数学人教版七年级上册工程问题

合集下载

人教版七年级上册数学第三章一元一次方程应用题——工程问题

人教版七年级上册数学第三章一元一次方程应用题——工程问题

人教版七年级上册数学第三章一元一次方程应用题——工程问题1.某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要12天,乙车单独运完需要24天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天才能运完这些垃圾?(2)已知甲车每天的租金比乙车多100元,运完这些垃圾后建筑工地共需支付租金3900元,甲、乙两车每天的租金分别为多少元?2.现有一项工程,甲队单独完成需10天,乙队单独完成需6天.(1)若甲队单独做2天后两队再合作,则甲、乙两队再合作多少天才能把该工程完成?(2)在(1)的条件下,甲队每天的施工费用为500元,乙队每天的施工费用为600元,则完成此项工程需付给甲、乙两队共多少元?3.某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可以处理垃圾55吨,每吨需费用10元;乙厂每小时可以处理垃圾45吨,每吨费用9元.(1)甲,乙两厂同时处理该城市的垃圾,每天需要多少时间完成?(2)如果该城市每天用于处理垃圾的费用为6700元,那么甲厂每天处理垃圾多少吨?4.某工人原计划每天生产45个零件,到预定期限还有220个零件不能完成.若提高工效20%,则到期将超额完成140个.此工人原计划生产零件多少个?预定期限是多少天?5.列方程解应用题:某车间原计划13小时生产一批零件,技术革新提升了产能,实际每小时多生产10件,用12小时不仅完成任务,而且还较原计划多生产了60件.求:原计划每小时生产的零件数.6.一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?7.现有甲、乙两个工程队共同铺设一段长为1350km的天然气管道.甲工程队每天铺设5km,乙工程队每天铺设7km,甲工程队先施工30天后,乙工程队也开始一起施工,乙工程队施工多少天后能完成这项工程?8.某地为了打造风光带,将一段长为360m的河道整治任务,由甲、乙两个工程队先后接力完成,共用时20天.已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多少天完成任务?9.我县更生路正在改造地下管线,该管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?10.有一些相同的房间需要粉刷墙面,一天4名一级技工去粉刷8个房间,结果其中有20平方米墙面未来得及粉刷;同样时间内2名二级技工粉刷了3个房间之外,还多粉刷了另外的20平方米墙面.已知每名一级工比二级工一天多粉刷15平方米墙面,求每名一级技工、二级技工每天各刷墙面多少平方米.11.整理一批图书,由一个人做需要120h完成,先计划由一部分人先做12h,然后再增加5人与他们一起做8个小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?12.修一条公路,甲队单独修需要10天完成,乙队单独修需要12天完成,丙队单独修需要15天完成.现在先由甲队修2.5天,再由乙队接着修,最后还剩下一段路,由三队合修2天才完成任务.求乙队在整个修路工程中工作的天数.13.开凿一个山洞,甲队单独开凿8天完成,乙队单独开凿12天完成,现甲队单独开凿若干天之后留给乙队单独开凿,两队先后共用10天完成,甲乙两队各开凿几天?14.一项工程甲单独做需要10小时,乙单独做需要8小时,现甲单独做两小时后乙加入一起做,问这项工程完成共需几个小时?15.某项工程,如果让甲工程队单独工作需75天完成,如果让乙工程队单独工作需50天完成.如果让两个工程队一起工作15天,再由乙工程队完成剩余部分,共需多少天完成?(请列方程解应用题)16.一条地下管线,若由甲工程队单独完成需要12天,由乙工程队单独完成需要24天,先由乙工程队铺设3天,剩下的甲、乙合作完成.还需多少天铺设完这条管道?17.一项工程,甲单独做需20天完成,乙单独做需10天完成,现在先由甲乙合做4天后,剩下的部分由甲单独做完成,问一共需要做多少天完成任务?(列方程解应用题)18.为了便于广大市民晚上出行,政府计划用24天的时间在徒骇河大桥至下注段公路两侧修建路灯便民设施,若此项工程由甲队单独做需要40天完成,由乙队单独做需要20天完成.在甲队单独做了一段时间后,为了加快工程进度乙队也加入了工程建设,正好按原计划完成了此项工程,问此项工程甲队单独做了多少天19.甲、乙两人的工作效率之比为3:2,某项工作甲、乙合作7天后,乙再单独工作2天可以完成任务的一半,问甲、乙单独做各需几天才能完成这项工作?20.姐、弟二人录入一批稿件,姐姐单独录入需要的时间是弟弟的38,姐姐先录入了这批稿件的25,接着由弟弟单独录入,共用24小时录入完.问:姐姐录入用了多少小时?。

