炉内喷钙脱硫工艺石灰石粉输送系统技术方案

合集下载

炉内喷钙及尾部增湿润活化脱硫技术

炉内喷钙及尾部增湿润活化脱硫技术

炉内喷钙及尾部增湿润活化脱硫技术LIFAC (LimestoneInjecyionintoFurnaceandActivationofUnreactedCalcium)烟气脱硫工艺即锅炉炉膛内喷射石灰石粉,并配合采用锅炉尾部烟道增活化反应器,使未反就的CaO通过雾化水进行增湿活化的烟气脱硫工艺。

目前世界许多厂商研究开发的以石灰石喷射为基础的干法脱硫工艺中,芬兰Tampella和IVO公司开发的这种脱硫工艺最为典型,并于1986年首先投入商业性运行。

LIFAC工艺主要包括以下几个子系统:(1)石灰石粉系统包括石灰石粉的制备、计量、运输、贮存、分配和喷射等设备。

(2)水利化反就器系统包括水利化水雾化、烟气与水混合反应、下部碎渣与除渣、器壁防垢等设备。

(3)脱硫灰再循环系统包括电除尘器下部集灰、贮存、输送等装置。

(4)烟气再热系统包括烟气再热装置和主烟气混合用喷嘴等。

LIFAC脱硫工艺的基本原理如下:炉膛内喷钙脱硫的基本原理:石灰石粉借助气力喷入炉膛内850~1150度(摄氏)烟温区,石英钟灰石煅烧分解成CaO和CO2,部分CaO与烟气中的SO2。

炉膛内喷入石灰石后的SO2。

反应生成CaSO4,脱除烟气中1部分SO2。

炉膛内喷入石灰石后的SO2脱除率随煤种、石灰石粉特性、炉型及其空气动力场和温度场特性等因素而改变,1般在20~50。

活化器内脱硫的基本原理:烟气增湿活化售硫反应的机理主要是由于脱硫剂颗粒和水滴相碰撞以后,在脱硫剂颗粒表面形成1层水膜,脱硫剂及SO2气体均向其中溶解,从而使脱硫反应由原来的气-固反应转化成水膜中的离子反应,烟气中大部分未及时在炉膛内参与反应的CaO与烟气中的SO2反应生成CaSO3和CaSO4。

活化反应器内的脱硫效率通常在40~60,其高低取决于雾化水量、液滴粒径、水雾分布和烟气流速、出口烟温,最主要的控制因素是脱硫剂颗粒与水滴碰撞的概率。

由于活化反应器出口烟气中还有1部分可利用的钙化物,为了提高钙的利用率,可以将电除尘器收集下来的粉尘返回1部分到活化反应器中再利用,即脱硫灰再循环。

炉内喷钙脱硫工艺石灰石粉输送系统技术方案

炉内喷钙脱硫工艺石灰石粉输送系统技术方案

130t/h循环流化床锅炉炉内喷钙脱硫工艺石灰石粉输送系统技术方案编制单位:编制日期:目录1工程概况 12炉内喷钙脱硫技术 33、输送系统技术要求及技术保证 54规程和标准 135质量保证及考核试验 146设计界限及接口 157、包装、运输和储存 188技术服务和设计联络 199、运行费用及效益分析 2010、工程投资估算 2111、系统工艺流程图(附图) 231工程概况1.1概述业主方现有1台130t/h循环流化床锅炉,锅炉采用向炉内添加石灰石粉脱硫工艺。

本方案设计的石灰石粉输送系统,是指将石灰石粉由炉前日用石灰石粉仓输送至锅炉炉膛石灰石粉接口的输送系统,单台炉为一个单元,设一个日用石灰石粉仓,输送气源由罗茨风机提供。

本技术方案适用于1×130t/h循环流化床锅炉所配套的石灰石粉输送系统工程。

该系统的功能、设计、结构、性能、安装和调试等方面说明满足相应的技术要求。

1.2设备运行环境气象特征与环境条件1.3 石灰石粉成份(煅烧前)石灰石成份分析如下:1.4 炉内喷钙脱硫系统设计指标(按常规130t循环流化床锅炉计算)2炉内喷钙脱硫技术2.1概述干法烟气脱硫技术是指脱硫吸收和产物处理均在干燥状态下进行的烟气脱硫技术,目前,发展了多种工艺,包括吸收剂喷射技术、电法干式脱硫技术及干式催化脱硫技术,炉内喷钙是其中一种应用较广泛的吸收剂喷射技术。

炉内喷钙是把干的吸收剂(石灰石粉、消石灰或白云石等)直接喷到锅炉炉膛的气流中去,炉膛内的热量将吸收剂煅烧成具有活性的CaO粒子,这些粒子与烟气中的SO2反应生成硫酸钙(CaSO4)和亚硫酸钙(CaSO3),这些反应产物和飞灰一起被除尘设备所捕获。

2.2工艺原理将石灰石粉磨至150目左右,用压缩空气喷射到炉内最佳温度区,并使脱硫剂石灰石与烟气有良好的接触和反应时间,石灰石受热分解成氧化钙和二氧化碳,再与烟气中二氧化硫,反应生成亚硫酸钙和硫酸钙,最终被氧化成硫酸钙。

石灰石粉输送方案说明

石灰石粉输送方案说明

xx有限公司100t/h锅炉脱硫石灰石粉输送工程技术说明书南昌蓝天环保工程有限公司2012年8月100t/h锅炉脱硫石灰石粉输送工程技术方案说明目录1 技术方案摘要2 概述3 设计及运行条件4 设计原则5 石灰石粉输送系统方案说明6 系统主要设备材料清单7 结论及补充说明8 选用GSB型连续输送泵的十二大理由附件1 石灰石粉输送系统工艺系统图100t/h锅炉脱硫石灰石粉输送工程技术方案说明技术方案特点摘要☆本方案系统主要设备——GSB低压连续输送泵,核心技术是其射流器喷嘴型式为环状, 使射流器既产生较高真空而又不产生紊流带来能耗损失,这是该设备有别于其它气力输送泵最关键一点。

☆连续输送,无频繁启、闭阀门,故障率极少,几乎没有易损件。

☆运行平稳,安全可靠,输送泵运行方式不存在堵管现象。

☆设备部件少,维护简单方便,检修工作量少。

☆投资省,能耗低,运行费用低,系统性价比高。

☆连续输送,管内流速较低且恒定,因而磨损小,使用寿命长。

☆“傻瓜机”式操作,对操作运行人员技术素质要求不高。

☆即使PLC控制系统瘫痪,也不影响系统的正常运行,操作仍然简单。

所以,本系统的优越性不仅在工程建设时体现其投资少,更在于以后的运行使用过程中不断体现出极低的运行维护费用。

随着系统运行时间的推移,本技术方案——低压连续输送输灰系统,其优势更明显。

1 概况:1.1 系统名称:脱硫石灰石粉输送系统1.2工程概述:本方案为xx有限公司100t/h锅炉所作。

本方案的石灰石粉输送系统是电站循环流化床锅炉的附属系统。

本系统是将磨制好的石灰石粉(粒径0.5-1.0mm,粉粒比40:60,容重为≤1.5t/m3)先输送至石灰石粉库,粉库下设二个卸料口,每个卸灰口的石灰石粉进入下设的一台输送泵,通过管道连续直接向对应锅炉炉膛输送石灰石粉。

