错误;D 、买一张彩票,中500万大奖是随机事件,故本选正确. 故选D .点评:本题主要考查的是对随机事件概念的理解,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,比较简单. 9.如图,将边长为2的正方形ABCD 沿对角线平移,使点A 移至线段AC 的中点A ’处,得新正方形A ’B ’C ’D ’,新正方形与原正方形重叠部分(图中阴影部分)的面积是 A .2B .12C .1D .14考点:平移的性质;正方形的性质.分析:根据题意可得,阴影部分的图形是正方形,正方形ABCD 的边长为2,则AC=2,可得出A ′C=1,可得出其面积. 解答:解:∵正方形ABCD 的边长为2, ∴AC=2,又∵点A ′是线段AC 的中点,∴A ′C=1, ∴S 阴影=12×1×1=12.故选B .点评:本题考查了正方形的性质及平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 10.平面直角坐标系中,已知点O(0,o)、A(0,2)、B(1,0),点P 是反比例函数1y x=-图象上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q .若以点O 、P 、Q 为顶点的三角形与△OAB 相似,则相应的点P 共有A .1个B .2个C .3个D .4个 【答案】D 。

2002—2019徐州市中考数学试卷含详细解答(历年真题)

2002—2019徐州市中考数学试卷含详细解答(历年真题)

2019年江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)2-的倒数是( )A .12-B .12C .2D .2-2.(3分)下列计算正确的是( ) A .224a a a +=B .222()a b a b +=+C .339()a a =D .326a a a =3.(3分)下列长度的三条线段,能组成三角形的是( ) A .2,2,4B .5,6,12C .5,7,2D .6,8,104.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为( ) A .500B .800C .1000D .12005.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,386.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是( )A .B .C .D .7.(3分)若1(A x ,1)y 、2(B x ,2)y 都在函数2019y x=的图象上,且120x x <<,则( )A .12y y <B .12y y =C .12y y >D .12y y =-8.(3分)如图,数轴上有O 、A 、B 三点,O 为原点,OA 、OB 分别表示仙女座星系、87M 黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是( )A .6510⨯B .710C .7510⨯D .810二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 .10.(3x 的取值范围是 . 11.(3分)方程240x -=的解是 .12.(3分)若2a b =+,则代数式222a ab b -+的值为 .13.(3分)如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若4MN =,则AC 的长为 .14.(3分)如图,A 、B 、C 、D 为一个外角为40︒的正多边形的顶点.若O 为正多边形的中心,则OAD ∠= .15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=︒,则该圆锥的母线长l 为 cm .16.(3分)如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45︒,测得该建筑底部C 处的俯角为17︒.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为 m .(参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31)︒≈17.(3分)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为 .18.(3分)函数1y x =+的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上.若ABC ∆为等腰三角形,则满足条件的点C 共有 个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算: (1)021()|5|3π---;(2)2162844x x x x--÷+. 20.(10分)(1)解方程:22133x x x-+=-- (2)解不等式组:3222155x x x x >-⎧⎨+-⎩…21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘. (1)请将所有可能出现的结果填入下表:的概率为 ;积为偶数的概率为 ;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为 .22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“910-月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D 落在点G处,折痕为EF.求证:(1)ECB FCG∠=∠;(2)EBC FGC∆≅∆.24.(8分)如图,AB为O的直径,C为O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE与O有怎样的位置关系?请说明理由.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为2200cm ?26.(8分)【阅读理解】用1020cm cm 的矩形瓷砖,可拼得一些长度不同但宽度均为20cm 的图案.已知长度为10cm 、20cm 、30cm 的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm ,请在方格纸中画出长度为40cm 的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.A .甲从中山路上点B 出发,骑车向北匀速直行;与此同时,乙从点A 出发,沿北京路步行向东匀速直行.设出发xmin 时,甲、乙两人与点A 的距离分别为1y m 、2y m .已知1y 、2y 与x 之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.AOB∆的两条外角平分线交于点P,P在反比例函数9yx=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求P∠的度数及点P的坐标;(2)求OCD∆的面积;(3)AOB∆的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.2019年江苏省徐州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)2-的倒数是( )A .12-B .12C .2D .2-【解答】解:1(2)()12-⨯-=,2∴-的倒数是12-. 故选:A .2.(3分)下列计算正确的是( ) A .224a a a +=B .222()a b a b +=+C .339()a a =D .326a a a =【解答】解:A 、2222a a a +=,故选项A 不合题意;B .222()2a b a ab b +=++,故选项B 不合题意;C .339()a a =,故选项C 符合题意;D .325a a a =,故选项D 不合题意.故选:C .3.(3分)下列长度的三条线段,能组成三角形的是( ) A .2,2,4B .5,6,12C .5,7,2D .6,8,10【解答】解:224+=,2∴,2,4不能组成三角形,故选项A 错误, 5612+<,5∴,6,12不能组成三角形,故选项B 错误, 527+=,5∴,7,2不能组成三角形,故选项C 错误, 6810+>,6∴,8,10能组成三角形,故选项D 正确,故选:D .4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为( ) A .500B .800C .1000D .1200【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次, 故选:C .5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,38【解答】解:将数据重新排列为37,37,38,39,40,40,40, 所以这组数据的众数为40,中位数为39, 故选:B .6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是( )A .B .C .D .【解答】解:不是轴对称图形,故选:D .7.(3分)若1(A x ,1)y 、2(B x ,2)y 都在函数2019y x=的图象上,且120x x <<,则( )A .12y y <B .12y y =C .12y y >D .12y y =-【解答】解:函数2019y x=, ∴该函数图象在第一、三象限、在每个象限内y 随x 的增大而减小,1(A x ,1)y 、2(B x ,2)y 都在函数2019y x=的图象上,且120x x <<, 12y y ∴<,故选:A .8.(3分)如图,数轴上有O 、A 、B 三点,O 为原点,OA 、OB 分别表示仙女座星系、87M 黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是( )A .6510⨯B .710C .7510⨯D .810【解答】解:672.5100.2510⨯=⨯,77(1010)(0.2510)40⨯÷⨯=, 从数轴看比较接近;故选:D .二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 2 . 【解答】解:8的立方根为2, 故答案为:2.10.(3x 的取值范围是 1x -… .【解答】解:10x ∴+…,x ∴的取值范围是:1x -….故答案为:1x -….11.(3分)方程240x -=的解是 2± . 【解答】解:240x -=, 移项得:24x =,两边直接开平方得:2x =±, 故答案为:2±.12.(3分)若2a b =+,则代数式222a ab b -+的值为 4 . 【解答】解:2a b =+, 2a b ∴-=,22222()24a ab b a b ∴-+=-==. 故答案为:413.(3分)如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若4MN =,则AC 的长为 16 .【解答】解:M 、N 分别为BC 、OC 的中点, 28BO MN ∴==.四边形ABCD 是矩形, 216AC BD BO ∴===.故答案为16.14.(3分)如图,A 、B 、C 、D 为一个外角为40︒的正多边形的顶点.若O 为正多边形的中心,则OAD ∠= 140︒ .【解答】解:多边形的每个外角相等,且其和为360︒, 据此可得多边形的边数为:360940︒=︒, (92)1801409OAD -⨯︒∴∠==︒.故答案为:140︒15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=︒,则该圆锥的母线长l 为 6 cm .【解答】解:圆锥的底面周长224cm ππ=⨯=, 设圆锥的母线长为R ,则:1204180Rππ⨯=, 解得6R =. 故答案为:6.16.(3分)如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45︒,测得该建筑底部C 处的俯角为17︒.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为 262 m .(参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31)︒≈【解答】解:作AE BC ⊥于E , 则四边形ADCE 为矩形, 62EC AD ∴==,在Rt AEC ∆中,tan ECEAC AE∠=, 则62200tan 0.31EC AE EAC =≈=∠,在Rt AEB ∆中,45BAE ∠=︒, 200BE AE ∴==,20062262()BC m ∴=+=,则该建筑的高度BC 为262m , 故答案为:262.17.(3分)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为 21(4)2y x =- .【解答】解:设原来的抛物线解析式为:2(0)y ax a =≠. 把(2,2)P 代入,得24a =, 解得12a =. 故原来的抛物线解析式是:212y x =. 设平移后的抛物线解析式为:21()2y x b =-.把(2,2)P 代入,得212(2)2b =-.解得0b =(舍去)或4b =.所以平移后抛物线的解析式是:21(4)2y x =-.故答案是:21(4)2y x =-.18.(3分)函数1y x =+的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上.若ABC ∆为等腰三角形,则满足条件的点C 共有 3 个.【解答】解:以点A 为圆心,AB 为半径作圆,与x 轴交点即为C ; 以点B 为圆心,AB 为半径作圆,与x 轴交点即为C ; 作AB 的中垂线与x 轴的交点即为C ; 故答案为3;三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)021()|5|3π---;(2)2162844x x x x--÷+. 【解答】解:(1)原式13952=-+-=;(2)原式(4)(4)2(4)44x x x x x+--=÷+ 2(4)4x x x =-- 2x =.20.(10分)(1)解方程:22133x x x-+=-- (2)解不等式组:3222155x x x x >-⎧⎨+-⎩…【解答】解:(1)22133x x x-+=--, 两边同时乘以3x -,得 232x x -+-=-,32x ∴=; 经检验32x =是原方程的根; (2)由3222155x x x x >-⎧⎨+-⎩…可得22x x >-⎧⎨⎩…,∴不等式的解为22x -<…;21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘. (1)请将所有可能出现的结果填入下表:的概率为 ;积为偶数的概率为 ;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为 .【解答】解:(1)补全表格如下:所以积为9的概率为112;积为偶数的概率为82123=, 故答案为:112,23. (3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为21126=, 故答案为:16. 22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“910-月”对应扇形的圆心角度数; (2)补全条形统计图.【解答】解:(1)全年的总电费为:24010%2400÷=元 910-月份所占比:7280240060÷=, ∴扇形统计图中“910-月”对应扇形的圆心角度数为:73604260︒⨯=︒ 答:扇形统计图中“910-月”对应扇形的圆心角度数是42︒(2)78-月份的电费为:2400300240350280330900-----=元, 补全的统计图如图:23.(8分)如图,将平行四边形纸片ABCD 沿一条直线折叠,使点A 与点C 重合,点D 落在点G 处,折痕为EF .求证:(1)ECB FCG∠=∠;(2)EBC FGC∆≅∆.【解答】证明:(1)四边形ABCD是平行四边形,∴∠=∠,A BCD由折叠可得,A ECG∠=∠,∴∠=∠,BCD ECG∴∠-∠=∠-∠,BCD ECF ECG ECFECB FCG∴∠=∠;(2)四边形ABCD是平行四边形,∴∠=∠,AD BCD B=,由折叠可得,D G=,∠=∠,AD CG=,∴∠=∠,BC CGB G又ECB FCG∠=∠,∴∆≅∆.EBC FGC ASA()24.(8分)如图,AB为O的直径,C为O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE与O有怎样的位置关系?请说明理由.【解答】(1)证明:连接OC ,D 为BC 的中点,∴CD BD =,12BCD BOC ∴∠=∠,12BAC BOC ∠=∠,A DOB ∴∠=∠;(2)解:DE 与O 相切, 理由:A DOB ∠=∠, //AE OD ∴,DE AE ⊥,OD DE ∴⊥,DE ∴与O 相切.25.(8分)如图,有一块矩形硬纸板,长30cm ,宽20cm .在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为2200cm ?【解答】解:设剪去正方形的边长为xcm ,则做成无盖长方体盒子的底面长为(302)x cm -,宽为(202)x cm-,高为xcm,依题意,得:2[(302)(202)]200x x x⨯-+-=,整理,得:2225500x x-+=,解得:15 2x=,210x=.当10x=时,2020x-=,不合题意,舍去.答:当剪去正方形的边长为52cm时,所得长方体盒子的侧面积为2200cm.26.(8分)【阅读理解】用1020cm cm⨯的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A .甲从中山路上点B 出发,骑车向北匀速直行;与此同时,乙从点A 出发,沿北京路步行向东匀速直行.设出发xmin 时,甲、乙两人与点A 的距离分别为1y m 、2y m .已知1y 、2y 与x 之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x 取何值时,甲、乙两人之间的距离最短?【解答】解:(1)设甲、乙两人的速度分别为/am min ,/bm min ,则: 11200(05)1200(5)ax x y ax x -⎧=⎨->⎩剟2y bx =由图②知: 3.75x =或7.5时,12y y =,∴1200 3.75 3.757.512007.5a b a b -=⎧⎨-=⎩,解得:24080a b =⎧⎨=⎩答:甲的速度为240/m min ,乙的速度为80/m min . (2)设甲、乙之间距离为d , 则222(1200240)(80)d x x =-+ 2964000()1440002x =-+,∴当92x =时,2d 的最小值为144000,即d 的最小值为 答:当92x =时,甲、乙两人之间的距离最短. 28.(11分)如图,平面直角坐标系中,O 为原点,点A 、B 分别在y 轴、x 轴的正半轴上.AOB ∆的两条外角平分线交于点P ,P 在反比例函数9y x=的图象上.PA 的延长线交x 轴于点C ,PB 的延长线交y 轴于点D ,连接CD .(1)求P ∠的度数及点P 的坐标; (2)求OCD ∆的面积;(3)AOB ∆的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【解答】解:(1)如图,作PM OAY ⊥M ,PN OB ⊥于N ,PH AB ⊥于H . 90PMA PHA ∴∠=∠=︒,PAM PAH ∠=∠,PA PA =,()PAM PAH AAS ∴∆≅∆,PM PH ∴=,APM APH ∠=∠,同理可证:BPN BPH ∆≅∆, PH PN ∴=,BPN BPH ∠=∠, PM PN ∴=,90PMO MON PNO ∠=∠=∠=︒,∴四边形PMON 是矩形,90MPN ∴∠=︒,1()452APB APH BPH MPH NPH ∴∠=∠+∠=∠+∠=︒,PM PN =,∴可以假设(,)P m m ,(,)P m m 在9y x=上, 29m ∴=, 0m >, 3m ∴=,(3,3)P ∴.(2)设OA a =,OB b =,则3AM AH a ==-,3BN BH b ==-, 6AB a b ∴=--,222AB OA OB =+,222(6)a b a b ∴+=--, 可得1866ab a b =--,19332a b ab ∴--=,//PM OC ,∴CO OAPM AM =, ∴33OC aa=-, 33a OC a ∴=-,同法可得33bOD b=-, 1999632(3)(3)9332COD ab ab abS OC DO a b a b ab ab∆∴=====----+.(3)设OA a =,OB b =,则3AM AH a ==-,3BN BH b ==-, 6AB a b ∴=--, 6OA OB AB ∴++=,6a b ∴+=,6∴,(26∴,∴3(2,54ab ∴- (1)272AOB S ab ∆∴=-…AOB ∴∆的面积的最大值为27-2018年江苏省徐州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分) 1.(3分)4的相反数是( ) A .B .C .4D .﹣42.(3分)下列计算正确的是()A.2a2﹣a2=1B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6 3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.5.(3分)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于B.等于C.大于D.无法确定6.(3分)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:)A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册7.(3分)如图,在平面直角坐标系中,函数y=kx与y的图象交于A,B两点,过A作y轴的垂线,交函数y的图象于点C,连接BC,则△ABC的面积为()A.2B.4C.6D.88.(3分)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3B.x>3C.x<6D.x>6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)五边形的内角和是°.10.(3分)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为m.11.(3分)化简:||=.12.(3分)若在实数范围内有意义,则x的取值范围为.13.(3分)若2m+n=4,则代数式6﹣2m﹣n的值为.14.(3分)若菱形两条对角线的长分别是6cm和8cm,则其面积为cm2.15.(3分)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD=°.16.(3分)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.17.(3分)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多个.(用含n的代数式表示)18.(3分)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)﹣12+20180﹣()﹣1;(2).20.(10分)(1)解方程:2x2﹣x﹣1=0;>(2)解不等式组:21.(7分)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(7分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:(1)该调查的样本容量为,a=;(2)在扇形统计图中,“A”对应扇形的圆心角为°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.26.(8分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)27.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.28.(10分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.2018年江苏省徐州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)4的相反数是()A.B.C.4D.﹣4【解答】解:4的相反数是﹣4,故选:D.2.(3分)下列计算正确的是()A.2a2﹣a2=1B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6【解答】解:A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确.故选:D.3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、既是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.4.(3分)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.【解答】解:根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选:A.5.(3分)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于B.等于C.大于D.无法确定【解答】解:连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,他第4次抛掷这枚硬币,正面朝上的概率为:,故选:B.6.(3分)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:)A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册【解答】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3﹣0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D不符合题意.故选:B.7.(3分)如图,在平面直角坐标系中,函数y=kx与y的图象交于A,B两点,过A作y轴的垂线,交函数y的图象于点C,连接BC,则△ABC的面积为()A.2B.4C.6D.8【解答】解:∵正比例函数y=kx与反比例函数y的图象交点关于原点对称,∴设A点坐标为(x,),则B点坐标为(﹣x,),C(﹣2x,),∴S△ABC(﹣2x﹣x)•()(﹣3x)•()=6.故选:C.8.(3分)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3B.x>3C.x<6D.x>6【解答】解:∵一次函数y=kx+b经过点(3,0),且y随x的增大而减小,∴3k+b=0,且k<0,则3,∵kx+2b<0,∴kx<﹣2b,则x>6,即x>6,故选:D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)五边形的内角和是540°.【解答】解:(5﹣2)•180°=540°,故答案为:540°.10.(3分)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为1×10﹣8m.【解答】解:10nm用科学记数法可表示为1×10﹣8m,故答案为:1×10﹣8.11.(3分)化简:||=.【解答】解:∵<0∴||=2.故答案为:2.12.(3分)若在实数范围内有意义,则x的取值范围为x≥2.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.13.(3分)若2m+n=4,则代数式6﹣2m﹣n的值为2.【解答】解:∵2m+n=4,∴6﹣2m﹣n=6﹣(2m+n)=6﹣4=2,故答案为2.14.(3分)若菱形两条对角线的长分别是6cm和8cm,则其面积为24cm2.【解答】解:∵菱形的两条对角线分别是6cm和8cm,∴这个菱形的面积是:6×8=24(cm2).故答案为:24.15.(3分)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD=35°.【解答】解:在Rt△ABC中,∠ABC=90°,D为AC的中点,∴BD是中线,∴AD=BD=CD,∴∠BDC=∠C=55°,∴∠ABD=90°﹣55°=35°.故答案是:35.16.(3分)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为2.【解答】解:扇形的弧长4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.17.(3分)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多4n+3个.(用含n的代数式表示)【解答】解:方法一:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3﹣1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5﹣2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7﹣3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)﹣n个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个,方法二第1个图形白色正方形共8个,黑色1个,白色比黑色多7个,第2个图形比第1个图形白色比黑色又多了4个,即白色比黑色多(7+4)个,第3个图形比第2个图形白色比黑色又多了4个,即白色比黑色多(7+4×2)个,类推,第n个图案中白色正方形比黑色正方形多[7+4(n﹣1)]个,即(4n+3)个,故第n个图案中白色正方形比黑色正方形多4n+3个.18.(3分)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为4.【解答】解:如图所示:连接AQ.∵BP•BQ=AB2,∴.又∵∠ABP=∠QBA,∴△ABP∽△QBA,∴∠APB=∠QAB=90°,∴QA始终与AB垂直.当点P在A点时,Q与A重合,当点P在C点时,AQ=2OC=4,此时,Q运动到最远处,∴点Q运动路径长为4.故答案为:4.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)﹣12+20180﹣()﹣1;(2).【解答】解:(1)﹣12+20180﹣()﹣1;=﹣1+1﹣2+2,=0;(2).,=2(a﹣b).20.(10分)(1)解方程:2x2﹣x﹣1=0;>(2)解不等式组:【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1,x2=1;(2)>①②∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.21.(7分)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)【解答】解:(1)从中摸出1个球,恰为红球的概率等于,故答案为:;(2)画树状图:所以共有6种情况,含红球的有4种情况,所以p,答:从中同时摸出2个球,摸到红球的概率是.22.(7分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:(1)该调查的样本容量为200,a=64;(2)在扇形统计图中,“A”对应扇形的圆心角为36°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.【解答】解:(1)因为“C”有50人,占样本的25%,所以样本=50÷25%=200(人)因为“B”占样本的32%,所以a=200×32%=64(人)故答案为:200,64;(2)“A”对应的扇形的圆心角360°=36°,故答案为:36°;(3)全校学生中家庭藏书200本以上的人数为:2000660(人)答:全校学生中家庭藏书200本以上的人数为660人.23.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?【解答】解:(1)证明:∵四边形CEFG是正方形,∴CE=EF,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE,在△FEH和△ECD中,∴△FEH≌△ECD,∴FH=ED;(2)设AE=a,则ED=FH=4﹣a,∴S△AEF AE•FH a(4﹣a),(a﹣2)2+2,∴当AE=2时,△AEF的面积最大.24.(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?【解答】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,∴1.4t=3.5.答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时.25.(8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.【解答】解:(1)相切.理由如下:连接OD,∵BD是∠ABC的平分线,∴∠CBD=∠ABD,又∵OD=OB,∴∠ODB=∠ABD,∴∠ODB=∠CBD,∴OD∥CB,∴∠ODC=∠C=90°,∴CD与⊙O相切;(2)若∠CDB=60°,可得∠ODB=30°,∴∠AOD=60°,又∵AB=6,∴AO=3,∴ π.26.(8分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)【解答】解:(1)过点C作CE⊥PB,垂足为E,过点D作DF⊥PB,垂足为F,则∠CEP=∠PFD=90°,由题意可知:设AB=x,在Rt△PCE中,tan32.3°,∴PE=x•tan32.3°,同理可得:在Rt△PDF中,tan55.7°,∴PF=x•tan55.7°,由PF﹣PE=EF=CD=42,可得x•tan55.7°﹣x•tan32.3°=42,解得:x=50∴楼间距AB=50m,(2)由(1)可得:PE=50•tan32.3°=31.5m,∴CA=EB=90﹣31.5=58.5m由于2号楼每层3米,可知点C位于20层.27.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.。

