【精品】人教版初中数学八年级上册全册教案教学设计
人教版初中八年级上册数学《作轴对称图形》精品教案
13.2 画轴对称图形第1课时作轴对称图形【知识与技能】1.通过动手操作体验如何作轴对称图形.2.能作出一个图形经一次或二次轴对称变换后的图形.3.能利用轴对称变换设计一些简单的图案.【过程与方法】通过实际操作获取作轴对称图形的方法,并应用于简单的图案设计.【情感态度】通过图案设计等活动,培养学生的动手操作能力\,审美及数学兴趣,发展学生的空间观念.【教学重点】作一个图形经轴对称变换后的图形.【教学难点】通过动手操作总结轴对称变换的特征.一、情境导入,初步认识利用多媒体向学生展示剪纸图片,供学生欣赏,并请学生交流:如此漂亮的剪纸是如何剪出的呢?问题1 请学生拿出画有一个简单风筝(如图形状)的半透明纸,把这张纸对折后描图,学生画好后打开对折的纸,观察并回答下列问题:(1)画出的图形与原来的图形有什么关系?(2)两个图形成轴对称有什么特征?问题 2 如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?【教学归纳】由学生画图、操作、观察后总结出:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点,连接任意一对对应点的线段被对称轴垂直平分.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】成轴对称的两个图形中的任何一个可以看作由另一个图形经轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.问题除上面所用的描图法;还可用什么方法画出轴对称变换后的图形?请学生间交流探讨.例1(1)如图1,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.(2)将△ABC的位置移至图2,图3,图4时,再作出关于直线l对称的图形.并验证画法.【归纳总结】一个平面图形都是由一些点组成,点动成线,故要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.【教学说明】利用轴对称变换,可以设计出精美的图案.有时,将平移和轴对称结合起来,可以设计出更美丽的图案.例2 操作并思考:如图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的三角形沿黑线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺开.(1)你会得到怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再去掉含90°角的部分展开后的结果又会怎样?为什么?解:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际相当于折出了正方形的2条对称轴,因此图中得到的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.【教学说明】教师参与,与学生一起操作,力求使图案与花边完美.三、运用新知,深化理解1.把下列图形补成关于直线l对称的图形.2.如图,利用轴对称变换画出花瓶的另一半.3.如图,左边的旗子经过几次轴对称变换,可以变成右边的旗子?你能设计一种变换方案吗?4.如果我们把台球桌做成等边三角形形状,那么从AC中点D处出发的球,能否依次经BC,AB两条边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球运动的路线.【教学说明】指导学生解答上述习题时,要注意引导学生:(1)画轴对称图形时,要先画好关键的对应点;(2)在已知成轴对称的图形时,利用成轴对称的图形的性质,找出对称轴.【答案】4.能.运动路线如图的D→E→F→D四、师生互动,课堂小结教师请学生回忆本节内容,学生发言谈收获,最后引导总结.1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系(如例2)调动课堂气氛,培养学生学习兴趣.作者留言:非常感谢!您浏览到此文档。
人教版初中数学八年级教案
人教版初中数学八年级教案人教版初中数学八年级教案1:分式的加减一.教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二.重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.3.认知难点与突破方法进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.三.例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的 .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自身说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,因此要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, …, Rn的关系为 .若知道这个公式,就比较容易地用含有R1的式子表示R2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但物理的知识若不了解,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放到例8之后讲.四.课堂堂引入1.出示P18问题3.问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?五.例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:====(2)[分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:=====六.随堂练习计算(1) (2)(3) (4)七.课后练习计算(1) (2)(3) (4)八.答案:四.(1) (2) (3) (4)1五.(1) (2) (3)1 (4)人教版初中数学八年级教案2:完全平方公式一.教学内容:本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。