石灰石粉输送方式采用以GSB型号为核心设备的低正压气力连续输送系统。

二.设计及运行条件2.1 设计要求2.1.1本工程锅炉配备石灰石粉输送系统要求为连续气力输送,每台炉石灰石粉输送系统的出力最大按3.0t/h,由输送泵变频控制。

炉内喷钙脱硫技术方案

炉内喷钙脱硫技术方案

炉内喷钙脱硫技术方案1. 引言在煤炭、电力、冶金等工业领域中,烟气中的二氧化硫(SO2)是一种常见的大气污染物。

高浓度的二氧化硫排放不仅对环境造成严重影响,也对人体健康构成威胁。

因此,发展高效、低成本的脱硫技术对于减少二氧化硫排放和保护环境具有重要意义。

炉内喷钙脱硫技术利用炉内的高温和燃烧炉的炉排气温度来进行脱硫。

本文将介绍炉内喷钙脱硫技术的原理、工艺流程以及该技术的优点和应用前景。

2. 原理炉内喷钙脱硫技术利用炉内高温下,钙的氧化物与燃烧产生的二氧化硫进行反应,生成硫酸钙,并最终形成石膏。

该反应可以在较低温度下进行,从而减少了能耗和设备成本。

喷钙脱硫的关键是选择适当的喷钙方式和喷钙剂。

常用的喷钙方式包括干式喷钙和湿式喷钙,喷钙剂则可选择氧化钙、氢氧化钙等。

3. 工艺流程炉内喷钙脱硫技术主要由以下几个步骤组成:3.1 炉内喷钙设备安装首先,需要在燃烧炉的炉腔内设置喷钙设备。

喷钙设备通常由喷钙器、输送管道和喷钙气流控制装置组成。

喷钙器的位置要使其能够充分覆盖燃烧产生的烟气,确保喷钙效果。

3.2 炉内喷钙过程在燃烧过程中,喷钙剂通过喷钙器喷入炉腔内,并与烟气中的二氧化硫发生反应。

喷钙剂与二氧化硫反应生成的硫酸钙会在炉腔内冷却下来,并形成石膏。

3.3 石膏收集与处理石膏是炉内喷钙脱硫技术中的副产物,需要进行收集和处理。

一种常见的处理方法是将石膏进行脱水和干燥,然后用作建材工业的原料。

4. 优点炉内喷钙脱硫技术相比其他脱硫技术具有以下优点:•节能高效:利用炉内高温进行脱硫,减少了能耗和设备成本。

•低成本:喷钙剂的成本相对较低,且喷钙剂可以选择多种低成本材料。

•适应性强:炉内喷钙脱硫技术适用于各种类型的燃烧炉,包括煤炭燃烧炉和重油燃烧炉等。

•副产物可利用:石膏是炉内喷钙脱硫的副产物,可用作建材工业的原料,具有较高的价值。

5. 应用前景炉内喷钙脱硫技术在煤炭、电力、冶金等工业领域广泛应用,对减少二氧化硫排放和保护环境具有重要意义。

炉内脱硫方案

炉内脱硫方案

炉内脱硫系统改造工程设计方案及说明目录1工程概况 (2)2设计和运行条件 (3)2.1燃煤资料 (3)2.2锅炉参数 (3)2.3脱硫剂 (4)2.4设计接口 (4)3工艺介绍及系统组成 (4)3.1煤燃烧过程S02的析出 (4)3.2C A/S与脱硫效率的关系 (4)3.3系统设备组成 (5)4脱硫工艺方案 (6)4.1系统工艺流程 (6)4.2系统参数及主要设备 (6)4.3控制系统设计 (7)5供货清单及报价 (9)7安装调试与运行 (11)7.1系统安装 (11)7.2系统调试与运行 (11)8.技术培训工作 (12)8.1基础培训 (12)8.2运行培训 (12)8.3维修培训 (12)9.试运行及交接阶段 (13)10.售后服务工作 (13)11工程概况1.1.项目名称:1.2.建设地点:项目施工现场本工程采用炉内喷钙脱硫方式。

结合本公司以往类似项目脱硫工程的实践,提出如下方案供业主选择。

本工程1台锅炉,设1套石灰石粉输送系统,系统流程参见系统图(SHSXT-00)。

具体气源配置为采用厂区的压缩空气进行输送。

系统主要参数如下:每套石灰石粉输送系统设有一套上下给料泵系统,在上给料泵进口设一个圆顶阀、手动门,下给料泵进口设一个圆顶阀,出口设给料阀,给料阀出口接混合器。

其运行流程为:所有阀门处于关闭状态,打开上平衡阀、上进料阀(密封圈泄压,延时2秒打开进料阀),上料位计报警(设定时间到)关闭进料阀(关闭进料阀,延时2秒进料阀密封圈充压)、上平衡阀,打开入炉快关阀(延时10秒),打开进气阀组(延时5秒),打开旋转给料阀,打开下进料阀(进料阀密封圈泄压,延时2秒打开进料阀),延时2秒打开下平衡阀设定时间到,关闭下平衡阀(延时2秒)关闭下进料阀(关闭进料阀,延时2秒进料阀密封圈充压),打开上平衡阀、上进料阀(密封圈泄压,延时2秒打开进料阀)上料位计报警,关闭进料阀(关闭进料阀,延时2秒进料阀密封圈充压)、上平衡阀,等待下料位计报警,打开下进料阀(进料阀密封圈泄压,延时2秒打开进料阀)延时2秒,打开下平衡阀,设定时间到,关闭下平衡阀延时2秒,关闭下进料阀(关闭进料阀,延时2秒进料阀密封圈充压);重复(打开上平衡阀、上进料阀(密封圈泄压,延时2秒打开进料阀),上料位计报警,关闭进料阀(关闭进料阀,延时2秒进料阀密封圈充压)、上平衡阀,等待2下料位计报警,打开下进料阀(进料阀密封圈泄压,延时2秒打开进料阀),延时2秒打开下平衡阀,设定时间到关闭下平衡阀,延时2秒关闭下进料阀(关闭进料阀,延时2秒进料阀密封圈充压)。

石灰石炉内喷钙方案细化

石灰石炉内喷钙方案细化

关于XXX热源厂5台29WM CFB锅炉炉内脱硫方案说明布置方案不设中间仓,日料仓设置在除尘器后方的空地,可以设置3台日料仓,每台日料仓下部设有2套石灰石定量给料机及喷射系统,为2台炉喷钙脱硫,如果一台日料仓下设置3套喷射系统则位置太挤,没有检修空间所以一台仓下设置2套喷钙设备比较好。