2010年江苏中考数学试题(含答案)

2010年江苏中考数学试题(含答案)

二0一0年江苏常州市升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。

考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。

2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。

3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。

一、选择题(本大题共有8小题,每小题2分,共16分。

在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯ B. 61410⨯ C.71.410⨯ D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是235= B. 236= 623= D.2(2)2= 6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切 7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。

今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。

江苏省2010年中考数学试题(13份含有答案及解析)-6

江苏省2010年中考数学试题(13份含有答案及解析)-6

泰州市二○一○年初中毕业、升学统一考试数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.第一部分 选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(2010江苏泰州,1,3分)3-的倒数为( )A.3-B.31C.3D. 31- 【分析】如果两个数的积为1,那么这两个数互为倒数.所以3-的倒数为31-. 【答案】D【涉及知识点】有理数的有关概念【点评】涉及与有理数有关的概念题型,关键是对概念的理解,“回到定义中去”直接运用概念解题.【推荐指数】★★★★2.(2010江苏泰州,2,3分)下列运算正确的是( )A.623·a a a = B. 632)(a a -=- C. 33)(ab ab = D.428a a a =÷ 【分析】根据幂的运算性质,“同底数幂相乘,底数不变,指数相加”,选项A 不正确;“积的乘方,等于积中各因式乘方的积”,选项C 不正确;“同底数幂相除,底数不变,指数相减”,选项D 也不正确.【答案】B【涉及知识点】幂的运算性质【点评】用幂的运算性质解答问题,只要熟练掌握根据幂的运算性质即可.【推荐指数】★★★3.(2010江苏泰州,3,3分)据新华社2010年2月9日报道:受特大干旱天气影响,我国西南地区林地受灾面积达到43050000亩.用科学计数法可表示为( )A.810305.4⨯亩B. 610305.4⨯亩C. 71005.43⨯亩D. 710305.4⨯亩【分析】43050000可表示为4.305×10000000,100000=107,因此43050000=4.305×107.【答案】D【涉及知识点】科学记数法【点评】把一个数写成a ×10n的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法.科学记数法是每年中考试卷中的必考问题,应掌握:⑴表达形式为:,101(10<≤⨯a a n n 表示小数点移动的位数).科学记数法可以表示绝对值大于10的数,也可以表示绝对值小于1的数.⑵当表示绝对值大于10的数时应注意:小数点向左移到第一位数字后,看小数点移动了几位,n 的值就是几,表达式中的n 是应为正整数.⑶当表示绝对值小于1的数时应注意:小数点向右移到第一位不为零的数后,看小数点移动了几位,n 的值就是几,表达式中的n 应为负整数.【推荐指数】★★★★★4.(2010江苏泰州,4,3分)下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.【分析】选项A 、B 、D 的主视图都是矩形,只有选项C 的主视图是三角形与其它三个几何体的主视图不同.【答案】C【涉及知识点】三视图【点评】由立体图形到视图的过程,通常称为读图.要注意两点:一是长、宽、高的关系;二是上下、左右、前后的关系.当然,平时学习中知识的积累也很重要.【推荐指数】★★★★5.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( ) A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 【分析】选项A 反比例函数,其增减性要有前提条件,即在“各个象限内”,不能笼统地进行描述,应舍去;B 是一次函数,系数小于零,所以y 随x 增大而减小,舍去,选项D 中的二次函数开口向上,在对称轴的左侧(0)x <,y 随x 增大而减小,舍去.故选C .【答案】C【涉及知识点】一次函数、反比例函数、二次函数的增减性【点评】关于函数的增减性,对于一次函数而言,由系数k 即可确定,二次函数要由开口方向与对称轴来确定,而反比例函数,特别要注意“在每一个象限”这一限制条件.【推荐指数】★★★★6.(2010江苏泰州,6,3分)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有( )A.1个B.2个C.3个D.4个【分析】正多边形都是轴对称图形,对于正偶数边形,即是轴对称图形又是中心对称图形,①正确;对足球迷健康状况调查样本不具有代表性,②不正确;通过解答,③也是正确的;如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,④不正确.【答案】B【涉及知识点】轴对称与中心对称 随机抽样 分式方程的解法 简单的推理【点评】选择题中的判断正误题,往往是多个数学知识点组合在一起,在判断时,一是注意其表达的语言方式,二是注意漏解的情况.【推荐指数】★★★7.(2010江苏泰州,7,3分)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )A.0种B. 1种C. 2种D. 3种【分析】⑴假设以27cm 为一边,把45cm 截成两段,设这两段分别为xcm 、ycm (x <y ).则可得:24303627x y ==①或24303627x y==②(注:27cm 不可能是最小边),由①解得x=18,y=22.5,符合题意;由②解得x =1085,y =1625,x + y =1085+1625=2705=54>45,不合题意,舍去.⑵假设以45cm 为一边,把27cm 截成两段,设这两段分别为xcm 、ycm (x <y ).则可得:24303645x y ==(注:只能是45是最大边),解得x =30,y =752,x + y =30+37.5=67.5>27,不合题意,舍去.综合以上可知,截法只有一种.【答案】B【涉及知识点】相似三角形的判定【点评】在判定三角形相似,未明确对应关系时,特别注意不要忘了分类,再根据不同的对应关系分别计算要求的线段.【推荐指数】★★★★8.(2010江苏泰州,8,3分)已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A.Q P >B. Q P =C. Q P <D.不能确定【分析】可用特殊值法或差值法.特殊值法:取m =15,分别代入得P =6,Q =217,故P <Q ;差值法:P -Q =27811515m m m ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=21m m -+-=21324m ⎛⎫--- ⎪⎝⎭<0,故P <Q .【答案】C【涉及知识点】代数式的大小比较【点评】代数式的大小比交,最常用的方法就是特殊值法、差值法及商值法,在填空题及选择题中,用特殊值法是最简捷的,要注意字母所取值必满足条件.【推荐指数】★★★第二部分 非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2010江苏泰州,9,3分)数据-1,0,2,-1,3的众数为 .【分析】众数是指一组数据中出现次数最多的那个数,因为这组数据中-1出现的次数最多,所以这组数据的众数为-1.【答案】-1【涉及知识点】众数的概念【点评】平均数、中位数、众数概念是中考试题中的基本题型,只要掌握它们的概念,对照概念即可求出结果.要注意的是,求中位数时要先按大小顺序排列,另外,一组数据的平均数、中位数只有一个,而众数可能多于一个或者没有.【推荐指数】★★10.(2010江苏泰州,10,3分)不等式642-<x x 的解集为 .【分析】移项得246x x -<-、合并同类项得26x -<-、系数化为1,得x >3.【答案】x >3【涉及知识点】一元一次不等式的解法【点评】一元一次不等式的解法步骤与一元一次方程的解法相似,只是在不等式两边乘或除以同一个负数时,不等号的方向要改变.【推荐指数】★★★★11.(2010江苏泰州,11,3分)等腰△ABC 的两边长分别为2和5,则第三边长为 .【分析】等腰三角形有两条边相等,所以这个等腰三角形的三边长可以是2、2、5或2、5、5这两种情况,但2+2<5,不满足三角形三边关系定理,故舍去,其第三边长只能为5.【答案】5【涉及知识点】等腰三角形 三角形三边关系【点评】在计算等腰三角形的有关边长时,往往只注意分情况求边长,而忘了等腰三角形的三边长仍然需要满足三角形的三边关系定理,在解决此类问题时,千万不能顾此失彼.【推荐指数】★★★★★12.(2010江苏泰州,12,3分)已知扇形的圆心角为120°,半径为15cm ,则扇形的弧长为 cm (结果保留π).【分析】n °圆心角的弧长公式是: 180n R l π=.所以只要将n =120,R =15代入即可. 【答案】10π【涉及知识点】弧长计算公式【点评】圆周长公式为:C=2R π;所以n °圆心角的弧长公式即为: 180n R l π=.在计算弧长时只需将n 、R 分别代入.有时计算不规则图形时,要把不规则图形的问题转化为规则图形的问题.【推荐指数】★★★★★13.(2010江苏泰州,13,3分)一次函数b kx y +=(k 为常数且0≠k )的图象如图所示,则使0>y 成立的x 的取值范围为 .【分析】观察图象可知,直线在x 轴上方即0 y 时,x 的取值在-2的左侧,所以x 的取值范围是x <-2.【答案】x <-2【涉及知识点】一次函数与二元一次方程的关系【点评】二元一次方程转化为用含一个未知数的代数式表示另一个未知数,即得一次函数,在直角坐标系中画出其图象即可直观地看出当自变量取何值时,函值y 的值是大于0、等于0、还是小于0,这也是数形结合思想方法的简单运用.【推荐指数】★★★★★14.(2010江苏泰州,14,3分)已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .【分析】由题意在平面直角坐标系中标出点A 、点B ,要使以A 、B 、P 为顶点的三角形与△ABO 全等,因AB 是公共边,所以∠PBA 或∠PAB 为直角,且PA 或PB 等于2,由此可标出P 1(4,0),再由对称、翻折等图形的变化可求得满足条件的点P 有4个.【答案】(4,0);(4,4);(0,4);(0,0)(只要写出一个即可)【涉及知识点】平面直角坐标系 全等三角形的判定【点评】将全等三角形的判定置于平面直角坐标系中,只要画出图形,根据全等三角形的判定,确定其它的边的位置及大小,即可很方便地求出其坐标.【推荐指数】★★★★★15.(2010江苏泰州,15,3分)一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是 .【分析】由正方体的展开图可知:1与3相对;2与6相对;4与5相对.这样抛掷这个正方体,点数朝上共有6种等可能的结果,其中朝上一面是6或3时恰好等于朝下一面所标数字的3倍,所以其概率是26即13. 【答案】13【涉及知识点】求简单事件发生的概率.【点评】简单的一步试验事件发生的概率等于事件包含的结果数k 除以所有等可能出现的结果数n ,k P n=.本题就是用这个公式得出方程从而求出n 的值.概率是研究随机现象规律的学科,是新课程增加的内容之一,在中考中作为重要的考点.近年来,概率题不只以“投骰子”和 “扑克牌”为背景,更多的是以生活实际、游戏和新课程核心内容为背景,成为中考试题中一道亮丽的风景..【推荐指数】★★★★★16.(2010江苏泰州,16,3分)如图在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移 个单位长度.【分析】由图形可直观地得到⊙B 应向左平移4个或6个单位长度,即可与⊙A 内切.【答案】4或6【涉及知识点】两圆内切的概念【点评】注意⊙B 向左移动与⊙A 慢慢靠近再渐渐远去的过程,就不会出现漏解的情况.【推荐指数】★★★17. (2010江苏泰州,17,3分)观察等式:①4219⨯=-,②64125⨯=-,③86149⨯=-…按照这种规律写出第n 个等式: .【分析】先看等式左边,①式是32-1,②式是52-1,③式是72-1…所以第n 个等式左边应是()2211n +-;再看等式右边,①式是24⨯,②式是46⨯,③式是68⨯,所以第n 个等式右边应是2(22)n n +.【答案】())22(21122+=-+n n n 【涉及知识点】规律归纳猜想【点评】规律性猜想题,提供的信息是一种规律,但它隐含在题目中,有待挖掘和开发,一般只要注重观察数字(式)变化规律,经归纳便可猜想出结论.如果实在有困难,还可在平面直角坐标系中描点,根据图像猜测其蕴含的规律.【推荐指数】★★★★18.(2010江苏泰州,18,3分)如图⊙O 的半径为1cm ,弦AB 、CD 的长度分别为2,1cm cm ,则弦AC 、BD 所夹的锐角α= .【分析】由题意易得AB 所对的圆心角为90°,CD 所对的圆心角为60°,连结AD ,则锐角α=∠1+∠2,而∠1与∠2分别是CD 和AB 所对的圆周角,所以∠1+∠2=12(90°+60°).【答案】75°【涉及知识点】圆周角的性质【点评】解决圆中角度计算问题关键是掌握圆心角和圆周角之间的关系,利用同弧和等弧之间的关系进行转化.另外,往往添加能构成直径上的圆周角的辅助线,以便利用直径所对的圆周角是直角这个条件进行计算和证明.【推荐指数】★★★三、解答题:(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2010江苏泰州,19⑴,8分)计算: (1)12)21(30tan 3)21(01+-+︒---;【分析】根据零指数幂与负整指数幂即:a 0=1(a ≠0)、pp a a 1=-(a ≠0)可得1111()212--=⎛⎫- ⎪⎝⎭=-2、0(12)-=1,由特殊锐角三角函数值可知03tan 303=,再化简二次根式2122323=⨯=.【答案】原式=3231233--⨯++=23123--++=13-+.【涉及知识点】实数的混合运算 零指数幂与负整指数幂 特殊锐角三角函数值 二次根式的化简【点评】实数的混合运算首先注意运算顺序,其次运算律的灵活运用,最后是掌握幂的运算性质、特殊锐角三角函数值、二次根式的化简等知识点.【推荐指数】★★★(2010江苏泰州,19⑵,8分)(2))212(112aa a a a a +-+÷--. 【分析】先对括号内的两个分式通分,最简公分母是a (a +2),再做除法,最后做加减.【答案】原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+. 【涉及知识点】分式的加减乘除混合运算【点评】分式的混合运算,要牢记运算法则和运算顺序,并能灵活应用,分式的运算结果应是最简分式或整式.这里要强调一下,在进行分式通分后,根据分式加减法法则进行分式的加减运算,是分母不变,把分子相加减,有些同学生容易受解分式方程去分母这一步的影响,同时把分母去掉了,要引起重视,不能相混淆.【推荐指数】★★★★20.(2010江苏泰州,20,8分)已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:(1)作∠ABC 的平分线BD 交AC 于点D ;(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F .由⑴、⑵可得:线段EF 与线段BD 的关系为【分析】(1)作∠ABC 的平分线BD 交AC 于点D :①用圆规在BA 、BC 边上分别截取等长的两线段BG 、BH .②分别以点G 、点H 为圆心,以相同半径画弧,两弧交点为O .③连结BO 并延长交AC 于点D .(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F :①分别以点A 和点B 为圆心,以大于21AB 的长为半径作弧,两弧相交于点M 和点N ;②作直线MN .分别交AB 于点E ,交BC 于点F .由作图可证得四边形EBFD 是菱形,所以EF 与BD 互相垂直平分.【答案】⑴、⑵题作图如下:由作图可知线段EF 与线段BD 的关系为:互相垂直平分..【涉及知识点】尺规作图作角的平分线作线段的垂直平分线【点评】中考需要掌握的尺规作图部分有如下的要求:①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.③探索如何过一点、两点和不在同一直线上的三点作圆.④了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).我们在掌握这些方法的基础上,还应该会解一些新颖的作图题,进一步培养形象思维能力.【推荐指数】★★★★21.(2010江苏泰州,21,8分)学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票.班长提出由王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动.你认为这个方法公平吗?请画树状图或列表,并说明理由.【分析】求两步(或超过两步)事件概率的题目是中考命题的重点,其计算方法有两种,一种列表法,另一种是画树状图法.用利表法或画树状图法计算两步试验的随机事件的概率时,应把两步试验的所有可能的情况表示出来,从而计算随机事件的概率.【答案】根据题意列表(或画树状图)如下:由列表(或树状图)可知:()2163==和为偶数P ,()2163==和为奇数P . 所以这个方法是公平的.【涉及知识点】利用事件发生的概率判断游戏的公平性【点评】判断事件是否公平,要先用树状图或列表法求出双方获胜的概率,看游戏的规则使双方获胜的可能性是否相同,即概率是否相等.这种类型的题目,如果游戏不公平,有时还要求修改游戏规则使游戏变得公平,修改的方法一是看所有可能的结果中,哪些结果占一半【推荐指数】★★★★★22.(2010江苏泰州,22,8分)如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°.(1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF 的形状,并说明理由.【分析】(1)要证AC ∥DE ,设法证两个内错角相等,由已知∠EDC =∠CAB ,再由矩形利用两边平行将∠ACD 作为中间量进行转化;(2)可先猜想四边形BCEF 是平行四边形,设法证EF 、BC 与AD 的关系运用EF 、BC 平行且相等可得证.【答案】⑴在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB ,∴∠DCA =∠EDC ,∴AC ∥DE ;⑵四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°,又∠EDC =∠CAB ,AB=CD ,∴△DEC ≌△AFB ,∴DE =AF ,由⑴得AC ∥DE ,∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF ,∵在矩形ABCD 中,AD ∥BC 且AD =BC ,∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形.【涉及知识点】矩形的性质 平行四边形的判定 全等三角形的判定【点评】从中考试卷来看,平行四边形这一节不会有很复杂的证明题,主要考查平行四边形的性质特征及判别方法综合运用. 掌握这部分内容,首先搞清平行四边形与矩形、菱形、 正方形之间的包含关系.注重把握特殊平行四边形与一般平行四边形的异、同点,才能准确地、灵活地运用.【推荐指数】★★★★★23.(2010江苏泰州,23,10分)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?【分析】理解了“每调进100吨绿豆,市场价格就下降1元/千克”,即“每调进1吨绿豆,市场价格就下降1001元/千克”,并比较容易列不等式组了. 【答案】设调进绿豆x 吨,根据题意,得1681001610.100x x -≥-≤⎧⎪⎪⎨⎪⎪⎩, 解得 600≤x ≤800. 答:调进绿豆的吨数应不少于600吨,并且不超过800吨.【涉及知识点】一元一次不等式组的应用【点评】本例是不等式组在实际生活中的综合运用,侧重考查如何把生活问题转化为数学问题的能力,建立不等式模型,即“数学建模”. 从近两年的中考题来看,一元一次不等式(组)的实际应用题比以前要有所增加,其呈现的方式通常是与方程、一次函数等知识结合来求解.另外还常常辅以图表来说明有关信息,我们要抓住相等或不等的数量关系,结合图表观察、分析、猜想、归纳从而找到解题的最佳途径.【推荐指数】★★★★24.(2010江苏泰州,24,10分)玉树地震后,全国人民慷慨解囊,积极支援玉树人民抗震救灾,他们有的直接捐款,有的捐物.国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠.截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(图①),其中,中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是 ;(2)全国接收直接捐款数和捐物折款数共计约 亿元;(3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?【分析】⑴1-33%-33%-13%-17%=4%,故应填4%;⑵因为中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元,而这两家机构点捐赠的百分比为(13%+17%)=30%,所以全国接收的捐款数和捐物折款数为:15.6÷30%=52亿,应填52亿.⑶由13%×52=6.76亿,可知中华慈善总会所受赠款物的条形高度.⑷小题是一道简单的一元一次方程的应用题,只要抓住总接收的捐款数和和捐物折款数为52亿即可列出方程.【答案】⑴4%;⑵52亿;⑶补全图如下:⑷设直接捐款数为x,则捐赠物折款数为:(52-x)依题意得:x=6(52-x)+3解得x=45(亿)(52-x)=52-45=7(亿)答:直接捐款数和捐赠物折款数分别为45亿,7亿元..【涉及知识点】扇形统计图条形统计图【点评】对数据进行整理和分析,要能从统计图中获取信息和数据,并作出合理的判断和预测,有些题目还要求对由数据得到的结论进行合理的质疑.这类题型充分展现了数学的实效性.解决这类题要以生活经验寻求基本的数量关系,要有针对性,要克服光靠图象,不加数学分析的主观臆断.【推荐指数】★★★★★25.(2010江苏泰州,25,10分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度31∶=i ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)【分析】由题意通过作辅助线构造两个共边的直角三角形,再由解直角三角形的知识可求得山坡AB 的长,要使得李强和庞亮同时到达山项,只要将庞亮登到山项的时间算出即可得李强的速度.【答案】过点A 作AD ⊥BC 于点D ,在Rt △ADC 中,由3:1=i 得tan C =3331=∴∠C =30°∴AD =21AC =21×240=120(米) 在Rt △ABD 中,∠B =45°∴AB =2AD =1202(米) 1202÷(240÷24)=1202÷10=122(米/分钟)答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A .【涉及知识点】解直角三角形【点评】转化是解直角三解形的关键,解斜三角形一般要通过辅助线把斜三角形转化为几个直角三角形,再解直角三角形.【推荐指数】★★★★★26.(2010江苏泰州,26,10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式.⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?【分析】当1≤x ≤5时,图象是反比例函数的图象,设解析式将(1,200)代入即可求其解析式;当x >5时,是一次函数的图象,根据从这时起,该厂每月的利润比前一个月增加20万元,可得一次函数解析式.利润少于100万元要分别从反比例函数和一次函数中求对应的月份.【答案】⑴①当1≤x ≤5时,设k y x =,把(1,200)代入,得200k =,即200y x =;②当5x =时,40y =,所以当x >5时,4020(5)2060y x x =+-=-;⑵当y =200时,20x -60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元; ⑶对于200y x=,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2=6个月.【涉及知识点】反比例函数、一次函数的性质及应用【点评】本题是一道反比例函数及一次函数有关的图象信息题,巧妙地这两个函数结合在一起,考查了同学们对数学知识的实际应用能力.图象信息题的主要特点是已知条件陷臧在给出的图象中,解决此类问题的关键是读懂图象,从图象中找出解题所需要的相关条件,然后正确求解.【推荐指数】★★★★27.(2010江苏泰州,27,12分)如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点.⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式;⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)。