人教版七年级数学上册5.3第1课时配套问题与工程问题课件

人教版七年级数学上册5.3第1课时配套问题与工程问题课件

解析 设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,
由题意,得2x+(x+x-2)=26,
解得x=7,则x-2=5,
所以甲工程队每天掘进7米,乙工程队每天掘进5米,
146=1206(天).
75
答:甲、乙两个工程队还需联合工作10天.
9.(2023山东潍坊昌邑期末,24,★★☆)一项工程,甲队单独完 成需30天,乙队单独完成需45天. (1)现甲队先单独做20天,之后两队合作,甲、乙两队合作多 少天才能把该工程完成? (2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工 程款2万元,则由甲、乙两队全程合作完成该工程,需付多少 工程款?
们一起做4小时,正好完成这项工作的 3,假设每人的工作效率
4
相同,那么应该安排多少人先工作?
解析 解法一(根据总工作量列方程):
设安排x人先工作,
由题意,得4× 1 x+ 1 (x+3)×4= 3,
80 80
4
整理,得 x + x =3 3,
20 20 4
解方程,得x=6.
答:应该安排6人先工作.
2.(易错题)(2024四川绵阳游仙期中)某工厂中秋节前要制作 一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月 饼要用0.05 kg面粉,1块小月饼要用0.02 kg面粉.若制作若干 盒月饼共用了640 kg面粉,请问制作大、小两种月饼各用了 多少面粉?
解析 易错点:易用错配套比.
设用x kg面粉制作大月饼,则用(640-x)kg面粉制作小月饼,由
解析 设A工程队整治河道x米,
由题意得 x +280=2x5,
12 10
解方程,得x=180.

人教版七年级上册数学第三章一元一次方程应用题--工程问题

人教版七年级上册数学第三章一元一次方程应用题--工程问题

人教版七年级上册数学第三章一元一次方程应用题--工程问题1.整理一批图书,如果由一个人单独做要花40小时.现先由一部分人用1小时整理,随后增加5人和他们一起又做了2小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?2.整理一批快递,如果由一个人单独做要用20小时,现先安排一部分人用1小时整理,随后又增加4人和他们一起做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么应先安排多少人整理这批快递?3.整理一批数据,由一人做需100h完成.现计划由一部分人先做2h,然后增加5人和他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?4.某公司需要加工一批零件,甲每天可以加工16个零件,乙每天可以加工24个零件,甲单独加工这批零件比乙单独加工这批零件多用20天,甲每天的人工费为80元,乙每天的人工费为120元.(1)问这批零件共有多少个?(2)在加工零件过程中,公司要派一名质量监督员,并且每天支付他15元补助费,现有三种加工方案:①由甲单独加工这批零件;①由乙单独加工这批零件;①甲、乙合作同时加工这批零件,你认为哪种方案最省钱,为什么?5.某公司计划租用甲、乙两辆车运送一批货物,已知甲车单独运送这批货物需要20天,乙车单独运送需要10天,现由甲车先运5天,然后甲、乙两车合作运完剩下的货物.(2)已知甲车每天的租金比乙车少100元,运完这批货物公司共支付了租金6650元,则甲乙两车的租金每天分别是多少元?6.一项工程由甲工程队单独完成需要12天,由乙工程队单独完成需要16天,甲工程队单独施工5天后,为加快工程进度,又抽调乙工程队加入该工程施工,问还需多少天可以完成该工程?7.现有一工程打算让甲、乙两个工程队完成,甲队单独完成这项工程需要60天,乙队单独完成这项工程需90天;若由甲队先做10天,剩下的工程由甲、乙两队合作完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款4万元,乙队施工一天需付工程款2.5万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?8.一项工程由甲单独完成需要20天;由乙单独完成需要30天.(1)若该项工程由甲、乙合作完成,则需要多少天?(2)由于场地限制,两人不能同时施工,若先安排甲单独施工完成一部分后,再由乙单独施工完成剩余工程.已知完成该项工程共用了25天,问甲、乙分别单独施工了几天?9.“开福,开启幸福的地方”,开福区绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对开福大道的某段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元,购买两种树苗的总金额为90000元.(1)求需购买甲、乙两种树苗各多少棵?(2)若栽种一棵甲种树苗需人工费50元,栽种一棵乙种树苗需人工费40元,则这批树苗共需人工费多少元?10.完成一项工作,一个工人需要16天才能完成.开始先安排几个工人做1天后,又增加1人和他们一起做2天,结果完成了这项工作的一半,假设每个工人的工作效率相同.(1)开始安排了多少个工人?(2)如果要求再用2天做完剩余的全部工作,还需要再增加多少个工人一起做?11.某车间的工人,分两队参加义务植树活动,甲队人数是乙队人数的两倍,由于任务的需要,从甲队调16人到乙队,则甲队剩下的人数是乙队人数的一半少3人,求甲、乙两队原有的人数12.某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷160个房间,乙工程队每天能粉刷240个房间,且单独粉刷这些墙面甲工程队比乙工程队要多用20天.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高25%,乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的2倍还多4天,求乙工程队共粉刷多少天?13.新学期校服公司计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服80件,乙工厂每天能加工这种校服120件,且单独加工这批校服甲工厂比乙工厂要多用20天.(1)求这批校服共有多少件?(2)若校服公司决定由甲乙两厂合作完成,甲、乙两厂按原工作效率合作一段时间后,甲工厂停工了,而乙工厂改进加工技术,每天的工作效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间是甲工厂工作时间的3倍还多2天,若在加工过程中,该校服公司需付甲工厂每天费用300元,付乙工厂每天费用450元.这批校服全部加工完成后,校服公司需支付甲、乙两工厂共多少元?。