该喷钙系统接受模拟量信号,可以根据指令调整喷钙量,喷射系统接收4-20mA的标准信号来调整给料量。

石灰石粉可以均匀喷人炉内,碳酸钙进入炉内在900度左右温度煅烧迅速分解出活性氧化钙,与炉内二氧化硫反应生成硫酸钙固体物,经分离器后进入除尘器灰中。

每台日料仓仓顶设置脉冲袋式除尘器,压力真空释放阀及高低料位开关。

日料仓下部设置流化装置,用干燥的压缩空气流化,流化装置与进料阀同步工作,即进料阀开启流化空气开始运行进料阀关闭流化停止。

即可节省压缩空气又可以有效控制料仓空气进入量,最大限度保障有水分进入料仓。

在仓顶设置一条联通母管,采用手动阀门控制可以实现三仓物料互相加入的功能,在每仓下的一台设备增加一条立管进入库顶母管,用手动阀门控制需要喷射的位置。

该方案有关主要参数:每台石灰石粉炉喷射量按照600kg/h考虑,系统最大出力按照1000kg/h考虑。

炉前最好根据业主经验,在锅炉密相区与希相区之间开两个直径50mm管喷口,喷人炉内。

每套装置用电量约为12KW。

系统运行原理及设备特点简述日料仓仓顶设一台脉冲袋式除尘器,真空压力释放阀及高低料位计。

仓下部设置流化装置。

仓下部布置定量给料喷射装置。

该装置为我公司专利设备,定量给料机上部设有输送仓,该仓在运行中保持与罗茨风机出口相同压力,在运行中可以保持定量给料机的进出口压力基本相同,目的是保障定量给料机的装填系数稳定,可以根据变频调整转速真实的调整给料量,有效将定量的物料喷人炉内完成脱硫过程。

设备运行控制采用PLC控制系统,输送罐设有高低料位计,当正常运行时喷射管与输送罐相同平衡各自压力,当低料位报警时,下平衡阀关闭,上平衡阀开启,进料阀开启一般进料时间很短在10秒左右,完成进料过程后进料法关闭,上平衡阀关闭下平衡阀开启。

炉内喷钙脱硫工艺石灰石粉输送系统技术方案剖析

炉内喷钙脱硫工艺石灰石粉输送系统技术方案剖析

炉内喷钙脱硫工艺石灰石粉输送系统技术方案剖析当前,石灰石脱硫工艺成为了烟气脱硫技术中的主流技术之一,并广泛应用于烟气脱硫的领域中。

炉内喷钙脱硫工艺是一种采用熔融钙作为脱硫剂,将其喷入燃烧器中,通过化学反应吸收燃烧过程中产生的氧化硫和氮氧化物的技术。

与传统湿法脱硫工艺相比,炉内喷钙脱硫工艺具有成本低、节能环保等优点,并且可以一次性完成脱硫,适用于高温、高氧化性的燃烧工艺。

本文将从石灰石粉输送系统技术方案剖析炉内喷钙脱硫工艺。

一、石灰石粉的性质和要求在炉内喷钙脱硫工艺中,石灰石粉扮演着重要的角色。

因此,选择合适的石灰石粉对于脱硫效果和设备使用寿命具有至关重要的意义。

首先,石灰石粉应具有足够的反应能力和活性,才能发挥最佳的脱硫效果。

其次,石灰石粉应尽可能地满足以下要求:1、粒度要求:在炉内喷钙脱硫过程中,石灰石粉的粒径大小对于反应速率和反应效果具有重要的影响。

一般来说,石灰石粉的粒径应控制在5-25μm之间。

2、密度要求:石灰石粉的密度决定了其在输送过程中的运动状态和流量,而流量又决定了脱硫效果和设备选择。

一般来说,密度在2-3g/cm³之间。

3、水分要求:石灰石粉中包含的水分和其他杂质都会影响到其反应效率,因此,在选择石灰石粉时,应选择低水分、高纯度的石灰石粉。

二、石灰石粉输送系统方案设计在炉内喷钙脱硫工艺中,石灰石粉输送系统既要满足石灰石粉输送的要求,又要避免对石灰石粉质量产生不利影响。

1、输送方式选择:石灰石粉输送系统的方式有很多种,包括气力输送、螺旋输送、斗式输送、磁力输送等。

在炉内喷钙脱硫过程中,由于石灰石粉具有一定的脆性,因此,应尽量避免采用高速气力输送或高速机械输送,以保证石灰石粉的完整性。

2、输送管道设计:石灰石粉在输送过程中容易产生积垢、积灰、积水等问题,因此,输送管道的设计应尽可能避免长时间的倾斜或水平的输送,防止石灰石粉的堆积和结块。

3、附属设备的选择:在石灰石粉输送系统中,附属设备包括阀门、布袋过滤器、灰斗、卸料装置等。

循环流化床锅炉炉内喷钙工艺介绍4(07.09.17)

循环流化床锅炉炉内喷钙工艺介绍4(07.09.17)

循环流化床锅炉炉内喷CaO尾部增湿脱硫工艺介绍一、工艺概述循环流化床燃烧技术是一种新型有效的燃烧方式,它具有和煤粉炉相当的燃烧效率,并且其燃烧特点十分适用于炉内喷钙脱硫,原因如下:1.燃烧温度低(850℃~900℃),正处于炉内脱硫的最佳温度段,因而在不需要增加设备和较低的运行费用下就能较清洁地利用高硫煤。

2.烟气分离再循环技术的应用,相当于提高了脱硫剂在床内的停留时间,也提高了炉内脱硫剂的浓度,同时床料间,床料与床壁间的磨损、撞击使脱硫剂表面产物层变薄或使脱硫剂分裂,有效地增加了脱硫剂的反应比表面积,使脱硫剂的利用率得到了相应的提高。

理论上一般认为,在850℃~900℃的炉膛温度,Ca/S摩尔比为1.5~2.5,石灰石的粒度小于2mm(通常为0.1~0.3mm)时,炉内脱硫效率可达85~90%。

但是循环流化床锅炉实际运行中,还存在着一些问题,使得脱硫效率达不到理论脱硫效率,具体原因主要有以下四点:1.国外的循环流化床锅炉循环倍率一般为50~80,而国内一般低于30,低循环倍率下达到高脱硫效率是不现实的。

2.为了降低飞灰的含碳量,提高燃烧效率及热效率,实际运行时往往适当提高锅炉的燃烧温度,燃烧温度提高使得炉内脱离了最佳的脱硫温度范围,使炉内脱硫效率降低。

3.目前国内循环流化床锅炉的脱硫方法,大部分是采用煤直接掺混石灰石的做法,掺混不均匀使石灰石无法完全发挥功效。

4.在炉内硫酸盐化过程中,由于石灰颗粒孔隙的堵塞,阻碍了脱硫剂与二氧化硫接触。

以上原因使得国内循环流化床锅炉炉内喷钙脱硫效率仅为50%左右。

由于循环流化床锅炉炉内喷钙的高钙硫比和低脱硫效率,使得飞灰中含有大量的未被利用的氧化钙,直接排放造成脱硫剂的巨大浪费,使运行成本增高。

鉴于以上因素,为了进一步提高循环流化床锅炉炉内喷钙的脱硫效率和脱硫剂利用率,可以采取四个措施。

1.以生石灰粉(CaO)代替石灰石粉(CaCO)喷入炉内。

3是否有必要?可以产生多大的功效?增加运行成本?目前,炉内喷钙的脱硫剂大多采用石灰石微粒,石灰石微粒在炉内煅烧的过程中,其中所含的杂质包裹在生成的CaO表面,阻碍CaO与SO2的接触,即使炉内存在着较强的物料碰撞磨损,也无法有效地清除杂质,对脱硫效率和脱硫剂的利用率有较大的负面影响。