2010年江苏省徐州市中考试卷及答案

2010年江苏省徐州市中考试卷及答案

徐州市2010年初中毕业、升学考试英语试题一、选择填空(共15小题,每小题1分,满分15分)从A、B、C、D四个选项中选出可以填人空白处的最佳选项。

1. -It's too hot. What about having a glass of cold drink? -______!A. Good ideaB. Good luckC. That's rightD. Me, too2. Many young people become interested in playing ______ football because of the World Cup.A. theB. 不填C. aD. an3. -How often does he write emails to his friend?-______.A. Once a monthB. In a weekC. For half an hourD. Last Monday4. His Walkman is different from, and it is more expensive.A. himB. mineC. myD. her5. I'm very glad I have my own room in my house. I ______ do what I want in it.A. mustB. have toC. needD. can6. The old pen is broken, I'd like ______ one to write with.A. the otherB. anotherC. othersD. the others7. The doctors in ORBIS have done ______ an important job ______ the patients are all grateful to them.A. too, toB. so, thatC. such, thatD. as, as8. I used to spend all my pocket money on clothes and snacks. But now, I try to ______ some money for charities.A. wasteB. useC. saveD. take9. Could you please tell me ______? I want to see him right now.A. where does Jim liveB. where did Jim liveC. where Jim livedD. where Jim lives10. -Our city looks more beautiful!-Yes. Lots of trees and grass ______ since last year.A. have been plantedB. are plantedC. will be plantedD. were planted11. Liu Qian is famous ______ his amazing magic shows.A. withB. forC. atD. on12. Alice ______ watches the news round-up, so she knows little about the world.A. seldomB. usuallyC. sometimesD. always13. - Where are you going, Lily?-I'm going to the ______ to fly a kite.A. shopB. libraryC. parkD. post office14. It's very warm here in the room. You'd better ______ your coat.A. take inB. take awayC. take outD. take off15. Which of the following pictures means "Please don't take photos here. "?A. B. C. D.二、完形填空(共15小题,每小题1分,满分15分)根据短文内容,从各题所给的A、B、C、D四个选项中选出最佳选项。

江苏省徐州市中考数学试题.doc

江苏省徐州市中考数学试题.doc

徐州市初中毕业、升学考试数学试题注意事项:1.本试卷满分l 考试时间为I .2. 答题前前将自己的姓名、准考证号用0.5毫米黑色墨水签字笔写在本试卷和答题卡上,3. 考生答题全部涂、写在答题卡上,写在本试卷上无效,考试结束,将本试卷和答题卡一并交回。

一、选择题(本大题共有10小题,每小题2分,共在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1,2-的相反数是 A .2B. 2-C.12D. 12-2. 我国总人口约为l 370 000 000人,该人口数用科学记数法表示为 A .110.13710⨯ B .91.3710⨯C .813.710⨯D .713710⨯3.估计11的值A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间4.下列计算正确的是A .22x x x ⋅=B .22()xy xy = C .236()x x = D .224x x x +=5.若式子1x -在实数范围内有意义,则x 的取值范围是 A .1x ≥ B .1x > C .1x < D .1x ≤6.若三角形的两边长分别为6 ㎝,9 cm ,则其第三边的长可能为 A .2㎝ B .3 cmC .7㎝D .16 cm7.以下各图均由彼此连接的六个小正方形纸片组成,其中不能..折叠成一个正方体的是ABCDB B'(第9题)(第12题)BCD8.下列事件中,属于随机事件的是 A .抛出的篮球会下落B .从装有黑球、白球的袋中摸出红球C .367人中有2人是同月同日出生D .买一张彩票,中500万大奖9的正方形ABCD 沿对角线平移,使点A 移至线段AC 的中点A ’处,得新正方形A ’B ’C ’D ’,新正方形与原正方形重叠部分(图中阴影部分)的面积是 A B .12C .1D .1410.平面直角坐标系中,已知点O(0,o)、A(0,2)、B(1,0),点P 是反比例函数1y x=-图象上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q .若以点O 、P 、Q 为顶点的三角形与△OAB 相似, 则相应的点P 共有A .1个B .2个C .3个D .4个二、填空题(本大题共有8小题,每小题3分.共24分.不需写出解答过程.请把答案直接填写在答题卡相应位置上) 11.0132-- =__________.12.如图.AB ∥CD ,AB 与DE 交于点F ,∠B=40°,∠D=70°.则∠E= __________13.若直角三角形的一个锐角为则另一个锐角等于__________。

江苏省2010年中考数学试题(13份含有答案及解析)-4

江苏省2010年中考数学试题(13份含有答案及解析)-4

江苏省淮安市2010年初中毕业暨中等学校招生文化统一考试数学试题欢迎参加中考,相信你能成功!请先目读以下几点注意事项:1.本卷分为第1卷和第Ⅱ卷两部分,共6页。

满分150分。

考试时闻120分钟。

2.第1卷每小题选出答案后,请用2B铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,请用橡皮擦干净后.再选涂其他答案。