人教版五四制初中八年级数学上册全套教案
轴对称【教学目标】1.亲历轴对称图形的探索过程,体验分析归纳得出轴对称图形的定义,对称轴、对称点,图形轴对称的性质,进一步发展学生的探究、交流能力。
2.掌握垂直平分线的定义,线段的垂直平分线的性质。
3.熟练运用轴对称、垂直平分线解决问题。
【教学重难点】重点:掌握轴对称图形的定义,垂直平分线的定义。
难点:运用图形轴对称的性质,线段的垂直平分线的性质解决问题。
【教学过程】一、直接引入师:今天这节课我们主要学习轴对称,这节课的主要内容有轴对称图形的定义,对称轴、对称点,图形轴对称的性质,垂直平分线的定义,垂直平分线的性质,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。
二、讲授新课(1)教师引导学生在预习的基础上了解有轴对称图形的定义内容,形成初步感知。
(2)首先,我们先来学习轴对称图形,它的具体内容是如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
把一个图形沿着某一条直线折叠,如果它能够与另一图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
它是如何在题目中应用的呢?我们通过一道例题来具体说明。
例:下图的每对图形有什么共同特点?把图中的每一对图形沿着虚线折叠,左边的图形能与右边的图形重合。
每对图形都是轴对称图形,都关于中间虚线对称。
根据例题的解题方法,让学生自己动手练习。
练习:对称现象无处不在。
请判断下图是否为轴对称图形。
解:都为轴对称图形。
3.接着,我们再来看下垂直平分线的定义,它的具体内容是:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
这样,我们就得到图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
它是如何在题目中应用的呢?我们也通过一道例题来具体说明。
初中数学八上说课教案
《初中数学八上》说课教案一、教材分析《初中数学八上》是人教版数学课程标准实验教科书,本册教材是在学生掌握了七年级数学知识的基础上进行进一步学习的。
本节课的主要内容是多项式的乘法,这是初中数学中的一个重要概念,也是学生进一步学习函数、不等式等知识的基础。
二、教学目标1. 知识与技能目标:使学生掌握多项式乘法的运算法则,能够熟练地进行多项式的乘法运算。
2. 过程与方法目标:通过自主学习、合作交流的方式,培养学生的逻辑思维能力和团队协作能力。
3. 情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的自主学习能力,使学生感受到数学在生活中的应用。
三、教学重点与难点1. 教学重点:多项式乘法的运算法则。
2. 教学难点:如何引导学生理解并掌握多项式乘法的过程。
四、教学方法采用自主学习、合作交流、讲解演示的教学方法,引导学生主动探究多项式乘法的运算法则,通过师生互动、生生互动,提高学生的学习兴趣和参与度。
五、教学过程1. 导入新课通过复习七年级学习的多项式知识,引导学生回顾并巩固多项式的概念,为新课的学习做好铺垫。
2. 自主学习让学生自主探究多项式乘法的运算法则,引导学生通过观察、分析、归纳总结出多项式乘法的规律。
3. 合作交流在学生自主学习的基础上,组织学生进行合作交流,分享各自的成果和困惑,引导学生通过讨论、互助解决疑难问题。
4. 讲解演示教师对多项式乘法的运算法则进行讲解,通过示例演示,使学生更加直观地理解多项式乘法的过程。
5. 练习巩固设计一些具有针对性的练习题,让学生进行巩固练习,及时发现并纠正学生的错误,提高学生的运算能力。
6. 课堂小结对本节课的学习内容进行总结,使学生明确多项式乘法的运算法则,引导学生体会数学知识之间的联系。
7. 课后作业布置一些课后作业,让学生进一步巩固所学知识,提高学生的自主学习能力。
六、教学反思在教学过程中,要注意关注学生的学习情况,及时调整教学策略,使学生能够更好地理解和掌握多项式乘法的知识。
人教版初中八年级上册数学《角边角和角角边》精品教案
∴ △ABE ≌△ACD(ASA). ∴ AE =AD.
知识点2 探究“AAS”判定方法
例2 如图,在△ABC 和△DEF 中,∠A =∠D,∠B =∠E,BC =EF . 求证△ABC ≌△DEF.
∴AB∥CD. ∴∠BAO =∠DCO.
在△ABO和△CDO中,
B D,
AB
CD,
BAO DCO,
∴△ABO≌△CDO,
∴BO = DO,AO = CO,即AC与BD互相平分.
课堂小结
ED C′
A′
B′
两角和它们的夹边分别相等的两个三角形全等
(简称为“角边角”或“ASA”).
两角分别相等且其中一组等角的对边相等的两
B′E相交于点C′ . 现象:两个三角形放在一起
能完全重合.
ED C′
说明:这两个三角形全等.