炉内喷钙脱硫工艺石灰石粉输送系统技术方案剖析

炉内喷钙脱硫工艺石灰石粉输送系统技术方案剖析

炉内喷钙脱硫工艺石灰石粉输送系统技术方案剖析炉内喷钙脱硫,也被称为湿法脱硫工艺,是在燃煤发电、钢铁冶炼等工业生产中广泛应用的一种脱硫方法。

其通过在燃烧过程中向炉内喷入氢氧化钙(Ca(OH)2)溶液,使其与燃烧产生的二氧化硫(SO2)反应生成硫酸钙(CaSO4),从而达到脱除SO2的目的。

而石灰石粉输送系统则是炉内喷钙脱硫工艺中一个重要的环节,负责将石灰石粉与水溶液进行搅拌、输送,并将其喷入炉内,以完成脱硫处理。

石灰石粉输送系统包含搅拌、输送和喷淋三个部分。

下面就分别进行详细分析。

1. 搅拌方案石灰石粉在输送过程中需要与水进行充分混合,以便形成均匀的喷雾溶液。

因此,对于石灰石粉的搅拌方案,需要考虑以下几个方面。

首先是搅拌方式的选择。

在石灰石粉输送系统中,常用的搅拌方式有机械搅拌和气体搅拌两种。

机械搅拌是采用机械装置对石灰石粉和水进行搅拌,其优点是搅拌充分,可以形成均匀的溶液,但其缺点是设备成本高、动力消耗大。

而气体搅拌是通过在液体中喷入气体产生涡流,从而实现搅拌。

其优点是设备成本低,搅拌效果也不错,但其缺点是可能会导致气泡在液体中产生。

其次是搅拌参数的选择。

搅拌参数包括搅拌速度、搅拌时间和搅拌次数等。

搅拌速度一般为100-200 rpm,在此范围内可以保证溶液充分混合;搅拌时间一般为2-3分钟,需要根据实际生产参数进行调节;搅拌次数则需要根据生产批次来确定。

最后是搅拌设备的选择。

机械搅拌一般采用桨叶式或桶式搅拌器,而气体搅拌则可采用节流气接口、喷嘴等形式。

根据实际生产要求和设备条件进行选择。

2. 输送方案石灰石粉输送系统中的输送方案主要包括输送方式和输送管路两个方面。

输送方式可以选择螺旋输送机、斗式提升机和气力输送等。

由于石灰石粉与溶液混合后密度较大,其流动性并不好,所以螺旋输送机常常在液体输送前使用,将石灰石粉输送到混合槽中。

斗式提升机则是将石灰石粉直接提升到混合槽中,其优点是输送速度快,但缺点是设备大、噪音大。

石灰石粉输送方案说明

石灰石粉输送方案说明

xx有限公司100t/h锅炉脱硫石灰石粉输送工程技术说明书南昌蓝天环保工程有限公司2012年8月目录1 技术方案摘要2 概述3 设计及运行条件4 设计原则5 石灰石粉输送系统方案说明6 系统主要设备材料清单7 结论及补充说明8 选用GSB型连续输送泵的十二大理由附件1 石灰石粉输送系统工艺系统图技术方案特点摘要☆本方案系统主要设备——GSB低压连续输送泵,核心技术是其射流器喷嘴型式为环状, 使射流器既产生较高真空而又不产生紊流带来能耗损失,这是该设备有别于其它气力输送泵最关键一点。

☆连续输送,无频繁启、闭阀门,故障率极少,几乎没有易损件。

☆运行平稳,安全可靠,输送泵运行方式不存在堵管现象。

☆设备部件少,维护简单方便,检修工作量少。

☆投资省,能耗低,运行费用低,系统性价比高。

☆连续输送,管内流速较低且恒定,因而磨损小,使用寿命长。

☆“傻瓜机”式操作,对操作运行人员技术素质要求不高。

☆即使PLC控制系统瘫痪,也不影响系统的正常运行,操作仍然简单。

所以,本系统的优越性不仅在工程建设时体现其投资少,更在于以后的运行使用过程中不断体现出极低的运行维护费用。

随着系统运行时间的推移,本技术方案——低压连续输送输灰系统,其优势更明显。

1 概况:1.1 系统名称:脱硫石灰石粉输送系统1.2工程概述:本方案为xx有限公司100t/h锅炉所作。

本方案的石灰石粉输送系统是电站循环流化床锅炉的附属系统。

本系统是将磨制好的石灰石粉(粒径0.5-1.0mm,粉粒比40:60,容重为≤1.5t/m3)先输送至石灰石粉库,粉库下设二个卸料口,每个卸灰口的石灰石粉进入下设的一台输送泵,通过管道连续直接向对应锅炉炉膛输送石灰石粉。

石灰石粉输送方式采用以GSB型号为核心设备的低正压气力连续输送系统。

二.设计及运行条件2.1 设计要求2.1.1本工程锅炉配备石灰石粉输送系统要求为连续气力输送,每台炉石灰石粉输送系统的出力最大按3.0t/h,由输送泵变频控制。

炉内喷钙脱硫工艺石灰石粉输送系统技术方案

炉内喷钙脱硫工艺石灰石粉输送系统技术方案

130t/h循环流化床锅炉炉内喷钙脱硫工艺石灰石粉输送系统技术方案编制单位:编制日期:目录1工程概况 (1)2炉内喷钙脱硫技术 (3)3、输送系统技术要求及技术保证 (5)4规程和标准 (13)5质量保证及考核试验 (14)6设计界限及接口 (15)7、包装、运输和储存 (18)8技术服务和设计联络 (19)9、运行费用及效益分析 (20)10、工程投资估算 (21)11、系统工艺流程图(附图) (23)1工程概况1.1概述业主方现有1台130t/h循环流化床锅炉,锅炉采用向炉内添加石灰石粉脱硫工艺。

本方案设计的石灰石粉输送系统,是指将石灰石粉由炉前日用石灰石粉仓输送至锅炉炉膛石灰石粉接口的输送系统,单台炉为一个单元,设一个日用石灰石粉仓,输送气源由罗茨风机提供。

本技术方案适用于1×130t/h循环流化床锅炉所配套的石灰石粉输送系统工程。

该系统的功能、设计、结构、性能、安装和调试等方面说明满足相应的技术要求。

1.2设备运行环境气象特征与环境条件(煅烧前)石灰石成份分析如下:1.4 炉内喷钙脱硫系统设计指标(按常规130t循环流化床锅炉计算)2炉内喷钙脱硫技术2.1概述干法烟气脱硫技术是指脱硫吸收和产物处理均在干燥状态下进行的烟气脱硫技术,目前,发展了多种工艺,包括吸收剂喷射技术、电法干式脱硫技术及干式催化脱硫技术,炉内喷钙是其中一种应用较广泛的吸收剂喷射技术。

炉内喷钙是把干的吸收剂(石灰石粉、消石灰或白云石等)直接喷到锅炉炉膛的气流中去,炉膛内的热量将吸收剂煅烧成具有活性的CaO粒子,这些粒子与烟气中的SO2反应生成硫酸钙(CaSO4)和亚硫酸钙(CaSO3),这些反应产物和飞灰一起被除尘设备所捕获。

2.2工艺原理将石灰石粉磨至150目左右,用压缩空气喷射到炉内最佳温度区,并使脱硫剂石灰石与烟气有良好的接触和反应时间,石灰石受热分解成氧化钙和二氧化碳,再与烟气中二氧化硫,反应生成亚硫酸钙和硫酸钙,最终被氧化成硫酸钙。