答案答在本试题卷上无效。

3.作答第Ⅱ卷时,用O.5毫米黑色墨水签字笔将答案写在答题卡上的指定位置。

答案答在本试题卷上或规定区域以外无效。

4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚。

5.考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2010江苏淮安,1,3分)-(-2)的相反数是A.2 B.12C.-12D.-2【分析】一个实数a的相反数为-a,所以首先对-(-2)化简为,-(-2)表示-2 的相反数,所以-(-2)=2,故-(-2)的相反数是-2.【答案】D【涉及知识点】相反数的意义【点评】本题属于基础题,主要考查学生对概念的掌握以及多重符号的化简的知识,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.(2010江苏淮安,2,3分)计算32a a 的结果是A.a6B.a5C.2a3D.a【分析】同底数幂的乘法,底数不变指数相加,所以结果为B.【答案】B【涉及知识点】同底数幂的乘法法则【点评】本题属于基础题,主要考查学生对法则的应用,知识点比较单一.【推荐指数】★3.(2010江苏淮安,3,3分)2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为A.0.377×l06 B.3.77×l05C.3.77×l04D.377×103【分析】37.7万可以表示为377000,用a×10n科学记数法表示时,10指数为整数位数减去1,所以377000=3.77×l05.【答案】B【涉及知识点】科学记数法【点评】本题属于基础题,主要考查学生对较大数的科学记数法的表示方法,以及“万”、“亿”等单位与0之间的转化,此类问题一般是比较简单的问题.【推荐指数】★★★★4.(2010江苏淮安,4,3分)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是A.7 B.8 C.9 D.10【分析】众数是一组数据中出现次数最多的数据,所以次数据中的众数为9.【答案】C【涉及知识点】众数的概念【点评】本题属于基础题,主要考查学生对概念的掌握,考查知识点单一,有利于提高本题的信度.【推荐指数】★5.(2010江苏淮安,5,3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是A.3 B.4 C.5 D.6【分析】三角形的内角和为180°,四边形的内角和是360°,而且边数越多,内角和越大,而多边形的外角和是360°与边数无关,所以选择A.【答案】A【涉及知识点】多边形的内角和、外角和【点评】本题主要是常见多边形的内角和与外角和的应用,本题比较简单,但是也可以利用不等式的问题解决.【推荐指数】★★6.(2010江苏淮安,6,3分)如图,圆柱的主视图是【分析】主视图是在正面内得到由前向后观察的视图,所以应选择B.【答案】B【涉及知识点】主视图的概念【点评】本题属于基础题,主要考查学生对概念的理解,掌握好正视图概念是解决此问题的关键.【推荐指数】★★7.(2010江苏淮安,7,3分)下面四个数中与11最接近的数是A.2 B.3 C.4 D.5【分析】由于9<11<16,所以11的平方根应在3和4 之间,又因为3.52=12.25,所以11最接近的数为B.【答案】B【涉及知识点】实数的估算【点评】本题主要考察对实数的估算的知识,解决此类问题的步骤是首先确定所在整数的范围,然后再确定两个整数之间的数的平方,进而确定出其范围.【推荐指数】★★8.(2010江苏淮安,8,3分)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)= A .97×98×99 B .98×99×100 C .99×100×101 D .100×101×102 【分析】从材料可以得出1×2,2×3,3×4,……可以用式子表示,即原式=.()()()1113123012234123991001019899100333⎡⎤⨯⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯⎢⎥⎣⎦=123012234123991001019899100⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯=99×100×101,所以选择C. 【答案】C【涉及知识点】材料阅读题【点评】对于材料阅读的问题是中考问题中的常见问题,也属于难度较大的问题,这种问题的规律性比较强,所以找出材料中的规律是解决此类问题的关键. 【推荐指数】★★★★第Ⅱ卷(非选择题 共126分)二、填空题(本大题共有lO 小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9. (2010江苏淮安,9,3分)当x= 时,分式13x -与无意义. 【分析】分式无意义的条件是分母为0,所以x -3=0,即x=3. 【答案】x=3【涉及知识点】分是无意义的条件【点评】本题属于基础题,主要考查学生对分式无意义的条件的考察,考查知识点单一. 【推荐指数】★10.(2010江苏淮安,10,3分)已知周长为8的等腰三角形,有一个腰长为3,则最短的一条串位线长为 .【分析】根据等腰三角形的周长和一腰的长,可以求出底边长为5,所以根据三角形中位线的性质,可知较短的中位线是与腰平行的中位线,所以长度为1.5.【答案】1.5【涉及知识点】三角形的中位线和等腰三角形【点评】本题是结合等腰三角形的知识和中位线的性质的问题,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★11.(2010江苏淮安,11,3分)化简:()()2222x x x+--= .【分析】首先根据完全平方公式可得224444x x x xx++-+-,然后再得88xx=.【答案】8【涉及知识点】分式的约分和完全平方公式【点评】本题属于基础题,主要考查学生的计算能力和对公式的把握程度.【推荐指数】★★12.(2010江苏淮安,12,3分)若一次函数y=2x+l的图象与反比例函数图象的一个交点横坐标为l,则反比例函数关系式为.【分析】由于交点在一次函数上,所以把x=1代入函数的解析式,可得y=3,所以点的坐标为(1,3),设反比例函数的解析式为kyx=,把(1,3)代入可得k=3,所以反比例函数的解析式为3yx =.【答案】B【涉及知识点】反比例函数和一次函数【点评】本题主要考察点在函数图像上的知识和反比例函数解析式的确定方法,属于中等难度的问题.【推荐指数】★★★13.(2010江苏淮安,13,3分)如图,已知点A,B,C在⊙O上,AC∥0B,∠BOC=40°,则∠ABO= .题13图【分析】由于∠BOC和∠BAC都是弧BC所对的圆周角和圆心角,所以可知2∠BAC=∠BOC,所以∠BAC=20°,又因为AC∥0B,所以∠ABO=∠BAC=20°.【答案】20°【涉及知识点】圆周角的性质和平行线的性质【点评】本题是圆周角与平行线知识相结合的问题,属于中等难度的问题,解决此类问题的关键是记忆在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.【推荐指数】★★14.(2010江苏淮安,14,3分)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4.5 cm,则A,B两地间的实际距离为m.【分析】根据图上距离:实际距离=比例尺,所以可以得到A、B间的实际距离=4.5×200=900cm=9m.【答案】9【涉及知识点】相似比【点评】本题属于基础问题,主要考察的是比例尺=图上距离:实际距离.【推荐指数】★15.(2010江苏淮安,15,3分)将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.【分析】根据弧长公式可以求出圆锥底面周长为14454180ππ⨯=,所以底面半径为422ππ=. 【答案】2【涉及知识点】弧长公式【点评】本题属于中难度的问题,主要是考察对弧长公式的记忆,以及圆锥和扇形之间的关系.【推荐指数】★★★★16.(2010江苏淮安,16,3分)小明根据方程5x+2=6x -8编写了一道应用题.请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; .请问手工小组有几人?(设手工小组有x 人)【分析】从题目可以看出总工作量为5x+2,所以该空格可以填写,若每人作6个,就比原计划多8个.【答案】若每人作6个,就比原计划多8个 【涉及知识点】一元一次方程【点评】本题是实际应用型的问题,属于中等难度的问题. 【推荐指数】★ 17.(2010江苏淮安,17,3分)如图,在直角三角形ABC 中,∠ABC=90°,AC=2,BC=3,以点A 为圆心,AB 为半径画弧,交AC 于点D ,则阴影部分的面积是 .题17图 题18图 【分析】首先根据勾股定理求出AB=1,又因为AC=2,所以∠C=30°,然后根据阴影部分的面积等于三角形的面积131322⨯⨯=,减去扇形的面积6013606ππ⋅⋅=,所以阴影部分的面积为326π-. 【答案】326π- 【涉及知识点】扇形的面积公式、勾股定理、直角三角形30°的判定 【点评】本题属于综合型的问题,属于中等偏难的问题. 【推荐指数】★★★★18.(2010江苏淮安,18,3分)已知菱形ABCD 中,对角线AC=8cm ,BD=6cm ,在菱形内部(包括边界)任取一点P ,使△ACP 的面积大于6 cm 2的概率为 . 【分析】根据三角形的面积公式可知当△ACP 面积为6时,高为32cm ,所以当点P 在垂直于BD 距离AC 32cm 的直线上时,所构成的面积均为6,然后再结合相似三角形的面积比,可知概率为:14. 【答案】14【涉及知识点】菱形的性质、相似三角形的性质、概率【点评】本题是概率的知识和相似三角形的知识的综合问题,属于较难的问题. 【推荐指数】★★★三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(2010江苏淮安,19,8分)(1)计算:1913-+--;(2)解不等式组30,2(1) 3.x x x -<⎧⎨+≥+⎩【答案】(1)原式=3+1-3=1.(2)30,.2(1)3x x x -<⎧⎨++⎩①≥②解①得:x <3,解②得:x ≥1,所以不等式的解集为:1≤x <3.【点评】本题主要是考察基本运算和不等式的基本解法,题目一般是不难,最主要是书写格式必须要注意.【推荐指数】★★★ 20.(2010江苏淮安,20,8分)已知:如图,点C 是线段AB 的中点,CE=CD ,∠ACD=∠BCE, 求证:AE=BD .题20图【分析】要证明AE=BD ,所以可以证明△ACE 和△BCD 全等,由于两个三角形中具备AC=BC ,CE=CD 两条边相等,所以只要再具备夹角相等即可. 【答案】证明:∵点C 是线段AB 的中点, ∴AC=BC ,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE, 即∠ACE=∠BCD,在△ACE和△BCD中,AC BCACE BCD CE CD⎧=⎪∠=∠⎨⎪=⎩,∴△ACE≌△BCD(SAS),∴AE=BD.【涉及知识点】三角形全等的条件【点评】本题是一个简单考察三角形全等条件的证明题,关键是对证明方法的选用.【推荐指数】★★★21.(2010江苏淮安,21,8分)在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是;(2)从口袋内任取一张卡片记下数字后放回.搅匀后再从中任取一张,求两张卡片上数字和为5的概率.【分析】在(1)中由于卡片中共有5个数字,而偶数的个数为2个,所以概率为25;(2)中的问题可以列出树形图,共有25中可能,而其中是5的倍数的有5中情况,所以概率为1 5【答案】解:(1)2 5(2)1 5【涉及知识点】概率【点评】本题主要是对概率的求法,此问题属于中等难度的问题.【推荐指数】★★★★22.(2010江苏淮安,22,8分)有A,B,C,D四个城市,人口和面积如下表所示:A城市B城市C城市D城市人口(万人) 300 150 200 100面积(万平方公里) 20 5 10 4(1)问A城市的人口密度是每平方公里多少人?(2)请用最恰当的统计图......表示这四个城市的人口密度.【分析】人口密度表示单位面积中人口的数量,所以可以求出人口密度.【答案】解:(1)A城市的人口密度:3001520=(万人/万平方公里);B城市的人口密度:150305=(万人/万平方公里);C城市的人口密度:2002010=(万人/万平方公里);D城市的人口密度:100254=(万人/万平方公里).(2)可以用条形统计图表示:【涉及知识点】统计图【点评】统计图表是中考的必考内容,本题主要考察合理选择统计图表的知识,数据的问题在中考试卷中也有越来越综合的趋势.【推荐指数】★★★★23.(2010江苏淮安,23,10分)玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.【分析】可设乙工程队单独完成这项任务需要x天,则可以根据甲工作4天的工作量与甲乙合作6天的工作量的和为整体1解决.【答案】解:设乙工程队独立完成这项工程需要x天,所以1114()(20104)12020x⨯++⨯--=,解得x=12,经检验x=12是分式方程的解,所以乙工程队独立完成这项工程需12天.【涉及知识点】分式方程的应用【点评】本题属于难度比较大的问题,所考察的知识点比较单一,主要是考察利用分式方程解决实际问题,这种问题是中考中的常见问题,通常是以社会生活中的热点问题为背景.【推荐指数】★★★★24.(2010江苏淮安,24,10分)已知二次函数y=ax2+bx+c的图象与y轴交于点A(O,-6),与x轴的一个交点坐标是B(-2,0).(1)求二次函数的关系式,并写出顶点坐标;(2)将二次函数图象沿x轴向左平移52个单位长度,求所得图象对应的函数关系式.【分析】.【答案】解:(1)【涉及知识点】【点评】.【推荐指数】★★★★★25.(2010江苏淮安,25,10分)某公园有一滑梯,横截面如图薪示,AB表示楼梯,BC 表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=23,BF=3米,BC=1米,CD=6米.求:(1) ∠D的度数;(2)线段AE的长.题25图【分析】(1)要求∠D的度数,可以求出CE和CD的长度,进而根据直角三角形30°角的判定方法求出∠D的度数;(2)要求AD的长度,可以根据解直角三角形的正弦值,求出AF,然后再结合勾股定理求出DE,从而求出AD.【答案】解:(1)∵四边形BCEF是矩形,∴∠BFE=∠CEF=90°,CE=BF,BC=FE,∴∠BFA=∠CED=90°,∵CE=BF,BF=3米,∴CE=3米,∵CD=6米,∠CED=90°,∴∠D=30°.(2)∵sin∠BAF=23,∴23 BFAB,∵BF=3米,∴AB=92米,∴22935322AF⎛⎫=-=⎪⎝⎭米,∵CD=6米,∠CED=90°,∠D=30°,∴3 cos302DECD==∴33DE=米,∴AE=9322+米.【涉及知识点】解直角三角形、勾股定理、直角三角形的性质、矩形的性质【点评】本题属于综合性的问题,设计的知识点比较多,属于中等偏难的问题.【推荐指数】★★★★26.(2010江苏淮安,26,10分)(1)观察发现如题26(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P 再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD 上找一点P,使BP+PE的值最小.做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.题26(a)图题26(b)图(2)实践运用如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.题26(c)图题26(d)图(3)拓展延伸如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.【分析】(1)由于等边三角形是极其特殊的三角形,所以根据勾股定理求出CE的长度;(2)首先根据材料提供的方法求出P点的位置,然后再结合圆周角等的性质,求出最短的距离;(3)从(1)(2)可以得出,理由轴对称来解决,找B关于AC对称点E,连DE 延长交AC于P即可.【答案】解:(1)3;(2)如图:作点B关于CD的对称点E,则点E正好在圆周上,连接OA、OB、OE,连接AE交CD与一点P,AP+BP最短,因为AD的度数为60°,点B是AD的中点,所以∠AEB=15°,因为B关于CD的对称点E,所以∠BOE=60°,所以△OBE为等边三角形,所以∠OEB=60°,所以∠OEA=45°,又因为OA=OE,所以△OAE为等腰直角三角形,所以AE=22.(3)找B关于AC对称点E,连DE延长交AC于P即可,【涉及知识点】圆周角的性质、勾股定理、对称【点评】本题属于综合性的问题,此类问题设计的知识点比较多,解决起来有点难度.【推荐指数】★★★★★27.(2010江苏淮安,27,12分)红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11.经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.(1)求y2与x的函数关系式;(2)当销售价格为多少时,产量等于市场需求量?(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克) (2≤x ≤10)之间的函数关系式.题27图【分析】从图像可以看出函数是一次函数,所以可以根据待定系数法求出函数的解析式,然后再根据题意表示出利润和销售价格之间的函数关系.【答案】解:(1)设函数的解析式为y 2=kx+b ,把(2,12)和(10,4)代入函数的解析式可得:212104k b k b ⎧+=⎨+=⎩,解得114k b ⎧=-⎨=⎩,所以函数的解析式为y 2=-x+14.(2)由题意可得:0.5x+11=-x+14,所以x=2,所以当销售价格为2元时,产量等于市场需求量.(3)设当销售单价为x 时,产量为y , 则由题意得:W=(x -2)y=(x -2)(0.5x+11) =0.5x 2+10x -22=()2110722x +-(2≤x ≤10) 【涉及知识点】二次函数、一次函数【点评】本题属于综合性的问题,设计的知识点比较多,此类问题是每年中考问题中的必考点.【推荐指数】★★★★★28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A 坐标为(12,0),点B 坐标为(6,8),点C 为OB 的中点,点D 从点O 出发,沿△OAB 的三边按逆时针方向以2个单位长度/秒的速度运动一周.(1)点C 坐标是( , ),当点D 运动8.5秒时所在位置的坐标是( , ); (2)设点D 运动的时间为t 秒,试用含t 的代数式表示△OCD 的面积S,并指出t 为何值 时,S 最大;(3)点E 在线段AB 上以同样速度由点A 向点B 运动,如题28(b)图,若点E 与点D 同时 出发,问在运动5秒钟内,以点D ,A ,E 为顶点的三角形何时与△OCD 相似(只考虑以点A .O 为对应顶点的情况):题28(a)图 题28(b)图【分析】(1)若求点的坐标,可以过该点作x 轴的垂线,所以可以借助于平行线等分线段定理解决,求出D 和C 的坐标;(2)此问题是分类得问题,当点D 在不同的边上时,三角形的面积是不同的,然后根据图形之间的关系求出函数解析式,然后根据求最值的问题解决;(3)与(2)一样,只不过借助于三角形相似来解决.【答案】解:(1)C (3,4)、D (9,4)(2)当D 在OA 上运动时,14242S t t =⨯⨯=(0<t <6); 当D 在AB 上运动时,过点O 作OE ⊥AB ,过点C 作CF ⊥AB ,垂足分别为E 和F ,过D 作DM ⊥OA ,过B 作BN ⊥OA ,垂足分别为M 和N ,如图:设D 点运动的时间为t 秒,所以DA=2t -12,BD=22-2t , 又因为C 为OB 的中点, 所以BF 为△BOE 的中位线, 所以12CF OE =, 又因为11822AB OE OA ⋅=⨯, 所以485OE =,所以245CF =, 因为BN ⊥OA ,DM ⊥OA , 所以△ADM ∽△ABN , 所以212108t DM-=,所以8485t DM -=, 又因为△△△△BCD OCDOAB OAD SS S S =--,所以△1184812412812(222)22525OCD t S t -=⨯⨯-⨯⨯-⨯-⨯, 即△2426455OCD t S =-+(6≤t <11), 所以当t=6时,△OCD 面积最大,为△2462642455OCD S ⨯=-+=; 当D 在OB 上运动时,O 、C 、D 在同一直线上,S=0(11≤t ≤16). (3)设当运动t 秒时,△OCD ∽△ADE ,则O CO DA DA E=,即521222tt t=-,所以t=3.5;设当运动t 秒时,△OCD ∽△AED ,则O C O DA E A D=,即522122t t t =-,所以225300t t +-=,所以152654t -+=,252654t --=(舍去),所以当t 为3.5秒或52654-+秒时两三角形相似.【涉及知识点】一次函数的最值、平面直角坐标系、相似三角形【点评】本题是综合性比较强的问题,它巧妙的运用运动的观点,把相似三角形和平面直角坐标系以及一次函数等知识结合起来,属于难度较大的问题.【推荐指数】★★★★★。

徐州市8年(04——11)中考数学真题及答案精编版免费送(收藏版)

徐州市8年(04——11)中考数学真题及答案精编版免费送(收藏版)

徐州市2Q04年初中毕业、升学考试数学试题1.如果收入100元记作+100元,那么支出50元记作_________元.2.我市冬季某一天的最高气温为一l℃,最低气温为一6℃,那么这一天的最高气温比最低气温高_________℃. ,3.函数y=1-x x中自变量x 的取值范围是________________4.当x>l 时,化简2)1(x -=_____________.5.写出一个图象经过点(1,一1)的函数解析式:——. 6.分解因式:x 3y-y 3=_________. 。

7.已知∠α=6300,那么它的余角等于_______度.8.如果等腰三角形的顶角为800,那么它的一个底角为______度.9.在你所学过的几何图形中,写出一个是轴对称图形但不是中心对称图形的图形名称:_______.10.如图,在离地面高度5m 处引拉线固定电线杆,拉线和地面成600角,那么拉线AC 的长约为______m .(精确到0.1m)11.知圆锥的底面半径是40cm,母线长50cm,那么这个圆锥的侧面积为_______cm 2. 12.如图,AB 为◎o 的直径,弦AC=4cm ,BC=3cm ,CD ⊥AB ,垂足为D ,那么CD 的长为____cm .二、选择题(本大题共4小题,每小题4分。