A′
B′
归纳概括“ASA”判定方法: 两角和它们的夹边分别相等的两个三角形全 等(简写为“角边角”或“ASA”). 几何语言: 在△ABC 和△ A′B′ C′ 中,
∠A =∠A′,
AB = A′B′, ∠B =∠B′,
拓展延伸
3.如图,点 E、F 在BD上,且 AB = CD,
BF = DE,AE = CF,求证:AC 与 BD 互相平分.
证明:∵BF = DE,
∴BF-EF = DE-EF,即BE = DF.
在△ABE和△CDF中,
AB CD,
AE
CF,
BE DF,
∴△ABE≌△CDF. ∴∠B =∠D.
R·八年级上册
12.2 三角形全等的判定
人教版八年级上册数学教案
人教版八年级上册数学教案标题:人教版八年级上册数学教案一、教学目标1. 知识目标:通过本节课的学习,学生能够了解乘法的定义和乘法定律,掌握乘法中的基本运算技巧。
2. 能力目标:培养学生的分析和解决问题的能力,提高他们的运算速度和思维灵活性。
3. 情感目标:培养学生的数学兴趣,增强自信心,培养合作精神。
二、教学重点和难点1. 教学重点:乘法的基本概念和乘法定律。
2. 教学难点:掌握乘法的运算技巧,并能够应用到实际生活中解决问题。
三、教学准备1. 教材:人教版八年级上册数学教材。
2. 教具:黑板、彩色粉笔、习题纸、练习册。
四、教学过程1. 导入:通过提问和举例的方式引入本节课的内容,让学生思考乘法在日常生活中的应用场景。
2. 概念讲解:通过板书的形式,讲解乘法的定义和乘法定律。
重点讲解正数相乘、零乘任意数等特殊情况。
3. 计算练习:通过布置一些简单的乘法计算题,让学生在黑板上依次计算并解答。
鼓励学生主动参与,积极互动。
4. 理解巩固:教师可以列举一些实际问题,让学生通过乘法运算解答,并引导学生将其具象化为数学运算问题。
5. 拓展应用:让学生应用乘法解决实际问题,如购物计算、面积计算等。
可以将学生分成小组讨论,提高合作与交流能力。
6. 练习巩固:教师可以出一些习题,让学生用乘法计算并解决,鼓励学生独立思考,培养他们分析和解决问题的能力。
7. 作业布置:布置适量习题作为课后作业,让学生在家复习巩固所学内容。
五、教学反思通过本节课的教学,学生们对乘法的定义和运算技巧有了更深入的了解。
教师通过举例和解题的方式,将抽象的概念具象化,使学生能够更好地理解和应用。
并且,在练习和解题环节中,注重培养学生的分析和解决问题的能力,鼓励他们独立思考和探索,培养其合作与交流的能力。
在教学过程中,教师还能够及时给予学生反馈和指导,使学生在实践中快速成长。
同时,通过作业布置,让学生在家进行复习和巩固,进一步提高学生的学习效果。
人教版初中八年级数学上册《整式的除法》精品教案
第3课时整式的除法1.掌握同底数幂的除法法则与运用.(重点)2.掌握单项式除以单项式和多项式除以单项式的运算法则.(重点)3.熟练地进行整式除法的计算.(难点)一、情境导入1.教师提问:同底数幂的乘法法则是什么?2.多媒体展示问题:一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?学生认真分析后完成计算:需要滴数:1012÷109.3.教师讲解:以前我们只学过同底数幂的乘法的计算方法,那么像这种同底数幂的除法该怎样计算呢?二、合作探究探究点一:同底数幂的除法【类型一】直接用同底数幂的除法进行运算计算:(1)(-xy)13÷(-xy)8;(2)(x-2y)3÷(2y-x)2;(3)(a2+1)6÷(a2+1)4÷(a2+1)2.解析:利用同底数幂的除法法则即可进行计算,其中(1)应把(-xy)看作一个整体;(2)把(x -2y)看作一个整体,2y-x=-(x-2y);(3)注意(a2+1)0=1.解:(1)(-xy)13÷(-xy)8=(-xy)13-8=(-xy)5=-x5y5;(2)(x-2y)3÷(2y-x)2=(x-2y)3÷(x-2y)2=x-2y;(3)(a2+1)6÷(a2+1)4÷(a2+1)2=(a2+1)6-4-2=(a2+1)0=1.方法总结:计算同底数幂的除法时,先判断底数是否相同或变形为相同,再根据法则计算. 【类型二】 逆用同底数幂的除法进行计算已知a m =4,a n =2,a =3,求am -n -1的值. 解析:先逆用同底数幂的除法,对am -n -1进行变形,再代入数值进行计算. 解:∵a m =4,a n =2,a =3,∴a m -n -1=a m ÷a n ÷a =4÷2÷3=23. 方法总结:解此题的关键是逆用同底数幂的除法得出am -n -1=a m ÷a n÷a .【类型三】 已知整式除法的恒等式,求字母的值 若a (x m y 4)3÷(3x 2y n )2=4x 2y 2,求a 、m 、n 的值.解析:利用积的乘方的计算法则以及整式的除法运算得出即可.解:∵a (x m y 4)3÷(3x 2y n )2=4x 2y 2,∴ax 3m y 12÷9x 4y 2n =4x 2y 2,∴a ÷9=4,3m -4=2,12-2n =2,解得a =36,m =2,n =5.方法总结:熟练掌握积的乘方的计算法则以及整式的除法运算是解题关键.【类型四】 整式除法的实际应用一颗人造地球卫星的速度为2.88×107m/h ,一架喷气式飞机的速度为1.8×106m/h ,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?解析:求人造地球卫星的速度是这架喷气式飞机的速度的多少倍,用人造地球卫星的速度除以喷气式飞机的速度,列出式子:(2.88×107)÷(1.8×106),再利用同底数幂的除法计算.