炉内喷钙脱硫工艺

炉内喷钙脱硫工艺

炉内喷钙脱硫工艺炉内喷钙脱硫工艺是一种常用的烟气脱硫方法。

它通过在锅炉烟道内喷射钙质吸收剂,将烟气中的二氧化硫转化为硫酸钙并固定下来,从而达到减少二氧化硫排放的目的。

炉内喷钙脱硫工艺主要包括喷钙系统和脱硫反应过程两个部分。

喷钙系统是炉内喷钙脱硫的关键。

它由喷钙设备、输送系统和控制系统组成。

喷钙设备一般采用高压喷嘴,通过压缩空气将钙质吸收剂喷射到烟气通道中。

输送系统一般采用螺旋输送机或气力输送系统,将钙质吸收剂从储存仓库中输送到喷钙设备。

控制系统则负责控制喷钙设备的喷射量和频率,以满足不同工况下的脱硫要求。

脱硫反应过程是炉内喷钙脱硫的核心。

当烟气中的二氧化硫与喷射的钙质吸收剂接触时,会发生化学反应。

二氧化硫与钙质吸收剂中的氧化钙反应生成硫酸钙。

硫酸钙会与烟气中的水蒸气和氧反应生成硫酸和水。

硫酸是一种易溶于水的物质,可以被烟气带走并固定下来。

脱硫反应过程中,钙质吸收剂会逐渐被转化为石膏,因此需要定期补充新的钙质吸收剂。

炉内喷钙脱硫工艺具有以下优点:炉内喷钙脱硫工艺适用范围广。

不论是燃煤锅炉还是燃气锅炉,都可以采用此工艺进行脱硫处理。

无论是新建的锅炉还是改造的锅炉,都可以方便地引入喷钙系统。

炉内喷钙脱硫工艺具有高效的脱硫效果。

钙质吸收剂喷射到烟气中后,能够迅速与二氧化硫发生反应,并将其转化为硫酸钙,从而达到脱硫的效果。

实际应用中,炉内喷钙脱硫工艺可以将二氧化硫的排放浓度降低到国家排放标准以下。

炉内喷钙脱硫工艺具有运行成本低的优点。

钙质吸收剂价格低廉,且易于获取。

喷钙设备的投资和运行成本相对较低。

此外,炉内喷钙脱硫工艺不需要额外的吸收塔和循环泵等设备,节省了工程投资和运行维护成本。

炉内喷钙脱硫工艺对烟气系统影响小。

喷钙系统可以方便地安装在锅炉烟道上,不需要额外的烟气处理设备。

此外,炉内喷钙脱硫工艺对烟气阻力影响小,不会对锅炉的正常运行产生明显的影响。

炉内喷钙脱硫工艺是一种经济、高效的烟气脱硫方法。

它通过喷钙系统将钙质吸收剂喷射到烟气通道中,将二氧化硫转化为硫酸钙并固定下来。

炉内喷钙脱硫施工方案

炉内喷钙脱硫施工方案

炉内喷钙脱硫施工方案1. 引言炉内喷钙脱硫是一种常见的烟气脱硫技术,通过向炉内喷洒适量的钙质吸收剂来捕集燃烧产生的硫化物,从而达到减少大气中二氧化硫排放的目的。

本文将介绍炉内喷钙脱硫施工方案,包括施工原理、施工步骤和注意事项。

2. 施工原理炉内喷钙脱硫的原理基于钙质吸收剂与硫化物反应生成硫酸钙的化学反应。

当炉内温度较高时,喷洒的钙质吸收剂会与燃烧产生的硫化物反应,生成硫酸钙。

硫酸钙具有较高的稳定性,能有效捕集硫化物,并形成易于处理的硫化钙矩形。

3. 施工步骤3.1 准备工作在进行炉内喷钙脱硫施工前,需要做好以下准备工作:•确定施工时间和施工区域。

•准备适量的钙质吸收剂。

•配备喷洒设备和相关工具。

•人员健康防护准备,包括佩戴防护眼镜、呼吸器等。

3.2 施工过程根据施工区域的具体情况,可以采取以下步骤进行炉内喷钙脱硫施工:•步骤一:清洁炉内表面。

使用清洁剂或高压水枪清洗炉内表面,确保表面干净无积尘。

•步骤二:调配钙质吸收剂溶液。

按照推荐比例将钙质吸收剂与水混合,得到一定浓度的溶液。

•步骤三:喷洒钙质吸收剂。

使用喷洒设备将钙质吸收剂溶液均匀喷洒到炉内表面上。

喷洒时应根据具体情况来确定喷洒的量和喷洒位置,确保覆盖到燃烧产生硫化物的区域。

•步骤四:等待反应。

待钙质吸收剂与硫化物反应生成硫酸钙后,留置一段时间以确保反应充分。

•步骤五:清理残渣。

清洁炉内,将反应生成的硫酸钙残渣清除。

•步骤六:清洗喷洒设备。

清洗喷洒设备,确保设备干净无残留。

3.3 安全与环境保护事项在进行炉内喷钙脱硫施工时,需要注意以下安全与环境保护事项:•使用防护设备,避免钙质吸收剂溅入眼睛或吸入呼吸道。

•避免将钙质吸收剂溅到水源或土壤中,以免对环境造成污染。

•在施工过程中,确保通风良好,避免钙质吸收剂残渣的挥发对施工人员和环境造成影响。

•遵循相关法律法规和公司制度,确保施工安全、高效进行。

4. 结论炉内喷钙脱硫施工是一种有效的脱硫技术,能够降低燃烧排放的二氧化硫含量,减少对大气环境的污染。

炉内喷钙脱硫工艺石灰石粉输送系统技术方案教材

炉内喷钙脱硫工艺石灰石粉输送系统技术方案教材

炉内喷钙脱硫工艺石灰石粉输送系统技术方案教材130t/h循环流化床锅炉炉内喷钙脱硫工艺石灰石粉输送系统技术方案编制单位:编制日期:目录1工程概况 (2)2炉内喷钙脱硫技术 (3)3、输送系统技术要求及技术保证 (5)4规程和标准 (14)5质量保证及考核试验 (14)6设计界限及接口 (15)7、包装、运输和储存 (19)8技术服务和设计联络 (20)9、运行费用及效益分析 (20)10、工程投资估算 (21)11、系统工艺流程图(附图) (23)1工程概况1.1概述业主方现有1台130t/h循环流化床锅炉,锅炉采用向炉内添加石灰石粉脱硫工艺。

本方案设计的石灰石粉输送系统,是指将石灰石粉由炉前日用石灰石粉仓输送至锅炉炉膛石灰石粉接口的输送系统,单台炉为一个单元,设一个日用石灰石粉仓,输送气源由罗茨风机提供。

本技术方案适用于1×130t/h循环流化床锅炉所配套的石灰石粉输送系统工程。

该系统的功能、设计、结构、性能、安装和调试等方面说明满足相应的技术要求。

1.2设备运行环境气象特征与环境条件(煅烧前)石灰石成份分析如下:1.4 炉内喷钙脱硫系统设计指标(按常规130t循环流化床锅炉计算)2炉内喷钙脱硫技术2.1概述干法烟气脱硫技术是指脱硫吸收和产物处理均在干燥状态下进行的烟气脱硫技术,目前,发展了多种工艺,包括吸收剂喷射技术、电法干式脱硫技术及干式催化脱硫技术,炉内喷钙是其中一种应用较广泛的吸收剂喷射技术。