人教版七年级上册数学一元一次方程应用题(工程问题)专题训练

人教版七年级上册数学一元一次方程应用题(工程问题)专题训练

人教版七年级上册数学一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如7.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.甲、乙两工程队共同承包了一段长4600米的排污管道铺设工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成230米,乙队平均每天比甲队多完成115米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?9.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.(1)如果由这两个工程队从两端同时施工,需要多少天可以铺好这条管线?(2)如果先让甲乙工程队合作先施工(3)a +天,余下的工程再由甲工程队施工(42)+a 天,恰好完成该工程,求甲工程队一共参与了多少天?10.某项工程的承包合同规定:15天内完成这项工程,否则每超过1天罚款5000元.已知甲单独做30天完成,乙单独做20天完成,为此甲、乙两工程队商定共同承包这项工程.(1)若甲、乙两工程队全程合作,多少天能完成这项工程?(2)在两工程队合作完成这项工程的75%时,甲临时有其他任务被调走,余下的工程由乙单独完成,则这项工程能否在15天内完成?请说明理由.11.一段河道治理任务由A ,B 两个工程队完成.A 工程队单独治理该河道需16天完成,B 工程队单独治理该河道需24天完成,现在A 工程队单独做6天后,B 工程队加入合作完成剩下的工程,问B 工程队工作了多少天?17.某工厂有甲、乙两条加工相同原材料的生产线.甲生产线加工m吨原材料需要(2m+3)小时;乙生产线加工n吨原材料需要(3n+2)小时.(1)求甲生产线加工2吨原材料所需要的时间;(2)求乙生产线8小时能加工的原材料的吨数;(3)该企业把7吨原材料分配到甲、乙两条生产线,若两条生产线加工的时间相同,则分配到甲、乙生产线的吨数分别为多少?18.一项工程甲队单独做需要15天完成,乙队单独做需要30天完成.(1)求甲、乙两队合作完成该工程的天数;(2)现甲队先单独做3天,然后剩余工程由两个工程队合作完成.甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元,求最终需要分别向甲、乙两队支付工程款的钱数.(要求利用一元一次方程解决问题)19.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”就停住了.根据以上信息解答下列问题:(1)两人合作需要_____天完成.(2)李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元,如果按各完成工作量计算报酬,那么该如何分配?20.某工厂要制作一块广告牌,请来三名工人,已知甲单独做12天可完成,乙单独做20天可完成,丙单独做15天可完成.现在甲和乙合做了4天,余下的工作乙和丙两人合作完成,(1)余下的工作乙和丙两人合作多少天才能完成?(2)完成后,工厂支付酬金4800元,如果按各人完成的工作量计算报酬,那么应如何分配?参考答案:(2)甲中途离开了10天16.原计划36天完成任务.17.(1)7小时(2)2吨(3)分配到甲、乙生产线的吨数分别为4吨和3吨.18.(1)10天(2)最终需要向甲队支付38.5万元工程款,向乙队支付16万元工程款19.(1)2.4(2)师傅和徒弟各分225元20.(1)余下的工作乙和丙两人合作4天才能完成;(2)甲的报酬为1600元,乙的报酬为1920元,丙的报酬为1280元.。

人教版初中数学七年级上册第三章3.4.2工程问题与一元一次方程

人教版初中数学七年级上册第三章3.4.2工程问题与一元一次方程
பைடு நூலகம்
甲、乙两个工程队合力完成,已知甲工程队每天整治24m,乙工
程队每天整治16m。
问:甲的工作效率是:
乙的工作效率是:
甲乙的工作时间是:
甲的工作量是:
乙的工作量是:
自主探究:
例2.一项工作甲独做5天完成,乙独做10天完成,那么甲每天 的工作效率是 ,乙每天的工作效率是 ,两人合作3天 完成的工作量是 ,此时剩余的工作量是______.
例3.一项工作甲独做a天完成,乙独做b天完成,那么甲每 天的工作效率是 ,乙每天的工作效率是 ,两人合作 3天完成的工作量是 ,此时剩余的工作量是_______.
通常情况下,将工作总量看成单位“1”
自主探究:
例4.一条地下管线由甲工程队单独铺设需要12天,由乙工程队 单独铺设需要24天,如果甲、乙两个工程队同时施工,需要多 少天铺好这条管线?
第三章 一元一次方程
3.4 第2课时 工程问题与一元一次方程
复习回顾:
工程问题: 1.工程问题的3个基本量是:
2.(1)工作总量= (2)工作时间= (3)工作效率=
工作总量 工作时间 工作效率
3.通常情况下,将工作总量看成单位“1”
自主探究:
例1.某地为了打造风光带,将一段长为360m的河道整治任务由
例7.整理一批数据,由一个人做要80 h完成,现计划由一部分人先 做2 h,然后增加5人与他们一起做8 h,完成这项工作的3/4.假设这 些人的工作效率相同,具体应先安排多少人工作?
自主探究:
例8.某中学的学生自己动手整修操场,如果让七年级学生单独工 作,需要7.5h完成;如果让八年级学生单独工作,需要5h完成。 如果让七、年级学生一起工作1h,再由八年级学生单独完成剩 余部分,共需多少时间完成?