解:(2.88×107)÷(1.8×106)=(2.88÷1.8)×(107÷106)=1.6×10=16.则这颗人造地球卫星的速度是这架喷气式飞机的速度的16倍.方法总结:用科学记数法表示的数的运算可以利用单项式的相关运算法则计算.探究点二:零指数幂若(x -6)0=1成立,则x 的取值范围是( )A .x ≥6B .x ≤6C .x ≠6D .x =6解析:∵(x -6)0=1成立,∴x -6≠0,解得x ≠6.故选C.方法总结:本题考查的是0指数幂,非0数的0次幂等于1,注意0指数幂的底数不能为0.探究点三:单项式除以单项式计算.(1)(2a 2b 2c )4z ÷(-2ab 2c 2)2;(2)(3x 3y 3z )4÷(3x 3y 2z )2÷(12x 2y 6z ). 解析:先算乘方,再根据单项式除单项式的法则进行计算即可.解:(1)(2a 2b 2c )4z ÷(-2ab 2c 2)2=16a 8b 8c 4z ÷4a 2b 4c 4=4a 6b 4z ;(2)(3x 3y 3z )4÷(3x 3y 2z )2÷(12x 2y 6z )=81x 12y 12z 4÷9x 6y 4z 2÷12x 2y 6z =18x 4y 2z . 方法总结:掌握整式的除法的运算法则是解题的关键,有乘方的先算乘方,再算乘除.探究点四:多项式除以单项式【类型一】 直接利用多项式除以单项式进行计算计算:(72x 3y 4-36x 2y 3+9xy 2)÷(-9xy 2).解析:根据多项式除单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x 3y 4÷(-9xy 2)+(-36x 2y 3)÷(-9xy 2)+9xy 2÷(-9xy 2)=-8x 2y 2+4xy -1. 方法总结:多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.【类型二】 被除式、商式和除式的关系已知一个多项式除以2x 2,所得的商是2x 2+1,余式是3x -2,请求出这个多项式.解析:根据被除式、除式、商式、余式之间的关系解答.解:根据题意得:2x 2(2x 2+1)+3x -2=4x 4+2x 2+3x -2,则这个多项式为4x 4+2x 2+3x -2. 方法总结:“被除式=商×除式+余式”是解题的关键.【类型三】 化简求值先化简,后求值:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y ,其中x =2015,y =2014.解析:利用去括号法则先去括号,再合并同类项,然后根据除法法则进行化简,最后把x 与y 的值代入计算,即可求出答案.解:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y =[2x 3y -2x 2y 2+x 2y 2-x 3y ]÷x 2y =x -y ,把x =2015,y =2014代入上式得:原式=x -y =2015-2014=1.方法总结:熟练掌握去括号,合并同类项,整式的除法的法则.三、板书设计同底数幂的除法1.同底数幂的除法法则:a m÷a n=a m-n(m,n为正整数,m>n,a≠0).2.同底数幂的除法法则逆用:a m-n=a m÷a n(m,n为正整数,m>n,a≠0).从计算具体的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.讲课时要多举几个具体的例子,让学生计算出结果.最后,让学生自己归纳出同底数幂的除法法则.性质归纳出后,应注意:(1)要强调底数a不等于零,若a为零,则除数为零,除法就没有意义了;(2)本节不讲零指数与负指数的概念,所以性质中必须规定指数m、n都是正整数,并且,要让学生运用时予以注意.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。
八年级上册数学教案人教版(全册)
八年级上册数学教案人教版(全册)第十一章全等三角形11.1 全等三角形教学容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:〔1〕全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;〔2〕对应边所对的角是对应角,•两条对应边所夹的角是对应角.教具准备四大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟〞的教学方法,让学生自己举出形状、大小一样的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点?2.重新在一纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小一样,能够完全重合.这样的两个图形叫做全等形,用“≌〞表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:〔1〕何时能完全重在一起?〔2〕此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把一样的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个角分别重合了.3.完全重合说明三条边对应相等,三个角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.二、随堂练习,稳固深化课本P4练习.【探研时空】1.