炉内喷钙是把干的吸收剂(石灰石粉、消石灰或白云石等)直接喷到锅炉炉膛的气流中去,炉膛内的热量将吸收剂煅烧成具有活性的CaO粒子,这些粒子与烟气中的SO2反应生成硫酸钙(CaSO4)和亚硫酸钙(CaSO3),这些反应产物和飞灰一起被除尘设备所捕获。

2.2工艺原理将石灰石粉磨至150目左右,用压缩空气喷射到炉内最佳温度区,并使脱硫剂石灰石与烟气有良好的接触和反应时间,石灰石受热分解成氧化钙和二氧化碳,再与烟气中二氧化硫,反应生成亚硫酸钙和硫酸钙,最终被氧化成硫酸钙。

炉内喷钙脱硫工艺流程

炉内喷钙脱硫工艺流程

炉内喷钙脱硫工艺流程
《炉内喷钙脱硫工艺流程》
炉内喷钙脱硫是一种常用的工业脱硫方法,主要用于燃煤锅炉和燃油锅炉等燃煤型和油烟型锅炉的脱硫。

它的工艺流程主要包括脱硫剂喷入、硫氧化物生成和产物收集等步骤。

首先,炉内喷钙脱硫的工艺流程是将脱硫剂——石灰石粉通过喷射装置喷入锅炉燃烧室内。

由于燃烧过程中产生的SO2与
石灰石粉发生化学反应,生成硫化钙(CaS)。

其次,硫化钙在高温下很容易发生氧化反应,形成硫酸钙(CaSO4)。

硫酸钙是一种比较稳定的固体废物,可以在锅炉内、除尘器内或者烟囱上方的脱硫装置内以粉尘形式沉降下来。

最后,收集硫酸钙粉尘,并对其进行处理和处置。

这种方法可以有效地减少锅炉烟气中的硫化物排放,达到环保减排的目的。

总的来说,炉内喷钙脱硫工艺流程是一种简单有效的脱硫方法,具有操作简单、投资成本低、效率高以及设备维护便捷等优点,被广泛应用于工业锅炉的脱硫处理中。

石灰石输送系统技术规范书

石灰石输送系统技术规范书

石灰石输送系统技术规范书山东兖矿济三电力有限公司2×135MW CFB锅炉炉内脱硫系统石灰石粉气力输送改造技术规范书2010年05月石灰石粉气力输送系统改造招标文件1.总则1.1 本技术规范适用于山东兖矿济三电力有限公司2×135MW CFB锅炉炉内脱硫系统配套的石灰石粉气力输送系统设备改造招标,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。

1.2 买方在本技术规范中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,卖方提供一套满足本技术规范和所列标准要求的高质量产品及其相应服务。

1.3 卖方执行本技术规范所列标准。

有不一致时,按较高标准执行。

1.4电厂从厂外采购的成品石灰石粉首先储存在石灰石粉仓内,从石灰石粉仓输送锅炉将采用气力输送方式。

本工程石灰石粉输送系统采用正压气力输送系统。

2.工程概况2.1工程概况山东兖矿济三电力有限公司总装机容量2×135MW,选用两台440t/h循环流化床锅炉,采用炉内喷钙工艺脱除燃烧产生的二氧化硫。

将现有脱硫工艺具体情况简要介绍如下:电厂采用循环流化床锅炉掺烧石灰石的方法进行炉内脱硫,使用气力输送装置输送石灰石喷入炉膛。

两台炉各有一套石灰石气力输送系统,每套石灰石系统设一个280m3石灰石粉仓,粉仓下各有一个缓冲仓、下料仓、旋转给料阀和气力输送器出料口。

外购的石灰石粉采用封闭式罐车运送,通过罐车气力输送泵送入石灰石粉仓。

石灰石下行通过缓冲仓、下进料仓,然后一分二分别通过炉前和炉后旋转给料阀,进入输送管道。

两条管道分别至炉前墙和炉后墙经分配器多点喷射,其中1#炉炉前4个点,炉后4个点;2#炉炉前3个点,炉后4个点。

2.2本次改造工作主要完成的任务:石灰石粉气力输送系统改造招标文件在2号炉左侧(扩建端)新建设一套粉仓及气力输送系统设备和管道,完成2号锅炉的单独稳定、可靠的输送至炉膛。

2#炉两条输送管道实现输送系统的一运一备功能。

石灰石粉输送系统设备技术规范

石灰石粉输送系统设备技术规范

乾安县聚太生物发电有限公司1X30MW秸杆生物质能热电联产项目石灰石粉输送系统设备技术规范书吉林省卓融电力设计有限公司2014年7月乾安县聚太生物发电有限公司1X30MW秸杆生物质能热电联产项目石灰石粉输送系统设备技术规范书批准:校核:编制:2014年7月目录1总则 (1)2石灰石粉输送系统设计.运行条件 (1)3石灰石粉输送系统技术要求及系统控制要求 (3)4工程范围 (7)5资料交付 (12)6技术服务、联络与质量保证 (12)1总则1.1本技术规范书是对乾安聚太生物发电工程1台130t/h高温高压循环流化床燃秸秆锅炉配套炉内脱硫所需石灰石粉输送系统设备、安装、性能等提出的技术要求。

1.2本技术规范书中所叙述的系统设计,仅提出了一种方案设想的基本形式,供方应通过详细的工艺设计,按本工程石灰石粉输送系统功能的要求,提供一个完整的、先进的、安全经济的、便于施工和运行的方案。

1.3本技术规范书所提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文。

供方应保证提供符合本技术规范书和现行工业标准的优质产品。

供方如未对本技术规范书提出任何异议,则认为供方提供的设备和系统完全符合本技术规范书的要求。

1.4在本技术规范书执行过程中如遇到与其他规范、规程相矛盾的条款,以较高标准执行。

1.5本技术规范书未尽事宜,双方通过友好协商进行补充。

2石灰石粉输送系统设计.运行条件2.1本期1台130t/h高温高压循环流化床锅炉每小时计算石灰石粉用量:校核燃料质:1.99t/h2.2石灰石粉仓出料口相对标高:3.50m(以锅炉房±0.000为基准,暂定)2.3输送距离:暂缺2.4输粉管道耐磨弯头(法兰连接)数量:90°耐磨弯头约5处(准确数据在设计联络会上确定)2.5石灰石粉堆积比重:1.2~1.4 t/m32.6石灰石粉吸湿性:强2.7输送方式:正压气力输送2.8设计平均料气比:≥7kg/kg2.9Ca/S摩尔比:2.5(暂定)石灰石纯度:90%(暂定)脱硫效率:60%(暂定)2.10本期工程一台炉设一座石灰石粉仓,石灰石粉约供锅炉MCR工况下2天用量,石灰石粉仓下设一套石灰石粉连续输送设备。

石灰石脱硫系统操作流程及应急预案

石灰石脱硫系统操作流程及应急预案

石灰石脱硫系统一、概述我公司4#台循环流化床锅炉均采用炉内喷射石灰石粉进行脱硫,利用压缩空气把石灰石粉直接喷到锅炉炉膛最佳温度区,炉膛内的热量将石灰石粉煅烧成具有活性的CaO粒子,这些粒子与烟气中的SO2反应生成硫酸钙(CaSO4)和亚硫酸钙(CaSO3),这些反应产物和飞灰一起被除尘设备所捕获。