人教版(2024)数学七年级上册+5.3+实际问题与一元一次方程——工程问题+课件

人教版(2024)数学七年级上册+5.3+实际问题与一元一次方程——工程问题+课件
和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?
产品类型
螺钉 螺母
生产人数
单人一天 产量(工 作效率)
生产时间
总产量
归纳小结
课后作业
工作效率 甲 乙
工作时间
工作总量
一项工作,12人4个小时才能完成, (1)人均效率是?(一个人一小时的工作量)
(2)这项工作8个人来做,一小时的工作量是多少?
(3)这项工作8个人来做,x小时的工作量是多少? (4)这项工作m个人来做,n小时的工作量是多少?
拓展提升
整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小 时,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工 作效率相同,具体应先安排多少人工作?
工作效率
工作时间
工作总量


归纳总结
实际问题
设未知数、找等 量关系,列方程
实际问题的答案
检验
一元一次方程
解 方 程
一元一次方程的解
用一元一次方程解决实际问题的基本步骤:
审、设、找、列、解、检、答
仁者德高·智者道远
某市为打造引江枢纽风光带,将一段长为1.2千米的河道整治任务交 由甲、乙两个工程队接力完成,共用时60天.已知甲队每天整治24米, 乙队每天整治16米.求甲、乙两队分别整治河道多少米.
思考:(1)你知道该问题中有怎样的数量关系吗? (2)你如何区分研究对象?等量关系是什么?
人均效率 工作时间 人数
工作总量


仁者德高·智者道远
变式训练:整理一块地,一个人做需要80小时完成。现在 一些人先做了2小时后,有4人因故离开,剩下的人又做 了4小时完成了这项工作,假设这些人的工作效率相同求 一开始安排的人数。

2024年人教版七年级数学上册《实际问题与一元一次方程(4)工程问题》课堂重难点精练

2024年人教版七年级数学上册《实际问题与一元一次方程(4)工程问题》课堂重难点精练

同学们,下课吧!
队单独做4天后两队合作.
(1)甲、乙两队合作多少天才能完成该工程?
解:(1)设甲、乙两队合作x天才能完成该工程.



根据题意,得 ×4+( + )x=1.


ቤተ መጻሕፍቲ ባይዱ
解得x=20.
答:甲、乙两队合作20天才能完成该工程.
3.一项工程,甲队单独完成需要40天,乙队单独完成需要50天,现甲
队单独做4天后两队合作.
(2)在(1)的条件下,甲队每天的施工费为3 000元,乙队每天的施
工费为3 500元,完成此项工程需付给甲、乙两队共多少元?
解:(2)甲队的费用为3 000×(20+4)=72 000(元).
乙队的费用为3 500×20=70 000(元),
72 000+70 000=142 000(元).
答:完成此项工程需付给甲、乙两队共142 000元.
人教版初中七年级数学上册课堂重难点精练
实际问题与一元一次方程
(4)工程问题
1.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9
个,如果每人做4个,那么比计划少7个.设计划做x个“中国结”,可
列方程( A )
+9 -7
A. =
6
4
-9 +7
B.

6
4
+9 +7
C. =
6
4
-9 -7
D.

6
4
2.一项工程,甲队单独完成需30天,乙队单独完成需45天,现甲队先
单独做20天,之后两队合作.甲、乙合作多少天才能把该工程完成?
解:设甲、乙合作x天才能把该工程完成.

5.3 实际问题与一元一次方程 第1课时 配套、工程问题 人教版数学七年级上册

5.3 实际问题与一元一次方程  第1课时 配套、工程问题 人教版数学七年级上册
5.3 实际问题与一元一次方程
第1课时 配套问题及工程问题
数学 七年级上册人教版
栏目导航
预习导学
课堂互动
基 础 题
中 档 题
素 养 题
预习导学
1.解决配套问题时,关键是明确题目中的 相等 关系,它是列方程的依据
.一般来说,题目中有两个等量关系,根据其中一个等量关系设未知数,根
据另一个等量关系 列方等量关系
;
(3)设:设出未知数,
(4)解: 解方程
;
(5)验:检验答案
是否符合题意
;
(6)答:根据题目写出解答.
课堂互动
知识点1 产品配套问题
例1
某车间有20名工人,生产螺栓和螺母,每人每天能生产螺栓12个
或螺母16个.如果分配x名工人生产螺栓,其余的工人生产螺母,要恰好
使每天生产的螺栓和螺母按1∶2配套,求x的值.所列的方程是(
成需18天,丙队单独完成需12天.前7天由甲、乙两队合作,但乙队中途
离开了一段时间,后2天由乙、丙两队合作完成,则乙队中途离开了
3 天.
基础题
1.一套仪器由一个A部件和三个B部件构成.用1 m3钢材可做60个A部
件或150个B部件,现要用9 m3钢材制作这种仪器.设应用x m3钢材做
A

A
件,剩余钢材做B部件,恰好配套,则可列方程为( )
所以侧面的个数为6x+4(19-x)=(2x+76)(个);
底面的个数为5(19-x)=(95-5x)(个).
(2)若裁剪出的侧面和底面恰好全部用完,能做多少个三棱柱盒子?
解:(2)由题意,得 2(2x+76)=3(95-5x).
解得 x=7.