共16分)在每小题给出的四个选项中,只有一项是符合题目要求的。

请把正确选项的字母代号填在题后的括号内.13.树叶上有许多气孔,在阳光下,这些气孔一面排出氧气和蒸腾水分,一面吸入二氧化碳,一个气孔在一秒钟内能吸进25000亿个二氧化碳分子.用科学记数法表示25000亿为 ( )A .2.5×1010B .2.5×1011C .2.5×1012 D.25×1011 14.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( ) (1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A.(1)(2) B(2)(3) C(1)(3) D(1)(4)15.顺次连结等腰梯形四边中点得到一个四边形,再顺次连结所得四边形四边的中点得到的图形是 . ( )A .等腰梯形B .直角梯形C .菱形D .矩形16.如图,在直角坐标系中,直线y=6-x 与函数y=x4(x>0)的图象相交于点A 、B ,设点A 的坐标为(x 1,,y 1),那么长为x 1,宽为y 1的矩形面积和周长分别为( ) A .4,12B .8,12C .4,6D .8,6三、解答题(本大题共5小题,第17、18题每题7分。

最新江苏省徐州市中考数学试卷及答案(word版)优秀名师资料

最新江苏省徐州市中考数学试卷及答案(word版)优秀名师资料

徐州市2010年初中毕业、升学考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.-3的绝对值是 A .3 B .-3 C .31 D .-31 2.5月31日,参观上海世博会的游客约为505 000人.505 000用科学记数法表示为 A .505×310 B .5.05×310 C .5.05×410 D .5.05×510 3.下列计算正确的是A .624a a a =+ B .2a ·4a =8a C .325a a a =÷ D .532)(a a = 4.下列四个图案中,是轴对称图形,但不是中心对称图形的是5.为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是 A .170万 B .400 C .1万 D .3万 6.一个几何体的三视图如图所示,则此几何体是 A .棱柱 B .正方体 C .圆柱 D .圆锥7.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是 A .点M B .格点N C .格点P D .格点Q 8.平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为A .向上平移4个单位B .向下平移4个单位C .向左平移4个单位D .向右平移4个单位二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.写出1个比一1小的实数_______.D C BA10.计算(a-3)2的结果为_______.11.若α∠=36°,则∠α的余角为______度.12.若正多边形的一个外角是45°,则该正多边形的边数是_______.13.函数y=11-x 中自变量x 的取值范围是________. 14.不等式组⎪⎩⎪⎨⎧<≤-.12,32x x 的解集是_______.15.如图,一个圆形转盘被等分成八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)_____P(4) (填“>”、“=”或“<”).16.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆的半径为5 cm ,小圆的半径为3 cm ,则弦AB 的长为_______cm . 17.如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为________.18.用棋子按下列方式摆图形,依照此规律,第n 个图形比第(n-1)个图形多_____枚棋子.三、解答题(本大题共有10小题,共74分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算: 、(1)921201010+--)(; (2)xx x x x 4)41642-÷+-+( 20.(本题6分)2010年4月,国务院出台“房贷新政”,确定实行更为严格的差别化住房信贷政策,对楼市产生了较大的影响.下面是某市今年2月~5月商品住宅的月成交量统计图(不完整),请根据图中提供的信息,完成下列问题:(1)该市今年2月~5月共成交商品住宅______套; (2)请你补全条形统计图;(3)该市这4个月商品住宅的月成交量的极差是____套,中位数是_______套.2l·(本题6分)甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、 “布”三种手势(如图)中的一种,规定“石头”胜“剪子”, “剪子”胜“布”, “布”胜“石头”,手势 相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.22.(本题6分)在5月举行的“爱心捐款”活动中,某校九(1)班共捐款300元,九(2)班共捐款225元,已知九(1)班的人均捐款额是九(2)班的1.2倍,且九(1)班人数比九(2)班多5人.问两班各有多少人?23.(本题8分)如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上, CE ∥BF ,连接BE 、CF . (1)求证:△BDF≌△CDE;(2)若AB=AC ,求证:四边形BFCE 是菱形.24.(本题8分)如图,小明在楼上点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为12m .求旗杆的高度.25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm<0的解集(直接写出答案).26.(本题8分)如图①,梯形ABCD 中,∠C=90°.动点E 、F 同时从点B 出发,点E 沿折线 BA —AD —DC 运动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1 cm/s .设E 、F 出发t s 时,△EBF 的面积为y cm 2.已知y 与t 的函数图象如图②所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题: (1)梯形上底的长AD=_____cm ,梯形ABCD 的面积_____cm 2;(2)当点E 在BA 、DC 上运动时,分别求出y 与t 的函数关系式(注明自变量的取值范围); (3)当t 为何值时,△EBF 与梯形ABCD 的面积之比为1:2.27.(本题8分)如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点 M 处,点C 落在点N 处,MN 与CD 交于点P , 连接EP . (1)如图②,若M 为AD 边的中点, ①,△AEM 的周长=_____cm ; ②求证:EP=AE+DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.28.(本题10分)如图,已知二次函数y=423412++-x x 的图象与y 轴交于点A ,与x 轴 交于B 、C 两点,其对称轴与x 轴交于点D ,连接AC .(1)点A 的坐标为_______ ,点C 的坐标为_______ ;(2)线段AC 上是否存在点E ,使得△EDC 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)点P 为x 轴上方的抛物线上的一个动点,连接PA 、PC ,若所得△PAC 的面积为S ,则S 取何值时,相应的点P 有且只有2个?徐州市2010年中考 数学参考答案及评分建议一、选择题(本大题共有8小题,每小题2分,共16分)二、填空题(本大题共有10小题,每小题3分,共30分)9. 2-(答案不唯一) 10.269a a -+ 11.54 12.8 13.1x ≠14.12x -≤<15.>16.8 17.2 18.(32)n -三、解答题(本大题共有10小题,共74分)19.解:(1)原式=123-+(三项全对得2分,全错得0分,其它得1分)= 2.……3分 (2)原式=()()()444444x x x xx x x xx +--÷=-⨯=+-.(每步1分) …………………6分 20.解:(1)18 000; ……………………………2分(2)如图;……………………………………4分 (3)3 780,4 410. …………………………6分 214分P (一次性分出胜负)=3. ……………………………………………………………5分 答:一次性分出胜负的概率为23.………………………………………………………6分 22.解:设九(2)班有x 人,九(1)班有()5x +人.根据题意,得3002251.25x x =⨯+ ,…………………………………………………………………………3分 解得45x =.…………………………………………………………………………………4分 经检验,45x =是原方程的根.…………5分 550x +=.答:九(1)班有50人,九(2)班有45人.……………………………………………6分23.(1)证明:∵ D 是BC 的中点,∴BD =CD . …………………………………………1分∵CE ∥BF ∴∠DBF=∠DCE . …………………………………………………………2分 又∵∠BDF=∠CDE ,…………… 3分 ∴△BDF ≌△CDE .……………………4分 (2)证明:∵△CDE ≌△BDF ,∴DE =DF . …………………………………………5分 ∵BD =CD ,∴四边形BFCE 是平行四边形. …………………………………………6分 在△ABC 中,∵AB =AC ,BD =CD . ∴AD ⊥BC ,即EF ⊥BC .……………………7分 ∴平行四边形BFCE 是菱形. ……………………………………………………………8分 (另解)∵△CDE ≌△BDF ,∴CE =BF . ……………………………………………5分 ∵CE ∥BF ,∴四边形BFCE 是平行四边形. …………………………………………6分 ∴BE =CF .在△ABC 中,∵AB =AC ,BD =CD .∴AD ⊥BC ,即AD 垂直平分BC ,∴BE =CE .…………………………………………7分 ∴平行四边形BFCE 是菱形. ……………………………………………………………8分 24.解:过点A 作AE ⊥BC ,垂足为E ,得矩形ADCE . ………………1分∴CE = AD =12. ………………………………………………………2分 Rt △ACE 中,∵60EAC ∠=︒,12CE =,∴tan 60CEAE ==︒4分Rt △ABE 中,∵30BAE ∠=︒,∴tan 304BE AE =⋅︒=.……………6分 ∴BC =CE +BE=16 m . …………………………………………………7分 答:旗杆的高度为16 m .………………………………………………8分(另解)过点A 作AE ⊥BC ,垂足为E ,得矩形ADCE . ……………………………1 分 ∴CE = AD =12.……………………………………………………………………………2分 设BE x =,Rt △ABE 中,∵30BAE ∠=︒,∴22AB BE x ==.………………………4分 同理4BC x =.∴124x x +=,解得4x =.……6分 ∴BC =CE +BE=16 m .………7分 答:旗杆的高度为16 m .…………………………………………………………………8分 25.解:(1)将B (1,4)代入m y x =中,得4m =.∴4y x=. …………………………1分 将A (),2n -代入4y x=中,得2n =-. …………………………………………………2分 将A ()2,2--,B (1,4)代入y kx b =+中,得22,4.k b k b -+=-⎧⎨+=⎩ ………………………3分解得2,2.k b =⎧⎨=⎩∴22y x =+. ……………………………………………………………4分(2)当0x =时,2y =.∴2OC =.……5分 ∴12222AOCS=⨯⨯=.…………6分 (3)2x <-或01x <<. …………………………………………………………………8分 26.解:(1)2,14.……………………………………………………………………………2分(第24题)(第26题)(2)①当点E 在BA 上运动时,如图①,此时05t <≤.分别过点E ,A 作EG ⊥BC ,AH ⊥BC ,垂足分别为G ,H ,则△BEG ∽△BAH . ∴BE EG BA AH =,即54t EG =,∴45EG t =.…………3分 ∴211422255y BF EG t t t =⋅=⋅⋅=.……………………4分② 当点E 在DC 上运动时,如图②,此时711t ≤<. ∴11CE t =-,∴()115555112222y BC CE t t =⋅=⨯⨯-=-. …………5分(自变量的取值范围写全写对得1分,否则0分) …6分 (3)当05t <≤时,2275t =,∴t = …………7分当711t ≤<时,555722t -=, ∴8.2t =. …………8分∴t =s 或8.2t = s 时,EBF ∆与梯形ABCD 的面积之比为1:2. 27.解:(1)① 6 . …………………………………………………………………………2分②(图略)取EP 中点G ,连接MG .梯形AEPD 中,∵M 、G 分别是AD 、EP 的中点, ∴()12MG AE DP =+.……………………………………3分 由折叠得∠EMP =∠B =90︒,又G 为EP 的中点,∴12MG EP =.……………………………………………4分故EP AE DP =+.…………………………………………5分 (2)△PDM 的周长保持不变. 证明:如图,设AM x =cm ,Rt △EAM 中,由222(4)AE x AE +=-,可得:2128AE x =-.…6分∵∠AME +∠AEM =90︒,∠AME +∠PMD =90︒,∴∠AEM =∠PMD .又∵∠A =∠D =90︒,∴△AEM ∽△DMP . ……………………………………………7分 ∴DMP AEMC DM CAE =,即24428DMP C x x x -=+-,∴24(4)828DMPxC x x -=⋅+=-cm .…………8分 故△PDM 的周长保持不变.28.解:(1)A (0,4),C (8,0).…………………………………………………………2分(2)易得D (3,0),CD =5.设直线AC 对应的函数关系式为y kx b =+,(第27题)NFPECDB MA则4,80.b k b =⎧⎨+=⎩ 解得1,24.k b ⎧=-⎪⎨⎪=⎩ ∴142y x =-+. ……………………………………3分①当DE =DC 时,∵OA =4,OD =3.∴DA =5,∴1E (0,4). ………………………4分 ②当ED =EC 时,可得2E (112,54).……………5分 ③当CD =CE 时,如图,过点E 作EG ⊥CD , 则△CEG ∽△CAO ,∴EG CG CEOA OC AC==.即EG =CG =3E(8-.……………………………………6分 综上,符合条件的点E 有三个:1E (0,4),2E (112,54),3E(8-). (3)如图,过P 作PH ⊥OC ,垂足为H ,交直线AC 于点Q .设P (m ,213442m m -++),则Q (m ,142m -+).①当08m <<时,PQ =(213442m m -++)-(142m -+)=2124m m -+,22118(2)(4)1624APCCPQ APQSSSm m m =+=⨯⨯-+=--+,…………………………7分 ∴016S <≤; ……………………………………………………………………………8分 ②当20m -<<时,PQ =(142m -+)-(213442m m -++)=2124m m -,22118(2)(4)1624APCCPQ APQSSSm m m =-=⨯⨯-=--, ∴020S <<.………………………………………………………………………………9分 故16S =时,相应的点P 有且只有两个.………………………………………………10分。

江苏省徐州市中考数学真题试题(含解析)

江苏省徐州市中考数学真题试题(含解析)