CaCO3→Cao+CO2CaO+SO2+1/2O2→CaSO4二、系统简介该系统包括一个石灰石罐,石灰石罐底部四个出口,每个出口配1套石灰石粉气力输送系统。

石灰石罐的物料由散装罐车用压缩空气灌入石灰石罐内,石灰石罐设有高、低料位信号,并在内部装有不锈钢浮球以外部牵引绳长度判断罐内具体料位,罐顶设有石灰石粉输送排气布袋除尘器和压力释放阀,罐体底部设有四块流化板。

物料从石灰石罐的下部出口通过手动插板阀进入缓冲仓,由缓冲仓下部气动进料阀进入变频调节给料机,石灰石的输送量与给料机的变频成正比。

给料机出口下料管与罗茨风机的输送气体连通,利用压缩空气将物料吹送到单台锅炉炉膛。

为保证输送系统正常运行,在输送气源母管上装有压力表,监测输送管道的输送压力,在正常状态下输送过程中管道内的压力在一定的区间处于稳定状态,当管道内的压力趋于升高时,说明输送管道有堵塞的趋势,此时应降低给料机频率或停止给料机运行,减少向输送管道内的供料量,使罗茨风机的所有风量全部用于对输送管道的吹扫,待输送管道压力恢复正常时,重新自动投入各设备的运行。

在输送管道出口端安装有视盅,观察石灰石是否在管道中正常输送。

其流程见下图:石灰石罐→手动插板阀→缓冲仓→气动进料阀→给料机→输送管道→锅炉↑罗茨风机三、操作程序1、在系统启运之前应检查罗茨风机润滑油是否洁净,油位正常(约1/2~2/3左右)、罗茨风机传送带未有缺失,地脚螺丝固定良好,检查石灰石仓内的料位情况,正常料位应在低料位之上,即低料位指示灯熄灭.然后按下列顺序逐台炉启动。

2、开启石灰石罐底部松动风隔离阀,确保石灰石灰石罐底部流化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

130t/h循环流化床锅炉炉内喷钙脱硫工艺石灰石粉输送系统技术方案编制单位:编制日期:目录1工程概况 (1)2炉内喷钙脱硫技术 (3)3、输送系统技术要求及技术保证 (5)4规程和标准 (13)5质量保证及考核试验 (14)6设计界限及接口 (15)7、包装、运输和储存 (18)8技术服务和设计联络 (19)9、运行费用及效益分析 (20)10、工程投资估算 (21)11、系统工艺流程图(附图) (23)1工程概况1.1概述业主方现有1台130t/h循环流化床锅炉,锅炉采用向炉内添加石灰石粉脱硫工艺。

本方案设计的石灰石粉输送系统,是指将石灰石粉由炉前日用石灰石粉仓输送至锅炉炉膛石灰石粉接口的输送系统,单台炉为一个单元,设一个日用石灰石粉仓,输送气源由罗茨风机提供。

本技术方案适用于1×130t/h循环流化床锅炉所配套的石灰石粉输送系统工程。

该系统的功能、设计、结构、性能、安装和调试等方面说明满足相应的技术要求。

1.2设备运行环境气象特征与环境条件(煅烧前)石灰石成份分析如下:1.4 炉内喷钙脱硫系统设计指标(按常规130t循环流化床锅炉计算)2炉内喷钙脱硫技术2.1概述干法烟气脱硫技术是指脱硫吸收和产物处理均在干燥状态下进行的烟气脱硫技术,目前,发展了多种工艺,包括吸收剂喷射技术、电法干式脱硫技术及干式催化脱硫技术,炉内喷钙是其中一种应用较广泛的吸收剂喷射技术。

炉内喷钙是把干的吸收剂(石灰石粉、消石灰或白云石等)直接喷到锅炉炉膛的气流中去,炉膛内的热量将吸收剂煅烧成具有活性的CaO粒子,这些粒子与烟气中的SO2反应生成硫酸钙(CaSO4)和亚硫酸钙(CaSO3),这些反应产物和飞灰一起被除尘设备所捕获。

2.2工艺原理将石灰石粉磨至150目左右,用压缩空气喷射到炉内最佳温度区,并使脱硫剂石灰石与烟气有良好的接触和反应时间,石灰石受热分解成氧化钙和二氧化碳,再与烟气中二氧化硫,反应生成亚硫酸钙和硫酸钙,最终被氧化成硫酸钙。

CaCO 3→Cao+CO 2 CaO+SO 2+1/2O 2→CaSO 42.3技术特点①该系统具有配置简洁、能耗低、无污染、自动化程度高、操作简单、占用空间小、投资省、脱硫效率高。

②适用于燃中低硫煤,也可用于燃高硫煤。

能以合理的钙硫比,得到较高的脱硫率80~95%;③吸着剂为石灰石(CaCO 3),等钙基物料,资源广,价格便宜,脱硫渣为中性固态渣,无二次污染。

2.4系统简介该系统包括一个石灰石粉仓,粉仓设置一个出口,出口配置1套石灰石粉一级气力输送系统。

石灰石粉仓的物料由散装罐车运来送入石灰石粉仓内。

物料从石灰石粉仓的下部手动插板阀,通过气动进料阀进入计量料仓,装料量达到设定值后,打开计量料仓下的排料阀,物料进入下料料仓,流入变频调节给料螺旋输送机,利用压缩空气将物料吹送到锅炉炉膛。

可通过系统软件累计每小时的输送量,也可校核螺旋输送机实际的输送能力。

系统中,计量料仓与称重系统用于计量输送物料的量,并可用来校核变频给料螺旋输送机的转速。

为保证计量的准确,计量料仓对外接口均采用软连接。

考虑物料的特性、温度,软连接采用耐压、耐磨的橡胶接头。

经计量后的物料通过下料阀进入下料料仓,下料料仓与螺旋输送机的输送气连通,料仓与输送气源压力平衡,下料稳定均匀。

下料料仓内的物料,进入变频螺旋给料机,可以在一定范围内调节给料量。

在螺旋给料机的出料口与输送压缩空气混合,输送到输送管道内,将石灰石粉送至单台锅炉的二个给料口。

螺旋输送机工作时,靠电机的旋转带动螺旋的旋转推动物料前进,达到输送的目的,螺旋输送机的输送量和螺旋转速成正比。

因此螺旋输送机配有变频电机,达到改变输送量的目的。

螺旋输送机电机转速根据上游的计量仓的石灰石的流量变化瞬时控制。

输送管道采用厚壁耐压无缝钢管,管道上设有补偿器,以消除热胀冷缩的伸缩量。

并配有管道分配器,将输送管道一分为二,管道分配器采用内衬陶瓷的耐磨材料制造。

为保证输送系统正常运行,在输送气源母管上设置压力变送器及压力开关,在仪用压缩空气母管上设置压力变送器及压力开关,在输送管道及上、下料料仓上设置法兰压力变送器,监测输送管道、螺旋给料机的输送压力,输送压力高于设定值时,具有堵管倾向,则停运螺旋给料机,停止进料,继续吹扫管道,直至管道压力降至设定的下限值,打开螺旋给料机继续输送。

2.5石灰石粉气力系统原始资料2.5.1石灰石堆积容重:1.2~1.4t/m32.5.2石灰石粉对各种材料的磨损性:强2.5.3石灰石粉安息角: 30°~35°2.5.4粒度分布:最大粒度:1.0mm(暂定)。