人教版七年级数学上册第三章一元一次方程常见题型分类

人教版七年级数学上册第三章一元一次方程常见题型分类

一元一次方程应用题之工程问题工程问题:工程问题的基本量有:工作量、工作效率、工作时间。

关系式为:①工作量=工作效率×工作时间。

②工作时间=工作效率工作量,③工作效率=工作时间工作量。

工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为t 1。

常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。

②如果以时间作相等关系,完成同一工作的时间差=多用的时间。

例题:例1.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。

现在三管齐开,需多少时间注满水池?例2.一项工程,甲队单独做需要10天完成,乙队单独做需要20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程?针对练习:1.某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独工作,需要5小时完成。

如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需几小时完成?2.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?3.整理一批图书,由一个人做要40小时完成。

现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体先安排多少人工作。

4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5.整理一批数据,由一个人做需80小时完成任务。

现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。

怎样安排参与整理数据的具体人数?行程问题行程问题中有三个基本量:路程、时间、速度。

人教版七年级上数学一元一次方程实际问题——工程问题和配套问题

人教版七年级上数学一元一次方程实际问题——工程问题和配套问题

一元一次方程实际问题——工程问题和配套问题①在现实生活和生产中存在“产品配套”或“人员调配”问题,解决这类题的基本的等量关系是加工(或生产)的总量成比例。

②在工程问题中常见的数量关系:工作总量=工作效率 工作时间,各部分工作量总和等于1.1、某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,则原计划每小时生产多少件?2、某工厂第一车间的人数比第二车间人数的54少30人。

如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的43,求原来每个车间的人数。

3、某工厂男、女工人共70人,男工人调走10%,女工人掉入6人,这时,男、女人数正好相等,问:原来男、女工人各有多少人?4、甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的31,应从乙队调多少人到甲队?5、在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处总人数为在乙处总人数的2倍,则应调到甲处多少人?6、某中学甲、乙两班学生在开学时共有90人,如果从甲班转入乙班4人,则甲班的学生数是乙班的80%,那么开学时甲、乙两班分别有学生多少人?7、某工厂生产一批零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个,则原计划每天生产多少个零件?8、某班分组去两处植树,第一组26人,第二组22人。

现第一组在植树中遇到困难,需第二组支援。

问:第二组调去多少人去第一组,才能使第一组的人数是第二组的3倍,求应该从第二组抽调几人?9、甲仓库与乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%。

结果乙仓库所余的粮食比甲仓库所余的粮食多30吨。

则甲仓库原来存粮多少吨?10、程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁。

意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完。

人教版七年级上册数学第三章一元一次方程应用题--工程问题

人教版七年级上册数学第三章一元一次方程应用题--工程问题

人教版七年级上册数学第三章一元一次方程应用题--工程问题1.学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人,已知师傅单独完成需4天,徒弟单独完成需6天.现由徒弟先做1天,再两人合作,问还需几天可以完成这项工作?2.一项工程,甲公司单独做需要20天完成,乙公司单独做所用时间是甲公司的1.5倍.(1)若甲、乙两公司合作完成这项工程需要多少天?(2)若甲、乙两公司合作完成这项工程,在第10天结束时,甲公司有别的任务,不能继续合作,剩余部分由乙公司单独完成,则乙公司还需要做几天?3.同一建设工地,在甲处劳动的有25人,在乙处劳动的有17人,现调来30人支援,使得甲处的人数是乙处人数的2倍少3人,问该如何分配调来的30人?4.某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要15天,乙车单独运完需要30天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天运完垃圾?(2)已知甲车每天的租金比乙车多100元,运完垃圾后建筑工地共需支付租金3950元.则甲、乙车每天的租金分别为多少元?5.某车间接到一批限期(可以提前)完成的零件加工任务.如果每天加工150个,则恰好按期完成;如果每天加工200个,则可比原计划提前5天完成.(1)求这批零件的个数;(2)车间按每天加工200个零件的速度加工了m个零件后,提高了加工速度,每天加工250个零件,结果比原计划提前6天完成了生产任务,求m的值.6.完成一项工作,如果安排两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?7.学校修建运动场,让甲工程队单独做需要15天完成,让乙工程队单独做需要10天完成.(1)如果让甲、乙工程队合做3天后,剩下的工程由乙工程队完成,还需要多少天?(2)已知甲队每天的费用为1000元,乙队每天的费用为1600 元,从节约资金的角度,认为是甲、乙队单独做,还是两队合做完成?8.学校有一批桌椅需要维修,现有甲、乙两个维修队,甲每天能维修16套,乙每天比甲多维修8套,甲单独完成维修任务比乙单独完成维修任务多用10天,问:学校这批需要维修的桌椅一共有多少套?9.茶厂用A B、两型机器同时生产一批相同的盒装茶叶(由若干听包装而成).已知3台A型机器一天生产的听装茶叶,包装成20盒后还剩2听,2台B型机器一天生产的听装茶叶,包装成15盒后还剩1听,每台A型机器比B型机器一天少生产4听茶叶.求每盒包装多少听茶叶?10.学校校办工厂需制作一块广告牌,请来师徒二人,已知师傅单独完成需4天,徒弟单独完成需6天,现由徒弟先做一天,再两人合作,完成后共得到报酬900元,如果按各人完成的工作量计算报酬,那么该如何分配11.某校七年级科技兴趣小组计划制作一批飞机模型,如果每人做6个,那么比计划多做了10个,如果每人做5个,那么比计划少做了14个.该兴趣小组共有多少人?计划做多少个飞机模型?12.整理一批图书,如果由一人单独做要用28h,现先安排一部分人用lh整理,随后又增加5人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?13.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)甲、乙两工程队合作修建需几个月完成?(2)合作修建共耗资多少万元?14.甲乙两个工程队承包了地铁某标段全长3900米的施工任务,分别从南,北两个方向同时向前掘进。