2017年江苏省徐州中考数学试题试卷第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.5-的倒数是( )A .5-B .5C .15D .15-【答案】D .【解析】试题解析:-5的倒数是-15;故选D .考点:倒数2. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】C .考点:1.中心对称图形;2.轴对称图形.3.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A .77.110⨯B .60.7110-⨯C .77.110-⨯D .87110-⨯【答案】C .【解析】试题解析:数字0.00000071用科学记数法表示为7.1×10-7,故选C .考点:科学记数法—表示较小的数.4. 下列运算正确的是( )A .()a b c a b c -+=-+B .235236a a a ⋅= C. 5302a a a += D .()2211x x +=+ 【答案】B .【解析】试题解析:A 、原式=a-b-c ,故本选项错误;B 、原式=6a 5,故本选项正确;C 、原式=2a 3,故本选项错误;D 、原式=x 2+2x+1,故本选项错误;故选B .考点:1.单项式乘单项式;2.整式的加减;3.完全平方公式.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书话动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 412 16 17 1 关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17 C. 平均数是2 D .方差是2【答案】A .∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A .考点:1.方差;2.加权平均数;3.中位数;4.众数.6.如图,点,,A B C ,在⊙O 上,72AOB ∠=o ,则ACB ∠= ( )A .28oB .54o C.18o D .36o【答案】D .考点:圆周角定理.7.如图,在平面直角坐标系xOy 中,函数()0y kx b k =+≠与()0my m x =≠的图象相交于点()()2,3,6,1A B --,则不等式mkx b x +>的解集为 ( )A .6x <-B .60x -<<或2x >C. 2x > D .6x <-或02x <<【答案】B .【解析】试题解析:不等式kx+b >m x的解集为:-6<x <0或x >2, 故选B .考点:反比例函数与一次函数的交点问题.8.若函数22y x x b =-+的图象与坐标轴有三个交点,则b 的取值范围是( )A .1b <且0b ≠B .1b > C.01b << D .1b <【答案】A .考点:抛物线与x 轴的交点.第Ⅱ卷(共90分)二、填空题(本大题有10小题,每题3分,满分30分,将答案填在答题纸上)9.4的算术平方根是 .【答案】2【解析】试题解析:∵22=4,∴4的算术平方根是2.考点:算术平方根.10.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为 .【答案】23. 【解析】试题解析:∵共6个数,小于5的有4个,∴P (小于5)=42=63.考点:概率公式.11.使6x -有意义的x 的取值范围是 . 【答案】x≥6.考点:二次根式有意义的条件.12.反比倒函数ky x =的图象经过点()2,1M -,则k = .【答案】-2.【解析】试题解析:∵反比例函数y=kx 的图象经过点M (-2,1),∴1=-2k,解得k=-2.考点:反比例函数图象上点的坐标特征.13.ABC ∆中,点,D E 分别是,AB AC 的中点,7DE =,则BC = .【答案】14.【解析】试题解析:∵D ,E 分别是△ABC 的边AC 和AC 的中点,∴DE 是△ABC 的中位线,∵DE=7,∴BC=2DE=14.考点:三角形中位线定理.14.已知10,8a b a b +=-=,则22a b -= .【答案】80.【解析】试题解析:∵(a+b )(a-b )=a 2-b 2,∴a 2-b 2=10×8=80.考点:平方差公式.15.正六边形的每个内角等于 .【答案】120°.考点:多边形的内角与外角.16.如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为,2D AB BC ==,则AOB ∠= .【答案】60°.【解析】试题解析:∵OA ⊥BC ,BC=2,∴根据垂径定理得:BD=12BC=1. 在Rt △ABD 中,sin ∠A=12BD AB =. ∴∠A=30°. ∵AB 与⊙O 相切于点B ,∴∠ABO=90°.∴∠AOB=60°.考点:切线的性质.17.如图,矩形ABCD 中,4,3AB AD ==,点Q 在对角线AC 上,且AQ AD =,连接DQ 并延长,与边BC 交于点P ,则线段AP = .【答案】17考点:1.相似三角形的判定与性质;2.勾股定理;3.矩形的性质.18.如图,已知1OB =,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21A AO ,如此下去,则线段n OA 的长度为 .【答案】2n .∴A 2A 3=OA 2=2,OA 3222∵△OA 3A 4为等腰直角三角形,∴A 3A 4=OA 32OA 423=4.∵△OA 4A 5为等腰直角三角形,∴A 4A 5=OA 4=4,OA 5242∵△OA 5A 6为等腰直角三角形,∴A 5A 6=OA 52OA 625=8.∴OA n 2n.考点:等腰直角三角形.三、解答题 (本大题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.)19.(1)1201(2)20172-⎛⎫--+ ⎪⎝⎭;(2)2421244x x x x +⎛⎫+÷ ⎪--+⎝⎭.【答案】(1)3;(2)x-2.(2)(1+4-2x)÷2244xx x+-+=()2224•22xxx x--+-+=()222•22xxx x-+-+=x-2.考点:1.分式的混合运算;2.实数的运算;3.零指数幂;4.负整数指数幂.20.(1)解方程:231 x x=+;(2)解不等式组:2012123xx x>⎧⎪+-⎨>⎪⎩.【答案:(1)x=2;(2)0<x<5.【解析】试题分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.试题解析:(1)231 x x=+,去分母得:2(x+1)=3x,解得:x=2,经检验x=2是分式方程的解,故原方程的解为x=2;(2)2012123x>①x x>②+-⎧⎪⎨⎪⎩,由①得:x>0;由②得:x<5,故不等式组的解集为0<x<5.考点:1.解分式方程;2.解一元一次不等式组.21.某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽取部分学生做了一次问卷调查,要求学生选出自己喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:各版面选择人数的扇形统计图各版面选择人数的条形统计图请根据图中信息,解答下列问题:(1)该调查的样本容量为,a=00,“第一版”对应扇形的圆心角为o;(2)请你补全条形统计图;(3)若该校有1000名学生,请你估计全校学生中最喜欢“第一版”的人数.【答案】(1)50,36,108.(2)补图见解析;(3)240人.试题解析:(1)设样本容量为x.由题意5x=10%,解得x=50,a=1850×100%=36%,第一版”对应扇形的圆心角为360°×1550=108°(2)“第三版”的人数为50-15-5-18=12,考点:1.条形统计图;2.总体、个体、样本、样本容量;.用样本估计总体;4.扇形统计图.22.一个不透明的口袋中装有4张卡片,卡片上分別标有数字1,3,5,7--,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张.请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.【答案】13.【解析】试题分析:画树状图展示所有12种等可能的结果数,再找出两人抽到的数字符号相同的结果数,然后根据概率公式求解.试题解析:画树状图为:共有12种等可能的结果数,其中两人抽到的数字符号相同的结果数为4,所以两人抽到的数字符号相同的概率=41=123. 考点:列表法与树状图法.23.如图,在平行四边形ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E 连接,BD EC .(1)求证:四边形BECD 是平行四边形;(2)若50A ∠=o,则当BOD ∠= o 时,四边形BECD 是矩形. 【答案】(1)证明见解析;(2)100°又∵O 为BC 的中点, ∴BO=CO ,在△BOE 和△COD 中,OEB =ODC BOE =COD BO =CO ∠∠∠∠⎧⎪⎨⎪⎩, ∴△BOE ≌△COD (AAS ); ∴OE=OD ,∴四边形BECD 是平行四边形;∴四边形BECD 是矩形;考点:1.矩形的判定;2.平行四边形的判定与性质.24. 4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄. 【答案】今年妹妹6岁,哥哥10岁. 【解析】试题分析:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据两个孩子的对话,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.试题解析:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁, 根据题意得:()()16322342x y =x y =+++++⎧⎪⎨⎪⎩, 解得:610x =y =⎧⎨⎩.答:今年妹妹6岁,哥哥10岁. 考点:二元一次方程组的应用.25.如图,已知AC BC ⊥,垂足为,4,33C AC BC ==,将线段AC 绕点A 按逆时针方向旋转60o,得到线段AD ,连接,DC DB .(1)线段DC = ; (2)求线段DB 的长度. 【答案】(1)4;(2)7.(2)作DE ⊥BC 于点E .∵△ACD 是等边三角形, ∴∠ACD=60°, 又∵AC ⊥BC ,∴∠DCE=∠ACB-∠ACD=90°-60°=30°,考点:旋转的性质.26.如图① ,菱形ABCD 中,5AB =cm ,动点P 从点B 出发,沿折线BC CD DA --运动到点A 停止,动点Q 从点A 出发,沿线段AB 运动到点B 停止,它们运动的速度相同.设点P 出发xs 时,BPQ ∆的面积为y 2cm .已知y 与x 之间的函数关系.如图 ②所示,其中,OM MN 为线段,曲线NK 为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当12x <<时,BPQ ∆的面积 (填“变”或“不变”); (2)分别求出线段OM ,曲线NK 所对应的函数表达式; (3)当x 为何值时,BPQ ∆的面积是52cm ?【答案】(1)不变;(2)y=10x ;y=10(x-3)2;(3)当x=12或3-22时,△BPQ 的面积是5cm 2. 【解析】试题分析:(1)根据函数图象即可得到结论;(2)设线段OM 的函数表达式为y=kx ,把(1,10)即可得到线段OM 的函数表达式为y=10x ;设曲线NK 所对应的函数表达式y=a (x-3)2,把(2,10)代入得根据得到曲线NK 所对应的函数表达式y=10(x-3)2;(3)把y=5代入y=10x 或y=10(x-3)2即可得到结论.试题解析:(1)由函数图象知,当1<x <2时,△BPQ 的面积始终等于10, ∴当1<x <2时,△BPQ 的面积不变;(3)把y=5代入y=10x 得,x=12, 把y=5代入y=10(x-3)2得,5=10(x-3)2,∴x=3±22∵3+22>3, ∴x=3-22, ∴当x=12或3-22时,△BPQ 的面积是5cm 2. 考点:四边形综合题.27.如图,将边长为6的正三角形纸片ABC 按如下顺序进行两次折叠,展开后,得折痕,AD BE (如图①),点O 为其交点.(1)探求AO 与OD 的数量关系,并说明理由; (2)如图②,若,P N 分别为,BE BC 上的动点. ①当PN PD +的长度取得最小值时,求BP 的长度;②如图③,若点Q 在线段BO 上,1BQ =,则QN NP PD ++的最小值= .【答案】(1)AO=2OD,理由见解析;(2)①3;②10.(3)如图③,作Q关于BC的对称点Q′,作D关于BE的对称点D′,连接Q′D′,即为QN+NP+PD的最小值.根据轴对称的定义得到∠Q′BN=∠QBN=30°,∠QBQ′=60°,得到△BQQ′为等边三角形,△BDD′为等边三角形,解直角三角形即可得到结论.试题解析:(1)AO=2OD,理由:∵△ABC是等边三角形,∴∠BAO=∠ABO=∠OBD=30°,∴AO=OB,∵BD=CD,∴AD⊥BC,∴∠BDO=90°,∴OB=2OD,∴OA=2OD;(2)如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N交BE于P,则此时PN+PD的长度取得最小值,∵BE垂直平分DD′,∴BD=BD′,∵∠ABC=60°,∴△BDD′是等边三角形,∴BN=12BD=32,∵∠PBN=30°,∴32 BNPB,∴PB=3;∴△BQQ′为等边三角形,△BDD′为等边三角形,∴∠D′BQ′=90°,∴在Rt △D′BQ′中, D′Q′=22301=1+. ∴QN+NP+PD 的最小值=10, 考点:28.如图,已知二次函数2449y x =-的图象与x 轴交于,A B 两点与y 轴交于点C ,⊙C 的半径为5,P 为⊙C 上一动点.(1)点,B C 的坐标分别为B ( ),C ( );(2)是否存在点P ,使得PBC ∆为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由; (3)连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值= .【答案】(1)3,0;0,-4;(2)(-1,-2)或((115,225),或(45,-35-4)或(--45,35);(3)2905.CP 2=OE=x ,得到BE=3-x ,CF=2x-4,于是得到FP 2=115,EP 2=225,求得P 2(115,-225),过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(-1,-2),②当BC ⊥PC 时,△PBC 为直角三角形,根据相似三角形的判定和性质即可得到结论;①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=3.OC=4,∴BC=5,∵CP2⊥BP2,CP25∴BP25,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴2222=2P F CPP E BP=,设OC=P2E=2x,CP2=OE=x,∴BE=3-x,CF=2x-4,∴3224BE xCF x-==-,∴x=115,2x=225,∴FP2=115,EP2=225,∴P2(115,225),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(-1,-2),综上所述:点P的坐标为:(-1,-2)或((115,225),或(455,-355-4)或(--455,355);(3)如图(3),当PB与⊙C相切时,PB与y 轴的距离最大,OE的值最大,∵过E作EM⊥y轴于M,过P作PF⊥y轴于F,∴OB∥EM∥PF,∵E为PB的中点,考点:二次函数综合题.。

江苏省徐州市中考数学试卷(含答案)

江苏省徐州市中考数学试卷(含答案)

OC===5若甲组数据的方差=0.39,乙组数据的方差=0.25徐州)若式子在实数范围内有意义,则°.L==,正八边形每个内角为:=135HG=AH=AB=GF=x(+12(+12|﹣+1+)÷.2|﹣+=×=×=x+1.)解不等式组:.=1+,=1﹣;),(1)这五年中全国公共财政收入增长速度最高的年份是 2011 年;,10m,求塔的高度(结果精确到(参考数据:≈,≈DE=(由题意得,(x=15+5≈答:塔的高度为23.7的长为 ;的长为 1.8AD=AC=.时,有两种情况:∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°,又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD,∴此时AD=AB=×5=2.5.综上所述,当AC=3,BC=4时,AD的长为1.8或2.5.(2)当点D是AB的中点时,△CEF与△ABC相似.理由如下:如答图3所示,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线,∴CD=DB=AB,∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠C=∠C,∴△CEF∽△CBA.点评:本题是几何综合题,考查了几何图形折叠问题和相似三角形的判定与性质.第(1)②气量),共缴费455元,乙用户,解得:,,解得:,∴l=﹣+=+有最大值的最大值为;AG====此时重叠部分的面积为点评:本题考查了二次函数的综合知识,与二次函数的最值结合起来,题目的难度较大.。

江苏省徐州市中考数学试题word版,含答案.doc

江苏省徐州市中考数学试题word版,含答案.doc

徐州市2014年初中毕业、升学考试数学试题一、选择题(本大题共有8小题。

每小题3分,共24分。

在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 2-1等于A.2B.-2C.21D.-212. 右图使用五个相同的立方体搭成的几何体,其主视图...是A B C D (第2题)3. 抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率A.大于21B.等于21C.小于21D.不能确定4. 下列运算中错误..的是A.532=+ B.632=⨯C.228=÷D.3)3(2=-5. 将函数y=-3x的图像沿y轴向上平移2个单位长度后,所得图像对应的函数关系式为A.23+-=xy B.23--=xy C.)2(3+-=xy D.)2(3--=xy姓名考试证号注意事项1. 本卷满分为140分,考试时间为120分钟。

2. 答题前,请将自己的姓名、考试证号用0.5毫米黑色墨水签字笔写在本试卷及答题卡指定的位置。

3. 答案全部涂、写在答题卡上,写在本试卷上无效。

考试结束后,请将本试卷和答卡一并交回。

从正面看6. 顺次连接正六边形的三个不相邻的顶点。

得到如图所示的图形,该图形 A.既是轴对称图形也是中心对称图形 B.是轴对称图形但并不是是中心对称图形 C.是中心对称图形但并不是轴对称图形 D.既不是轴对称图形也不是中心对称图形7. 若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是 A.矩形 B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形8. 点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为-3、1,若BC =2,则AC 等于 A.3 B.2 C.3或5 D.2或6二、填空题(本大题共有10小题。

每小题3分,共30分。

不需要写出解答过程,请把答案直接写在答题卡的相应位置上) 9. 函数12-=x y 中,自变量x 的取值范围为 ▲ . 10. 我国“钓鱼岛”周围海域面积约170 000km 2,该数用科学计数法可表示为 ▲ . 11. 函数y =2x 与y =x +1的图像交点坐标为 ▲ .12. 若ab =2,a -b =-1,则代数式22ab b a -的值等于 ▲ . 13. 半径为4cm ,圆心角为60°的扇形的面积为 ▲ cm 2. 14. 下图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了 ▲ 场.15. 在平面直角坐标系中,将点A (4,2)绕原点逆时针方向旋转90°后,其对应点A ’的坐标为 ▲ .(第6题)16. 如图,在等腰三角形纸片ABC 中,AB =AC ,︒=∠50A ,折叠该纸片,使点A 落在点B 处,折痕为DE ,则=∠CBE ▲ °.17. 如图,以O 为圆心的两个同心圆中,大圆与小圆的半径分别为3cm 和1cm ,若圆P 与这两个圆都相切,则圆P 的半径为 ▲ cm.18. 如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以1cm/s 的速度移动;同时,点Q 沿边AB 、BC 从点A 开始向点C 以2cm/s 的速度移动.当点P 移动到点A 时,P 、Q 同时停止移动.设点P 出发x s 时,△PAQ 的面积为y cm 2,y 与x 的函数图像如图2 所示,则线段EF 所在的直线对应的函数关系式为 ▲ .(第18题)三、解答题(本大题共有10小题,共86分。

最新江苏省徐州市中考数学真题合集试卷附解析

最新江苏省徐州市中考数学真题合集试卷附解析

江苏省徐州市中考数学真题合集试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.⊙O 中的两条弦AB 、AC 的弦心距分别是OE 、OF ,且AB=2AC ,那么,下面式子成立的应是( )A . OE=OFB . OF=2OEC . OE<OFD . OE>OF2.沿着虚线将矩形剪成两部分,既能拼成三角形又能拼成梯形的是( )A .B .C .D .3.下列命题中,是真命题的为( )A .四边相等的四边形是正方形B .正方形的四边相等C .对角线垂直的平行四边形是正方形D .对角线相等的平行四边形是正方形4.式x +4x -2中,x 的取值范围是( ) A .x≥-4B .x >2C .x≥-4且x≠2D .x>-4且x≠2 5.甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为9,9,x ,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A .11B .9C .8D .76.甲、乙、丙、丁四位数选手各l0次射击成绩的平均数都是8环,众数和方差如下表,则这四个人中水平发挥最稳定的是( ) 选手 田 乙丙 丁 众数(环) 98 8 i0 方差(环2) 0.035 0.Ol5 0.025 0.27A .甲7.已知0.5a b a b x y +--与1337a x y -是同类项,那么( ) A .12ab =-⎧⎨=⎩ B . 12a b =⎧⎨=-⎩ C . 21a b =⎧⎨=-⎩ D . 21a b =-⎧⎨=⎩8.如图所示,△ADF ≌△CBE ,则结论:①AF=CE ;②∠1=∠2;③BE=CF , ④AE=CF .其中正确的个数为( )A .1个B .2个C .3个D .4个9.下面对么AOB 的理解正确的是( )A .∠AOB 的边是线段OA 、OBB .∠AOB 中的字母A 、O 、B 可调换次序C .∠AOB 的顶点是0,边是射线OA 、OBD .∠AOB 是由两条边组成的10.对于如图中的两个统计图,下列说法中错误的是( )A .一中的女生比例比二中的女生比例高B .一中的男生比例比二中的女生比例低C .二中的男生比例比一中的女生比例高D .一中的男生比例比二中的男生比例低11.下列说法正确的个数为( )①一个数的倒数一定小于这个数;②一个数的倒数一定大于这个数;③0 除以任何数都得0;④两个数的商为 0,只有被除数为 0.A .0 个B .1 个C .2 个D .3 个二、填空题12.如图,AB 是⊙O 的直径,AM 为弦,30MAB ∠=,过M 点的⊙O 的切线交AB 延长线于点N .若12cm ON =,则⊙O 的半径为 cm .13.一次函数21y x =-+的图象经过抛物线2+1(0)y x mx m =+≠的顶点,则 m= .14.如果菱形的周长为24 cm ,一条较短的对角线长是6 cm ,那么两相邻内角分别为 、 .15.放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明 对小丽说:“我已经加工了28kg ,你呢?”小丽思考了—会儿说:“我来考考你,图①、图②分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了 kg ”16.不等式3(1)53x x+≥-的正整数解是.17.某商品原价为a元,若按此价的8折出售,仍获利 b%,则此商品进价是元.18.如图所示,△ABC 中,BC=16 cm,AB,AC边上的中垂线分别交BC于E,F,则△AEF 的周长是 cm.19.如图是七年级(1)班数学期中考试成绩统计图,从如中可以看出,这次考试的优秀率为,及格率为 .(精确到 0.1%).20.对有理数x、y定义运算 *,使x*y=1axy b++,若-1 * 2=869 , 2* 3=883 , 则2*9= .21.23-的倒数是,23-的绝对值是.三、解答题22.如图,花丛中有一路灯灯杆 AB,在灯光下,小明在D点处的影长 DE= 3m,沿 BD 方向行走到达G点,DG= 5m,这时小明的影长GH= 5m .如果小明的身高为 1.7m,求路灯灯杆AB 的高度(精确到0.1 m).23.如图,∠PAQ 是直角,⊙O 与 AP 相切于点 T,与 AQ 交于B、C两点.(1)BT 是否平分∠OBA?说明你的理由.(2)若已知 AT=4,弦 BC=6,试求⊙O的半径R.24.武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44减至32,已知原台阶AB的长为5米(BC所在地面为水平面).(1)改善后的台阶会加长多少?(精确到0.01米)(2)改善后的台阶多占多长一段地面?(精确到0.01米)25.如图,△ABC 中,D、E分别为 BC、AC 上的点,BD= 2DC,AE= 2EC,AD 与BE 相交于点 M,求AM:MD的值.26.老师在同一直角坐标系中画了一个反比例函数的图象以及一个正比例函数y=-x 的图象,请同学们观察. 同学甲、乙对反比例函数图象的描述如下:同学甲:与直线y= 一x有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为 5请根据以上信息,写出反比例函数的解析式.27.已知2+-+-=中,y的值不大于2-,求a 的取值范围.(43)|2|0x y a xa≤228.尺规作图(不写作法,保留作图痕迹)已知:α∠、β∠和线段a .求作:ABC ∆使=∠CAB α∠,∠ABC=β∠,AB=a .29.如图是我国城镇登记失业人数变化的统计图,从图中你能获得哪些信息(至少写出两条)?30.求2与5的小数部分的差(精确到0.001 ).a【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.B5.B6.B7.C8.C9.C10.B11.B二、填空题12.613.414.60°,l20°15.2016.1,2,317.80100a b+18. 1619.55.6%,96.3%20.92521.32-,23三、解答题22.设 AB=x, BD=y ,△ABE 中,CD ∥AB ,∴1.733x y =+ △ABH 中,∵FG ∥AB ,∴1.7510x y=+,解得 x=5.95() 即路灯杆 AB 的高度约为 6.0 m .23.(1) BT 平分∠OBA .理由如下:连结 OT ,则 OT ⊥AP.∵∠PAQ=90°,∴∠PAQ+∠OTA=180°∴OT ∥AQ ,∴∠OTB=∠ABT ,又∠OTB=∠OBT ,∴∠ABT=∠0BT ,∴BT 平分∠0BA(2)作 OE ⊥BC 于E 点,则 BE=3,四边形 AEOT 是矩形,∴ OE=AT=4,∴22435R =+= 24.解:(1)如图,在Rt ABC △中,sin 445sin 44 3.473AC AB ==≈.在Rt ACD △中,3.473 6.554sin 32sin 32AC AD ==≈, 6.5545 1.55AD AB ∴-=-≈. 即改善后的台阶会加长1.55米.(2)如图,在Rt ABC △中,cos 445cos 44 3.597BC AB ==≈.在Rt ACD △中,3.473 5.558tan 32tan 32AC CD ==≈, 5.558 3.597 1.96BD CD BC ∴=-=-≈. 即改善后的台阶多占1.96米长的一段地面.25.过点D 作 DF ∥AC 交 BE 于F.∴△BDF ∽△BCE,△DFM ∽△AEM , ∴23FD BD BD EC BC BD DC ===+,即23FD EC =,∵AE=2EC ,∴13FD AE =,∴3AM AE MD FD==. 26.∵反比例函数的图象与直线 y=一x 有两个交点,∴此图象必须经过四象限; ∵图象上任意一点到两坐标轴的距离的积都为5,∴||5k =,∴k.=一5 (+5舍去).∴5y x=-.27.a≤28.2作图略.29.答案不唯一,如:(1)1994~2002年间,我国城镇登记失业人数逐年增加;(2)2000~2002年失业人数增长速度最快30.12,-=≈12)10.178。