2.5.5石灰石粉仓底卸料口:1个。

2.5.6输送器套数:1套,单炉对应一套输送系统。

2.5.7单炉石灰石系统设计出力:0.16~1.5t/h炉(连续可调)3、输送系统技术要求及技术保证3.1总的技术要求(1)提供的所有设备功能完整、技术先进成熟,并能满足人身安全和劳动保护条件。

(2)所有设备均正确设计和制造,在所有工况下能满足安全和持续运行的要求。

(3)所有设备零部件采用先进、可靠的加工制造技术。

(4)对石灰石粉输送系统作全面技术保证,系统的预期寿命为20年以上,并且有快速启动和满足负荷变化的能力。

3.2技术要求及性能保证3.2.1技术要求a. 石灰石粉输送系统技术要求设100m³石灰石粉成品日用仓一座,下设1个接口。

接口下设置手动插板阀、缓冲仓、变频旋转密封给料阀、加速室、分配器、气化装置、输送罗茨风机、电加热器,就地控制柜等设备及相关控制仪表;其流程见下图:石灰石粉仓→手动插板阀→缓冲仓→变频旋转密封给料阀→加速室→输送管道→↑分配器→输送支管→锅炉罗茨风机炉前日用石灰石粉仓有效容积为:100m3;炉前日用石灰石粉仓设有连续料位信号和高低料位信号;炉前日用石灰石粉仓仓顶设有石灰石粉输送排气布袋除尘器;炉前日用石灰石粉仓设有真空压力释放阀和气化设备。

b. 石灰石粉仓气化风系统的功能及要求石灰石粉仓气化风由罗茨风机提供,进入安装在石灰石粉仓的气化板。

炉前日用石灰石粉仓配置高料位计、低料位计、连续料位计。

炉前日用石灰石粉仓仓顶配置真空压力释放阀及布袋除尘器。

炉前日用石灰石粉仓仓底每落料口配置4块150×300气化板。

c.石灰石粉输送系统防堵与排堵措施如下:输送系统采取连续输送形式,输送管道上安装有压力变送器对输送过程中管道内的压力进行监视,在正常状态下输送过程中管道内的压力在一定的区间处于稳定状态,当管道内的压力趋于升高时,控制系统将判断输送管道有堵塞的趋势,此时系统自动降低旋转给料阀机转数或停止旋转给料阀,减少或停止向输送管道内的供料量,同时停止对料仓相应落料口的流化风供给,使罗茨风机的所有风量全部用于对输送管道的吹扫,管道内压力恢复正常时,重新自动投入上述设备的运行。

3.2.2性能保证及结构要求1)整体结构:石灰石粉由石灰石粉仓通过手动插板阀的落料管落下,进入中间缓冲仓,再通过旋转密封给料阀,由变频控制调整给料量后通过加速室进入石灰石输送管道,单炉一套系统在加速室出口经分配器分配至锅炉两个石灰石给料口。

整套设备应能保证正压运行,耐压能力100kPa。

2)旋转密封给料阀结构要求:旋转密封给料阀应能实现旋转给料和密封的功能。

转动部分与转子靴应实现跟踪密封结构,保证在运行过程中不卡塞。

转子应采用耐磨铸钢件,壳体保证密封,耐压能力100kPa。

3)加速室结构要求:应能实现连续均匀给料,入料口部分应能实现负压区。

4)插板阀采用手动密封插板阀。

5)旋转密封给料阀采用变频调节,调整石灰石给料量。

6)输送采用罗茨风机,输送系统及输送设备应有良好的密封性,其设计、制造应保证运行时输送风不从给料设备返回石灰石粉仓,且不从设备向周围环境泄漏。

3.3输送关键设备技术说明3.3.1输送器(包括输送器控制管路组件)〔1〕输送器的容量与系统容量和输送程序相匹配。

当系统出力达最大工况时,进料阀和出料阀适应最大工况。

〔2〕系统采用气力输送工艺,系统气密性能按空压机出口最大压力值设计,并有一定的安全裕量。

〔3〕卸料口下设置一个手动隔离阀、一个进料阀、一个输送器。

我方根据系统需要设置出料阀。

〔4〕输送器成套供货。

输送器包括控制管路组件。

〔5〕输送器其他辅助设备保证压力输送系统正常运行。

3.3.2手动插板阀〔1〕手动插板阀严密不漏,开关灵活。

〔2〕在不便操作的地方设有链轮或设置操作平台。

〔3〕插板阀闸板采用耐磨材质,插板阀经过精密加工。

3.3.3进料阀和平衡阀:〔1〕计量料仓和下料仓均配一个下料阀。

下料阀具有良好的耐磨性能且开关灵活,密封可靠。

〔2〕进料阀采用气动。

〔3〕进料阀外壳及阀芯采用铸造加工,材料为耐磨材质。

转动机械部分采用精密加工,保证开关灵活,到位准确。

3.3.4管道分配器〔1〕输送管道上设置管道分配器,将输送管一分为二,且保证输送稳定。

〔2〕管道分配器采用内衬耐磨陶瓷制造。

3.3.5管路切换阀〔1〕管路切换阀规格及数量根据系统设计需要配置。

〔2〕管路切换阀外壳及阀芯采用铸造加工,材料为耐磨材质。

转动机械部分采用精密加工,保证开关灵活,到位准确,严密不漏。

3.3.6石灰石粉仓〔1〕石灰石粉仓有效容积为100m3〔2〕石灰石粉仓为全钢结构。

〔3〕石灰石粉仓体耐磨,并采取保温措施。

〔4〕石灰石粉仓装设气化装置。

气源采用压缩空气减压。

3.3.7仓顶布袋除尘器仓顶布袋除尘器除了满足上面有关条文外,同时满足下列要求:〔1〕在石灰石仓的库顶上安装一台布袋除尘器,库顶布袋除尘器的设计能连续地、百分之百地处理所有进入石灰石仓的空气量。

〔2〕布袋除尘器考虑罐车用气力输送至石灰石仓的气量及石灰石气力输送系统的排气。

〔3〕布袋除尘器带有自动程序脉冲空气吹扫装置,其过滤效率不低于99.9%,由它净化后的空气直接排入大气。

〔4〕布袋除尘器的过滤风速小于0.8m/min。

〔5〕布袋除尘器采取必要的全套控制仪表(仪表阀门、法兰等附件)、阀门、过滤器部件、配管电磁阀、支撑结构、平台、扶梯及排气风机等附件。

〔6〕布袋除尘器为脉冲反吹,为便于检修,除尘器采用侧开门取袋。

〔7〕布袋除尘器配有必要的监测控制装置,如压差、滤袋破损等。

〔8〕布袋除尘器的结构能够确保使用寿命不少于20年。

〔9〕布袋除尘器排尘浓度不大于30 mg/m3。

〔10〕滤袋、龙骨具有足够的柔韧性和强度,以避免使用过程中脆裂和变形。

采用100%PPS滤料,滤袋使用寿命不小于25000 h。

〔11〕滤袋材料要求能防静电而且检修时能用水冲洗,耐温不小于150 ℃。

〔12〕电磁阀均使用寿命在500000次以上。

〔13〕布袋反吹清扫系统自动、有效。

〔14〕反吹清扫系统具备在过滤器处于工作状态下连续工作的能力。

相关文档
最新文档