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。

人教版七年级上册实际问题与一元一次方程-工程问题(教案)

人教版七年级上册实际问题与一元一次方程-工程问题(教案)
3.重点难点解析:在讲授过程中,我会特别强调工程问题中的工作效率、工作时间、工作总量之间的关系,以及如何列出正确的一元一次方程这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与工程问题相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示工程问题中的工作效率、工作时间、工作总量之间的关系。
人教版七年级上册实际问题与一元一次方程-工程问题(教案)
一、教学内容
本节课选自人教版七年级上册数学教材第五章“实际问题与一元一次方程”中的工程问题。教学内容主要包括以下两个方面:
1.工程问题的基本概念:通过实例引出工程问题的特点,使学生理解并掌握工程问题中的工作效率、工作时间和工作总量之间的关系。
2.应用一元一次方程解决工程问题:结合教材例题和练习题,让学生掌握如何将工程问题转化为数学模型,列出相应的一元一次方程,并通过求解方程来解决实际问题。
具体内容包括:
(1)教材例题:某工程队计划完成一项工程,若甲、乙两队合作,需要4天时间;若甲、乙两队分别单独完成,甲队需要6天,乙队需要8天。求甲、乙两队单独完成工程的效率。
(2)课后练习:根据工程问题的特点,设计相关练习题,巩固学生对一元一次方程解决工程问题的应用。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,使学生能够从现实情境中抽象出数学模型,提高数学建模的核心素养。
三、教学难点与重点
1.教学重点
(1)理解工程问题的基本概念,掌握工作效率、工作时间和工作总量之间的关系。
(2)学会将工程问题转化为数学模型,列出相应的一元一次方程。
(3)掌握求解一元一次方程的方法,并能将其应用于解决工程问题。

人教版七年级数学上册第1课时产品配套问题和工程问题

人教版七年级数学上册第1课时产品配套问题和工程问题
用列表或画图来帮助理解题意
例 (教材P100例1变式)某车间有工人660名,生产 一种由1个螺栓和两个螺母组成的配套产品,每 人每天平均生产螺栓14个或螺母20个.如果你是 这个车间的车间主任,你应分配多少人生产螺栓, 多少人生产螺母,才能使生产出的螺栓和螺母刚 好配套?
分析:本题找出等量关系为:生产的螺栓数×2 =生产的螺母数,把相关的代数式代入即可列方 程. 解:设分配x人生产螺栓,(660-x)人生产螺母, 依题意得14x×2=(660-x)×20,解得x=275. 所以660-x=385. 答:应分配275人生产螺栓,385人生产螺母.
方法点拨:此题考查了一元一次方程的应用, 得到螺栓数量和螺母数量的等量关系是解决本 题的关键.
快速对答案
提示:点击 进入习题
14
2 13
3
详细答案 点击题序
1.一件工作,甲单独做需 6 天完成,乙单独做需 12 天完成,若甲、乙一起做,则需 4 天完成. 2.一个道路工程,甲队单独施工 9 天完成,乙队单 独施工 24 天完成.现在甲乙两队共同施工 3 天,因 甲另有任务,剩下的工程由乙队完成,则乙队还需
知识要点 列方程解决实际问题
意义或步骤 在配套问题中,相关
示例
联的几个量之间具有 如1个螺钉配2个螺母;
面配4条桌腿;
这个数量关系就是列 劳动力调配等.
方程的主要根据.
工程问题的基本量:工作量、_工__作_
_效__率__、工作时间. 工程问题的基本数量关系为:工作 如两队 工程 总量= 工作效率 ×工作时间;合作 共同修 问题 的效率=各自单独做的效率的和. 筑一条 当工作总量未给出具体数量时,常 公路等 设总工作量为“ 1 ”,分析时可采
13 天才能完成.