2010年江苏省徐州市中考数学试题(含答案)

2010年江苏省徐州市中考数学试题(含答案)

徐州市2010年初中毕业、升学考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.-3的绝对值是 A .3 B .-3 C .31 D .-31 2.5月31日,参观上海世博会的游客约为505 000人.505 000用科学记数法表示为 A .505×310 B .5.05×310 C .5.05×410 D .5.05×510 3.下列计算正确的是A .624a a a =+ B .2a ·4a =8a C .325a a a =÷ D .532)(a a = 4.下列四个图案中,是轴对称图形,但不是中心对称图形的是5.为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是 A .170万 B .400 C .1万 D .3万 6.一个几何体的三视图如图所示,则此几何体是 A .棱柱 B .正方体 C .圆柱 D .圆锥7.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是 A .点M B .格点N C .格点P D .格点Q 8.平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为A .向上平移4个单位B .向下平移4个单位C .向左平移4个单位D .向右平移4个单位二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.写出1个比一1小的实数_______.10.计算(a-3)2的结果为_______.11.若α∠=36°,则∠α的余角为______度.D C BA12.若正多边形的一个外角是45°,则该正多边形的边数是_______.13.函数y=11-x 中自变量x 的取值范围是________. 14.不等式组⎪⎩⎪⎨⎧<≤-.12,32x x 的解集是_______.15.如图,一个圆形转盘被等分成八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)_____P(4) (填“>”、“=”或“<”).16.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆的半径为5 cm ,小圆的半径为3 cm ,则弦AB 的长为_______cm . 17.如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为________.18.用棋子按下列方式摆图形,依照此规律,第n 个图形比第(n-1)个图形多_____枚棋子.三、解答题(本大题共有10小题,共74分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算: 、(1)921201010+--)(; (2)xx x x x 4)41642-÷+-+( 20.(本题6分)2010年4月,国务院出台“房贷新政”,确定实行更为严格的差别化住房信贷政策,对楼市产生了较大的影响.下面是某市今年2月~5月商品住宅的月成交量统计图(不完整),请根据图中提供的信息,完成下列问题:(1)该市今年2月~5月共成交商品住宅______套; (2)请你补全条形统计图;(3)该市这4个月商品住宅的月成交量的极差是____套,中位数是_______套.2l·(本题6分)甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、 “布”三种手势(如图)中的一种,规定“石头”胜“剪子”, “剪子”胜“布”, “布”胜“石头”,手势 相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.22.(本题6分)在5月举行的“爱心捐款”活动中,某校九(1)班共捐款300元,九(2)班共捐款225元,已知九(1)班的人均捐款额是九(2)班的1.2倍,且九(1)班人数比九(2)班多5人.问两班各有多少人?23.(本题8分)如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上, CE ∥BF ,连接BE 、CF . (1)求证:△BDF≌△CDE;(2)若AB=AC ,求证:四边形BFCE 是菱形.24.(本题8分)如图,小明在楼上点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为12m .求旗杆的高度.25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm<0的解集(直接写出答案).26.(本题8分)如图①,梯形ABCD 中,∠C=90°.动点E 、F 同时从点B 出发,点E 沿折线 BA —AD —DC 运动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1 cm/s .设E 、F 出发t s 时,△EBF 的面积为y cm 2.已知y 与t 的函数图象如图②所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题: (1)梯形上底的长AD=_____cm ,梯形ABCD 的面积_____cm 2;(2)当点E 在BA 、DC 上运动时,分别求出y 与t 的函数关系式(注明自变量的取值范围); (3)当t 为何值时,△EBF 与梯形ABCD 的面积之比为1:2.27.(本题8分)如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点 M 处,点C 落在点N 处,MN 与CD 交于点P , 连接EP . (1)如图②,若M 为AD 边的中点, ①,△AEM 的周长=_____cm ; ②求证:EP=AE+DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.28.(本题10分)如图,已知二次函数y=423412++-x x 的图象与y 轴交于点A ,与x 轴 交于B 、C 两点,其对称轴与x 轴交于点D ,连接AC .(1)点A 的坐标为_______ ,点C 的坐标为_______ ;(2)线段AC 上是否存在点E ,使得△EDC 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)点P 为x 轴上方的抛物线上的一个动点,连接PA 、PC ,若所得△PAC 的面积为S ,则S 取何值时,相应的点P 有且只有2个?徐州市2010年中考 数学参考答案及评分建议一、选择题(本大题共有8小题,每小题2分,共16分)二、填空题(本大题共有10小题,每小题3分,共30分)9. 2-(答案不唯一) 10.269a a -+ 11.54 12.8 13.1x ≠14.12x -≤<15.>16.8 17.2 18.(32)n -三、解答题(本大题共有10小题,共74分)19.解:(1)原式=123-+(三项全对得2分,全错得0分,其它得1分)= 2.……3分 (2)原式=()()()444444x x x xx x x xx +--÷=-⨯=+-.(每步1分) …………………6分 20.解:(1)18 000; ……………………………2分(2)如图;……………………………………4分 (3)3 780,4 410. …………………………6分 214分P (一次性分出胜负)=3. ……………………………………………………………5分 答:一次性分出胜负的概率为23.………………………………………………………6分 22.解:设九(2)班有x 人,九(1)班有()5x +人.根据题意,得3002251.25x x =⨯+ ,…………………………………………………………………………3分 解得45x =.…………………………………………………………………………………4分 经检验,45x =是原方程的根.…………5分 550x +=.答:九(1)班有50人,九(2)班有45人.……………………………………………6分23.(1)证明:∵ D 是BC 的中点,∴BD =CD . …………………………………………1分∵CE ∥BF ∴∠DBF=∠DCE . …………………………………………………………2分 又∵∠BDF=∠CDE ,…………… 3分 ∴△BDF ≌△CDE .……………………4分 (2)证明:∵△CDE ≌△BDF ,∴DE =DF . …………………………………………5分 ∵BD =CD ,∴四边形BFCE 是平行四边形. …………………………………………6分 在△ABC 中,∵AB =AC ,BD =CD . ∴AD ⊥BC ,即EF ⊥BC .……………………7分 ∴平行四边形BFCE 是菱形. ……………………………………………………………8分 (另解)∵△CDE ≌△BDF ,∴CE =BF . ……………………………………………5分 ∵CE ∥BF ,∴四边形BFCE 是平行四边形. …………………………………………6分 ∴BE =CF .在△ABC 中,∵AB =AC ,BD =CD .∴AD ⊥BC ,即AD 垂直平分BC ,∴BE =CE .…………………………………………7分 ∴平行四边形BFCE 是菱形. ……………………………………………………………8分 24.解:过点A 作AE ⊥BC ,垂足为E ,得矩形ADCE . ………………1分∴CE = AD =12. ………………………………………………………2分 Rt △ACE 中,∵60EAC ∠=︒,12CE =,∴tan 60CEAE ==︒4分Rt △ABE 中,∵30BAE ∠=︒,∴tan 304BE AE =⋅︒=.……………6分 ∴BC =CE +BE=16 m . …………………………………………………7分 答:旗杆的高度为16 m .………………………………………………8分(另解)过点A 作AE ⊥BC ,垂足为E ,得矩形ADCE . ……………………………1 分 ∴CE = AD =12.……………………………………………………………………………2分 设BE x =,Rt △ABE 中,∵30BAE ∠=︒,∴22AB BE x ==.………………………4分 同理4BC x =.∴124x x +=,解得4x =.……6分 ∴BC =CE +BE=16 m .………7分 答:旗杆的高度为16 m .…………………………………………………………………8分 25.解:(1)将B (1,4)代入m y x =中,得4m =.∴4y x=. …………………………1分 将A (),2n -代入4y x=中,得2n =-. …………………………………………………2分 将A ()2,2--,B (1,4)代入y kx b =+中,得22,4.k b k b -+=-⎧⎨+=⎩ ………………………3分解得2,2.k b =⎧⎨=⎩∴22y x =+. ……………………………………………………………4分(2)当0x =时,2y =.∴2OC =.……5分 ∴12222AOC S =⨯⨯= .…………6分(3)2x <-或01x <<. …………………………………………………………………8分 26.解:(1)2,14.……………………………………………………………………………2分(第24题)(第26题)(2)①当点E 在BA 上运动时,如图①,此时05t <≤.分别过点E ,A 作EG ⊥BC ,AH ⊥BC ,垂足分别为G ,H ,则△BEG ∽△BAH . ∴BE EG BA AH =,即54t EG =,∴45EG t =.…………3分 ∴211422255y BF EG t t t =⋅=⋅⋅=.……………………4分② 当点E 在DC 上运动时,如图②,此时711t ≤<. ∴11CE t =-,∴()115555112222y BC CE t t =⋅=⨯⨯-=-. …………5分(自变量的取值范围写全写对得1分,否则0分) …6分 (3)当05t <≤时,2275t =,∴t =. …………7分当711t ≤<时,555722t -=, ∴8.2t =. …………8分∴t =s 或8.2t = s 时,EBF ∆与梯形ABCD 的面积之比为1:2. 27.解:(1)① 6 . …………………………………………………………………………2分②(图略)取EP 中点G ,连接MG .梯形AEPD 中,∵M 、G 分别是AD 、EP 的中点, ∴()12MG AE DP =+.……………………………………3分 由折叠得∠EMP =∠B =90︒,又G 为EP 的中点,∴12MG EP =.……………………………………………4分故EP AE DP =+.…………………………………………5分 (2)△PDM 的周长保持不变. 证明:如图,设AM x =cm ,Rt △EAM 中,由222(4)AE x AE +=-,可得:2128AE x =-.…6分∵∠AME +∠AEM =90︒,∠AME +∠PMD =90︒,∴∠AEM =∠PMD .又∵∠A =∠D =90︒,∴△AEM ∽△DMP . ……………………………………………7分 ∴DMP AEM C DM C AE = ,即24428DMP C x x x -=+- ,∴24(4)828DMP xC x x-=⋅+=- cm .…………8分 故△PDM 的周长保持不变.28.解:(1)A (0,4),C (8,0).…………………………………………………………2分(2)易得D (3,0),CD =5.设直线AC 对应的函数关系式为y kx b =+,(第27题)NFPECDB MA则4,80.b k b =⎧⎨+=⎩ 解得1,24.k b ⎧=-⎪⎨⎪=⎩ ∴142y x =-+. ……………………………………3分①当DE =DC 时,∵OA =4,OD =3.∴DA =5,∴1E (0,4). ………………………4分 ②当ED =EC 时,可得2E (112,54).……………5分 ③当CD =CE 时,如图,过点E 作EG ⊥CD , 则△CEG ∽△CAO ,∴EG CG CEOA OC AC==.即EG =CG =3E(8-.……………………………………6分 综上,符合条件的点E 有三个:1E (0,4),2E (112,54),3E(8-). (3)如图,过P 作PH ⊥OC ,垂足为H ,交直线AC 于点Q .设P (m ,213442m m -++),则Q (m ,142m -+).①当08m <<时,PQ =(213442m m -++)-(142m -+)=2124m m -+,22118(2)(4)1624APC CPQ APQ S S S m m m =+=⨯⨯-+=--+ ,…………………………7分∴016S <≤; ……………………………………………………………………………8分 ②当20m -<<时,PQ =(142m -+)-(213442m m -++)=2124m m -,22118(2)(4)1624APC CPQ APQ S S S m m m =-=⨯⨯-=-- ,∴020S <<.………………………………………………………………………………9分 故16S =时,相应的点P 有且只有两个.………………………………………………10分。

徐州市中考数学试题及答案(word).doc

徐州市中考数学试题及答案(word).doc

4.如果等腰三角形的两边长分别为 2 和 5,则它的周长为( A.9 B.7 C.12
5.如图,A、B、C 是⊙O 上的点,若∠AOB=70°,则∠ACB 的度数为( A.70° B.50° ) C.第三象限 C.40°
6.一次函数 y=x-2 的图象不经过( A.第一象限 B.第二象限
D.第一象限

第 1 页,共 8 页
15.将一副三角板如图放置。若 AE∥BC,则∠AFD=
°。
︵ ︵ 16.如图,菱形 ABCD 的边长为 2cm,∠A=60°。BD是以点 A 为圆心、AB 长为半径的弧,CD是 以点 B 为圆心、BC 长为半径的弧。则阴影部分的面积为 cm2。 。
17.如图,AB 是⊙O 的直径,CD 是弦,且 CD⊥AB,AC=8,BC=6,则 sin∠ABD= 3 18.函数y=x+ 的图象如图所示,关于该函数,下列结论正确的是 x (填序号)。
26.( 本小题 8 分) 如图,为测量学校围墙外直立电线杆 AB 的高度,小亮在操场上点 C 处直立高 3m 的竹竿 CD, 然后退到点 E 处, 此时恰好看到竹竿顶端 D 与电线杆顶端 B 重合; 小亮又在点 C1 处直立高 3m 的竹 竿 C1D1,然后退到点 E1 处,此时恰好看到竹竿顶端 D1 与电线杆顶端 B 重合。小亮的眼睛离地面高 度 EF=1.5m,量得 CE=2m,EC1=6m,C1E1=3m。 (1)△FDM∽△ ,△F1D1N∽△ ;
Hale Waihona Puke (2)求电线杆 AB 的高度。第 3 页,共 8 页
27.( 本小题 8 分) 如图 1,A、B、C、D 为矩形的四个顶点,AD=4cm,AB=dcm。动点 E、F 分别从点 D、B 出发, 点 E 以 1 cm/s 的速度沿边 DA 向点 A 移动,点 F 以 1 cm/s 的速度沿边 BC 向点 C 移动,点 F 移动到 点 C 时,两点同时停止移动。以 EF 为边作正方形 EFGH,点 F 出发 xs 时,正方形 EFGH 的面积为 ycm2。已知 y 与 x 的函数图象是抛物线的一部分,如图 2 所示。请根据图中信 息,解答下列问题: (1)自变量 x 的取值范围是 (2)d= ,m= ,n= ; ;