新人教版七年级上册数学课件 第五章 一元一次方程 5.3 实际问题与一元一次方程(第2课时)工程问题

新人教版七年级上册数学课件 第五章 一元一次方程 5.3 实际问题与一元一次方程(第2课时)工程问题

1.加工某种工件,甲单独作要20天完成,乙只要10就能 完成任务,现在要求二人在12天内完成任务.问乙需工 作几天后甲再继续加工才可正好按期完成任务?
1
12-x
20
1
x
10
1 (12 x) 20
1x 10
解:设乙需工作x天后甲再继续加工才可正好按期
完成任务,则甲做了(12-x)天.
依题意,得
1 (12 x) 1 x 1.
3.用一元一次方程解决实际问题的基本过程如下:
实际问题
设未知数,列方程 一元一次方程
解 方 程
实际问题的答案
检验
一元一次方程的解 (x=a)
同学们,通过这节课的学习 ,你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
如果设先 安排 x人
做4 h,你
能列出方
程吗?
这两个工作量之和等于总工作量.
1
40 ×
1 40
×
×

4x
40
× = 8(x 2)
40
工作量之和等于总工作量1
解:设先安排 x 人做4 h,根据题意得等量关系: 前部分工作总量+后部分工作总量=总工作量1
可列方程
4x 8(x 2) 1. 40 40
小结
设未知数的常见方法
1.一般情况下,题中问什么就设什么,即设直接未知数;
2.特殊情况下,设直接未知数难以列出方程时,可设另一个相
关的量为未知数,即设间接未知数;
3.在某些问题中,为了便于列方程,可以设辅助未知数.
注意
1. 设未知数时,如果有单位,要加上单位. 2. 列方程时,等号两边量的单位要一致. 3. 检验有两层含义:一是检验所得结果是不是方程的解; 二是检验方程的解是否符合实际问题的意义.

3.4配套问题与工程问题(教案)-2023-2024学年七年级上册数学(人教版)

3.4配套问题与工程问题(教案)-2023-2024学年七年级上册数学(人教版)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了配套问题和工程问题的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这些问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在教学过程中,教师应当针对这些难点和重点,采用不同的教学策略和方法,如使用图表、实物操作、小组讨论等,以确保学生能够透彻理解和掌握本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《配套问题与工程问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或搭配资源的情况?”比如,你们如何决定用多少钱买多少文具?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何用数学解决配套和工程问题。
二、核心素养目标
1.培养学生的逻辑推理能力,使其能够通过分析问题,发现数量关系,建立方程或比例关系,解决实际问题。
2.提升学生的数学建模素养,学会将实生活中的问题抽象为数学模型,并用数学方法进行求解。
3.增强学生的数据分析能力,通过解决配套问题和工程问题,培养学生对数据的敏感性和处理能力。
4.培养学生的应用意识,使学生能够将所学知识应用于解决实际生活中的数学问题,体会数学在生活中的重要性。
-例题:一辆汽车以60km/h的速度行驶,行驶了3小时,计算行驶的距离。
-习题:设计有关速度、浓度等比例问题的练习,巩固所学知识。
4.学会分析问题,找出数量关系,建立方程或比例关系解决问题。

工程问题-人教版七年级数学上册教案

工程问题-人教版七年级数学上册教案

工程问题-人教版七年级数学上册教案
一、教学目标
1.理解工程问题的含义;
2.能够灵活运用多种解决工程问题的方法;
3.能够运用工程问题所学知识,解决实际生活中的问题;
4.培养学生分析、解决实际问题的思想和能力。

二、教学重点
1.理解工程问题的含义;
2.能够运用多种解决工程问题的方法。

三、教学难点
1.能够灵活运用所学方法,解决实际生活中的问题。

四、教学内容及时间
章节名称时间
第二章第一节工程问题2课时
第二章第二节工程问题解法3课时
五、教学方法
1.探究式学习法;
2.讨论式学习法;
3.课堂演示与讲解相结合。

六、教学过程
一、引入
教师通过实际案例,向学生介绍工程问题的概念和存在的问题。

二、探究
教师通过提出实际生活中的工程问题,让学生分组展开探究和讨论。

并引导学生总结探究过程,将所学方法掌握。

三、巩固
教师布置一些例题,让学生独立完成,并进行课堂讲解。

四、拓展
教师将一些应用更广泛的工程问题提出,让学生进行探究和思考,并引导学生总结所学方法的适用范围。

七、教学评估
1.课堂完成情况;
2.课堂表现情况;
3.课后作业完成情况。

八、作业布置
1.完成教师布置的练习;
2.根据实际生活中的问题,自己寻找解决办法进行总结。

最新2024人教版七年级数学上册5.3 第1课时 产品配套问题和工程问题

最新2024人教版七年级数学上册5.3 第1课时 产品配套问题和工程问题

5.3 实际问题与一元一次方程第1课时产品配套问题和工程问题师生活动:学生先独立思考,再由学生代表发言,教师给予适当的评价与引导,并整理板书(如下):典例精析例1 某车间有22名工人,每人每天可以生产1 200 个螺柱或2 000个螺母.1个螺柱需要配2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?师生活动:教师提问这题的配套关系和等量关系是什么?先小组讨论,由小组代表发言,教师适时引导得出正确答案:配套关系:1个螺柱需要配2个螺母等量关系:螺母数量=2×螺柱数量教师给时间让学生独立完成题目,然后由学生代表上台板书,教师和其余同学给予适当的评价与鼓励,共同整理修改板书:教师引导学生根据这两题,思考解题思路,师生共同归纳出:知识点2:工程问题例2 整理一批图书,由一个人做要40 h完成。