江苏省徐州巿中考数学真题试题(含答案)

江苏省徐州巿中考数学真题试题(含答案)

江苏省徐州巿xx 年中考数学真题试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B 铅笔填涂在答题卡上.2.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的) 1.4的平方根是A.2±B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元 3.函数11y x =+中自变量x 的取值范围是 A. x ≥-1 B. x ≤-1 C. x ≠-1 D. x =-1 4.下列运算中,正确的是A.x 3+x 3=x 6B. x 3·x 9=x 27C.(x 2)3=x 5D. x ÷x 2=x -1 5.如果点(3,-4)在反比例函数ky x=的图象上,那么下列各点中,在此图象上的是 A.(3,4) B. (-2,-6) C.(-2,6) D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是A BC D7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ.........卷相应的位置上.......) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院xx 年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元.13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___.14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷三、解答题(每小题5分,共20分) 17.计算:20080131(1)()83π--+-+.18.已知231,23.x x x =+--求的值(第10题图)(第15题图)(第16题图)19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m ) 参考数据:2 1.414,31.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C. (B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目 月功能费基本话费长途话费短信费 金额/元5DCBAADB14m6m30︒45︒(第20题图)(第21题图)(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4) 请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0) ①画出△ABC 关于x 轴对称的△A 1B 1C 1,②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.50403020100项目金额/元六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自xx 年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)行驶路程 收费标准调价前 调价后 不超过3km 的部分 起步价6元起步价a 元超过3km 不超出6km 的部分每公里2.1元每公里b 元 超出6km 的部分 每公里c 元设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.yxCBAFEDCB A 13.311.276763O xy26.已知四边形ABCD 的对角线AC 与BD 交于点O,给出下列四个论断 ① OA =OC ② AB =CD ③ ∠BAD =∠DCB ④ AD ∥BC请你从中选择两个论断作为条件,以“四边形ABCD 为平行四边形”作为结论,完成下列各题: ①构造一个真命题...,画图并给出证明; ②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5) ①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′, 求△O A ′B ′的面积.28.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当CE2EA=时E P 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中:(1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由. (2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.F C(E)A(D)Q PDEFCBAQPDEFCBA(图1) (图2) (图3)参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-1 14. 234a 15.126° 16.m17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将31x =+代入到上式,则可得223(313)(311)(32)(32)1x x --=+-++=-+=-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩ 222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE 、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD=14,∠DCF =30°,所以DF =7=AE ,且FC =7312.1所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C (B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)项目 月功能费基本话费长途话费短信费 金额/元550452524. 略25.解:(1) a=7, b=1.4, c=2.1 (2)1 2.10.3y x =- (3)有交点为31(,9)7其意义为当317x <时是方案调价前合算,当317x >时方案调价后合算. 26.解:(1)②③为论断时,ADCB14m6m30︒45︒E FDCBA(2)②④为论断时,此时可以构成一梯形.27.解:(1)223=--+y x x(2)(0,3),(-3,0),(1,0)(3)略。

江苏省徐州市中考数学试题

江苏省徐州市中考数学试题

徐州市初中毕业、升学考试数学试题注意事项:1.本试卷满分l 考试时间为I .2. 答题前前将自己的姓名、准考证号用0.5毫米黑色墨水签字笔写在本试卷和答题卡上,3. 考生答题全部涂、写在答题卡上,写在本试卷上无效,考试结束,将本试卷和答题卡一并交回。

一、选择题(本大题共有10小题,每小题2分,共在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1,2-的相反数是 A .2B. 2-C.12D. 12-2. 我国总人口约为l 370 000 000人,该人口数用科学记数法表示为 A .110.13710⨯ B .91.3710⨯C .813.710⨯D .713710⨯3的值A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间4.下列计算正确的是A .22x x x ⋅=B .22()xy xy = C .236()x x = D .224x x x +=5x 的取值范围是 A .1x ≥ B .1x > C .1x < D .1x ≤6.若三角形的两边长分别为6 ㎝,9 cm ,则其第三边的长可能为 A .2㎝ B .3 cmC .7㎝D .16 cm7.以下各图均由彼此连接的六个小正方形纸片组成,其中不能..折叠成一个正方体的是ABCDB B'(第9题)(第12题)BCD8.下列事件中,属于随机事件的是 A .抛出的篮球会下落B .从装有黑球、白球的袋中摸出红球C .367人中有2人是同月同日出生D .买一张彩票,中500万大奖9的正方形ABCD 沿对角线平移,使点A 移至线段AC 的中点A ’处,得新正方形A ’B ’C ’D ’,新正方形与原正方形重叠部分(图中阴影部分)的面积是 A B .12C .1D .1410.平面直角坐标系中,已知点O(0,o)、A(0,2)、B(1,0),点P 是反比例函数1y x=-图象上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q .若以点O 、P 、Q 为顶点的三角形与△OAB 相似, 则相应的点P 共有A .1个B .2个C .3个D .4个二、填空题(本大题共有8小题,每小题3分.共24分.不需写出解答过程.请把答案直接填写在答题卡相应位置上) 11.0132-- =__________.12.如图.AB ∥CD ,AB 与DE 交于点F ,∠B=40°,∠D=70°.则∠E= __________13.若直角三角形的一个锐角为则另一个锐角等于__________。

江苏省2010年中考数学试题(13份含有答案及解析)-7

江苏省2010年中考数学试题(13份含有答案及解析)-7

2010年南通市初中毕业、升学考试数 学注 意 事 项考生在答题前请认真阅读本注意事项1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应.....位置..上. 1. -4的倒数是 A .4B .-4C .14D .-142. 9的算术平方根是 A .3B .-3C .81D .-813. 用科学记数法表示0.000031,结果是A .3.1×10-4 B .3.1×10-5C .0.31×10-4D .31×10-64. 若36x -在实数范围内有意义,则x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠5. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是A .1B .2C .3D .26. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 A .9.5万件 B .9万件 C .9500件D .5000件7. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是(第5题)·O ABCA .m ≥2B .m ≤2C .m >2D .m <28. 如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 的长是 A .20 B .15 C .10D .59. 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为 A .4π cmB .3π cmC .2π cmD .π cm10.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 A .5个 B .4个 C .3个 D .2个二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于 ▲ .12.若△ABC ∽△DEF , △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为 ▲ .13.分解因式:2ax ax -= ▲ .14.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 ▲ . 15.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′ (点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为 (-2,2),则点N ′的坐标为 ▲ .16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位 置,并利用量角器量得∠EFB =65°,则∠AED ′等于 ▲ 度. 17.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关BACD(第8题)(第9题)ABCDOA DM ·EDBD ′ A(第16题)F CC′于对角线AC对称,若DM=1,则tan∠ADN=▲.18.设x1、x2是一元二次方程x2+4x-3=0的两个根,2x1(x22+5x2-3)+a =2,则a=▲.三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)计算:(1)203(4)(π3)2|5|-+----;(2)2293(1)69aa a a-÷-++.20.(本小题满分8分)如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,CD=6 cm,求直径AB的长.21.(本小题满分9分)如图,直线y x m=+与双曲线kyx=相交于A(2,1)、B两点.(1)求m及k的值;OBAD C·P(第20题)Ay213(2)不解关于x、y的方程组,,y x mkyx=+⎧⎪⎨=⎪⎩直接写出点B的坐标;(3)直线24y x m=-+经过点B吗?请说明理由.22.(本小题满分8分)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表:某地区八年级地理会考模拟测试成绩统计表分数段90<x≤100 80<x≤90 70<x≤80 60<x≤70 x≤60人数1200 1461 642 480 217 (1)填空:①本次抽样调查共测试了▲名学生;②参加地理会考模拟测试的学生成绩的中位数落在分数段▲上;③若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为▲;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?23.(本小题满分9分)光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min的速度向正东方向行走,在A处测得建筑物C在北偏东60°方向上,20min后他走到B处,测得建筑物C在北偏西45°方向上,求建筑物C到公路AB的距离.(已知3 1.732≈)北北C45°24.(本小题满分8分)(1)将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的57、37,在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨? (2)自编一道应用题,要求如下:①是路程应用题.三个数据100,25,15必须全部用到,不添加其他数据. ②只要编题,不必解答.25.(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个..合适的条件.....,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .26.(本小题满分10分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x 、y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍.AB DEFC(第25题)(1)求x +y 的值;(2)求小沈一次拨对小陈手机号码的概率.27.(本小题满分12分)如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y . (1)求y 关于x 的函数关系式; (2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若y =m 12,要使△DEF 为等腰三角形,m 的值应为多少?27.(本小题满分14分)已知抛物线y =ax2+bx +c 经过A (-4,3)、B (2,0)两点,当x =3和x =-3时,这条抛物线上对应点的纵坐标相等.经过点C (0,-2)的直线l 与x 轴平行,O 为坐标原点. (1)求直线AB 和这条抛物线的解析式;(2)以A 为圆心,AO 为半径的圆记为⊙A ,判断直线l 与⊙A 的位置关系,并说明理由;(3)设直线AB 上的点D 的横坐标为-1,P (m ,n )是抛物线y =ax2+bx +c 上的动点,当△PDO 的周长最小时,求四边形CODP 的面积.O xyA B CDE F2010年南通市中考数学试卷答案1、D2、A3、B4、C5、D6、A7、C8、D9、C 10、B 11、-2 12、1:2 13、ax(x-1) 14、21 15、(2,4) 16、50°17、3418、8 19、⑴4 ⑵ 3+a a20、3421、⑴ m=-1,k=2 ;⑵ (-1,-2);⑶经过点B 22、⑴ ①4000 ②80<x ≤90 ③108°; ⑵ 符合要求,合格率=5.97975.040001172171==--%>97%23、)13(50- m 24、分配给甲、乙两船的任务数分别是210吨和280吨 25、略26、⑴根据题意,设36+x+y=20k(k 为整数) 则x+y=20k-36 ∵0≤x+y ≤18 ∴0≤20k-36≤18 1.8≤k ≤2.7 ∵k 为整数 ∴k=2∴x+y=20×2-36=4 ⑵ x 0 1 2 3 4 y4321小沈一次拨对小陈手机号码的概率是51 27、解:(1)∵EF ⊥DE ,∴∠DEF =90°,∴∠BEF +∠CED =90°∵∠BEF +∠BFE =90°,∴∠BFE =∠CED 又∵∠B =∠C =90°,∴△BEF ∽△CDE ∴BE BF =CD CE ,即x y -8=mx∴y =-m 1x2+m8x ········································································ 4分 (2)若m =8,则y =-81x2+x =-81( x -4)2+2∴当x =4时,y 的值最大,y 最大=2 ················································· 7分(3)若y =m 12,则-m 1x2+m8x =m 12∴x2-8x +12=0,解得x 1=2,x 2=6 ················································ 8分∵△DEF 为直角三角形,∴要使△DEF 为等腰三角形,只能DE =EF 又DE 2=CD 2+CE 2=m2+x2,EF 2=BE 2+BF 2=( 8-x )2+y2=( 8-x )2+2144m∴m2+x2=( 8-x )2+2144m ,即m2+16x -64-2144m =0 当x =2时,m 2-32-2144m=0,即m 4-32m2-144=0解得m2=36或m2=-4(舍去)∵m >0,∴m =6 ········································································ 10分当x =6时,m2+32-2144m=0,即m4+32m2-144=0解得m2=-36(舍去)或m2=4∵m >0,∴m =2 ········································································ 12分28、解:(1)设直线AB 的解析式为y =px +q则⎩⎪⎨⎪⎧3=-4p +q 0=2p +q 解得⎩⎪⎨⎪⎧p =-21q =1∴直线AB 的解析式为y =-21x +1 ·················································· 2分∵当x =3和x =-3时,这条抛物线上对应点的纵坐标相等∴抛物线的对称轴为y 轴,∴b =0,∴y =ax2+c把A (-4,3)、B (2,0)代入,得:⎩⎪⎨⎪⎧3=16a +c0=4a +c 解得⎩⎪⎨⎪⎧a =41c =-1∴抛物线的解析式为y =41x2-1 ·················· 4分(2)∵A (-4,3),∴AO =2243+=5,即⊙A 的半径为5∵经过点C (0,-2)的直线l 与x 轴平行∴直线l 的解析式为y =-2,∴点A 到直线l 的距离为5∴直线l 与⊙A 相切 ······································································ 8分 (3)把x =-1代入y =-21x +1,得y =23,∴D (-1,23) 过点P 作PH ⊥直线l 于H ,则PH =n +2,即41m2+1 又∵PO =22n m+=222141)(-m m+=41m2+1y OxABClE∴PH =PO ················································································ 10分 ∵DO 的长度为定值,∴当PD +PO 即PD +PH 最小时,△PDO 的周长最小 当D 、P 、H 三点在一条直线上时,PD +PH 最小 ∴点P 的横坐标为-1,代入抛物线的解析式,得n =-43∴P (-1,-43) ···································· 12分 此时四边形CODP 的面积为: S 四边形CODP=S △PDO +S △PCO=21×( 23+43)×1+21×2×1=817 ············ 14分DAB O Cxyl P H。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求证:△BDF≌△CDE;
(2)若AB=AC,求证:四边形BFCE是菱形.
24.(2010江苏徐州,24,8分)图,小明在楼上点A处观察旗杆BC,测得旗杆顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面的高AD为12m.求旗杆的高度.
25.(2010江苏徐州,25,8分)如如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点,直线AB与y轴交于点C.
1.(2010江苏徐州,1,2分)-3的绝对值是()
A.3B.-3C. D.-
2.(2010江苏徐州,2,2分)5月31日,参观上海世博会的游客约为505 000人,505 000用科学记数法表示为()
A.505×103B.5.05×103C.5.05×104D.5.05×105
3.(2010江苏徐州,3,2分)下列计算正确的是()
A.170B.400C.1万D.3万
6.(2010江苏徐州,6,2分)一个几何体的三视图如图所示,则此几何体是()
A.棱柱B.正方体C.圆柱D.圆锥
7.(2010江苏徐州,7,2分)如图,在64方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()
A.点MB.格点NC.格点PD.格点Q
16.(2010江苏徐州,16,3分)如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为5 cm,小圆的半径为3 cm,则弦AB的长为▲cm.
17.(2010江苏徐州,16,3分)如图,扇形的半径为6,圆心角 为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为▲.
A. B.
4.(2010江苏徐州,4,2分)下列四个图案中,是轴对称图形,但不是中心对称图形的是()
A.B. C. D.
5.(2010江苏徐州,5,2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b- <0的解集(直接写出答案).
26.(2010江苏徐州,26,8分)如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线 BA—AD—DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1 cm/s.设E、F出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:
8.(2010江苏徐州,8,2分)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2008)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()
A.向上平移4个单位B.向下平移4个单位
C.向左平移4个单位D.向右平移4个单位
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡的相应位置上)
18.(2010江苏徐州,16,3分)用棋子按下列方式摆图形,依照此规律,第n个图形比第(n-1)个图形多▲枚棋子.
三、解答题(本大题共10小题,满分74分,轻在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2010江苏徐州,1ห้องสมุดไป่ตู้,6分)计算:
(1) ;
(2) .
20.(2010江苏徐州,20,6分)2010年4月,国务院出台“房贷新政”,确定实行更为严格的差别化住房信贷政策,对楼市产生了较大的影响.下面是某市今年2月~5月商品住宅的月成交量统计图(不完整),请根据图中提供的信息,完成下列问题:
绝密*启用前
徐州市2010年初中毕业、升学考试
数学
姓名考试证号
1.本试卷满分120分,考试时间为120分钟.
2.答题前请将自己的姓名、考试证号用0.5毫米黑色签字笔写在本试卷和答题卡上.
3.考生答题全部答在答题卡上,答在本试卷上无效.考试结束,将本试卷和答题卡一并交回.
第一部分(选择题共30分)
一、选择题(本大题共有8小题,每小题2分,满分16分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
(1)该市今年2月~5月共成交商品住宅______套;
(2)请你补全条形统计图;
(3)该市这4个月商品住宅的月成交量的极差是____套,中位数是_______套.
21.(2010江苏徐州,21,6分)甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、 “布”三种手势(如图)中的一种,规定“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,手势 相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.
9.(2010江苏徐州,9,3分)写出1个比-1小的实数▲.
10.(2010江苏徐州,10,3分)计算(a-3)2的结果为▲.
11.(2010江苏徐州,11,3分)若 =36°,则∠ 的余角为▲.度.
12.(2010江苏徐州,12,3分)若正多边形的一个外角是45°,则该正多边形的边数是▲.
13.(2010江苏徐州,13,3分)函数 中自变量x的取值范围是▲.
14.(2010江苏徐州,14,3分)不等式组 的解集是▲.
15.(2010江苏广州,15,3分)一个圆形转盘被等分成八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)P(4).(填“﹥”、“=”、或“<”)
22.(2010江苏徐州,22,6分)在5月举行的“爱心捐款”活动中,某校九(1)班共捐款300元,九(2)班共捐款225元,已知九(1)班的人均捐款额是九(2)班的1.2倍,且九(1)班人数比九(2)班多5人.问两班各有多少人?
23.(2010江苏徐州,23,8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上, CE∥BF,连接BE、CF.
相关文档
最新文档