现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作。

假设这些人的工作效率相同,具体应先安排多少人工作?师生活动:学生独立思考,教师引导学生分析题目的类型,寻找等量关系:教师提示解决工程问题常把工作总量看作“1”,并引导学生列表分析:教师给时间让学生独立完成题目,由学生代表上台板书,教师和其余同学共同评价与修改,得到正确完整的解答过程:方法总结:工程问题:师生活动:教师引导学生思考工程问题的公式和解题思路,然后师生共同归纳与填空.三、当堂练习,巩固所学1.(黄陂区期末)一套仪器由一个A部件和三个B 部件构成。

用1 m3钢材可做40 A部件或者240个B部件。

现要用6 m3钢材制作这种仪器,设x m3钢材做A部件,剩余钢材做B部分恰好配成这种仪器。

(1) 共能做______个A部件,_________个B部件(用含有x的式子表示);(2) 求出x的值;(3) 用6 m3钢材配成这种仪器_____套(直接写出结果)。

教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图。

数学人教版(2024)七年级上册 5.3.1配套问题与工程问题课件(共20张PPT)

数学人教版(2024)七年级上册 5.3.1配套问题与工程问题课件(共20张PPT)

3
2
解得y=13.
所以15+6-y=15+6-13=8(人).
答:应安排13名工人生产A型配件,8名工人生产B型配件.
课堂练习
1.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面 或者400条桌腿.现有12立方米的木材,则下列方案能制作尽可能多的 桌子的是( A )
A.2立方米木材制作桌腿,10立方米制作桌面 B.3立方米木材制作桌腿,9立方米制作桌面 C.4立方米木材制作桌腿,8立方米制作桌面 D.5立方米木材制作桌腿,7立方米制作桌面
工人各多少名?
解:(1)设前3天应先安排x名工人生产,每名工人的工作效率为a. 由题意得:150a=3ax+5a(x+6), 即3x+5(x+6)=150, 解得x=15.
答:前3天应先安排15名工人生产. (2)设应安排y名工人生产A型配件,则安排(15+6-y)名工人生产B型配件.
由题意得:600y 650(15 6 y) ,
新课引入
生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉 和螺母、电扇叶片和电机等等,大家能举出生活中配套问题的例 子吗?
获取新知
探究点1 配套问题
配套问题通常从各个量之间的倍、分关系入手寻找相等关 系,建立方程.
解决配套问题的思路: 1.利用配套问题中物品之间具有的数量关系作为列方程的依据; 2.利用配套问题中的套数不变作为列方程的依据.
然后增加6名工人与他们一起再生产5天就能完成这批订单的生产任务.假
设每名工人的工作效率相同.
(1)前3天应先安排多少名工人生产?
(2)增加6名工人一起工作后,若每人每天使用机器可以生产600个A型配
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列一元一次方程解应用题(2)----工程问题
学习目标:
1、掌握工程问题,能熟练地利用工作总量、效率、时间的关系列方程
2、提高学生分析实际问题中数量关系的能力
学习过程:
基本等量关系:
①工作量=__________×__________(2)有时需将全部工作量设为_____
②= 总工作量
新课探究:
例1 一件工作,甲单独做20小时完成,乙单独做12小时完成。

现在先由甲单独做4小时,剩下的部分由甲、乙合做。

剩下的部分需要几小时完成?
练习一:
(1)某地下管道由甲工程队单独铺设需要12天,由乙工程队单独铺设需要18天。

如果由这两个工程队从两端同时相向施工,要多少天可以铺好?
4(2)某工作甲单独做3小时完成,乙单独做5小时完成,现在要求两人合作这项工作的前
5的工作量。

求应该合做几小时?
⑶一件工作,甲单独做要8天完成,乙单独做需l2天完成,丙单独做需24天完成.甲乙合作了3天后,甲因事离去,由乙、丙合作,问乙、丙还要几天才能完成这项工作?
例2某中学开展校外植树活动,让初一学生单独种植,需要7.5小时完成;让初二学生单独种植,需要5小时完成。

现在让初一、初二学生先一起种植1小时,再由初二学生单独完成剩余部分。

共需多少时间完成?
练习二
1.整理一批图书,由一个人做需要40小时完成,现在计划由一部分人先做4小时,在增加2人和他们一起做8小时,完成这项任务。

假设这些人的工作效率都相同,具体应该先安排多少人工作?
巩固练习:
(1)在西部大开发中,基础建设优先发展,甲、乙两队共同承包了一段长6500米的高速公路工程,两队分别从两端施工相向前进,甲队平均每天可完成480米,乙队平均每天比甲队多完成220米,乙队比甲队晚一天开工,乙队开工几天后两队完成全部任务?
(2)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
(3)某车间加工一批零件,计划每天加工60个,刚好如期完成,而实际每天多加工40个,结果提前4天完成,这批零件一共多少个?。

相关文档
最新文档