如图1所示,△ACF≌△DBE,∠E=∠F,假设AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.〔AB=6〕2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各角的度数.•〔∠AEC=30°,∠EAC=65°,∠ECA=85°〕三、课堂总结,开展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破1.课本P4习题11.1第1,2,3,4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三局部,左边板书本节课概念,中间局部板书“思考〞中的问题,右边局部板书学生的练习.疑难解析由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:〔1〕有公共边的,•公共边一定是对应边;〔2〕有公共角的,公共角一定是对应角;〔3〕有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边〔或最大的角〕是对应边〔或角〕,一对最短的边〔或最小的角〕是对应边〔或角〕.11.2.1三角形全等的判定〔SSS〕教学容本节课主要容是探索三角形全等的条件〔SSS〕,•及利用全等三角形进展证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边〞判定两个三角形全等.2.过程与方法经历探索“边边边〞判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边〞判定两个三角形全等的方法.2.难点:理解证明的根本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验〞的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】〔出示教具〕问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,答复教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC 与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚刚的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】〔用直尺和圆规〕先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?〔即全等吗〕【学生活动】拿出直尺和圆规按上面的要求作图,并验证.〔如课本图11.2-2所示〕画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?〞【学生活动】在思考、实践的根底上可以归纳出下面判定两个三角形全等的定理.〔1〕判定方法:三边对应相等的两个三角形全等〔简写成“边边边〞或“SSS〞〕.〔2〕判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比拟、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、例点击,应用所学【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D 的支架,求证△ABD≌△ACD.〔教师板书〕【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.证明:∵D 是BC 的中点, ∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD 〔SSS 〕.【评析】符号“∵〞表示“因为〞,“∴〞表示“所以〞;从例1可以看出,•证明是由题设〔〕出发,经过一步步的推理,最后推出结论〔求证〕正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写. 三、实践应用,合作学习 【问题思考】AC=FE ,BC=DE ,点A 、D 、B 、F 在直线上,AD=FB 〔如下图〕,要用“边边边〞证明△ABC ≌△FDE ,除了中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD ,只要AD=FB 两边都加上DB 即可得到AB=FD .〞【教学形式】先独立思考,再合作交流,师生互动. 四、随堂练习,稳固深化 课本P8练习. 【探研时空】如下图,AB=DF ,AC=DE ,BE=CF ,BC 与EF 相等吗?•你能找到一对全等三角形吗?说明你的理由.〔BC=EF,△ABC≌△DFE〕五、课堂总结,开展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的根底,你是怎样掌握判断对应边、对应角的方法?3.“边边边〞判定法告诉我们什么呢?•〔答:只要一个三角形三边长度确定了,那么这个三角形的形状大小就完全确定了,这就是三角形的稳定性〕六、布置作业,专题突破1.课本P15习题11.2第1,2题.2.选用课时作业设计.板书设计把黑板平均分成三份,左边局部板书“边边边〞判定法,中间局部板书例题,右边局部板书练习.疑难解析证明中的每一步推理都要有根据,不能“想当然〞,这些根据,可以是条件,也可以是定义、公理、已学过的重要结论.11.2.2 三角形全等判定〔SAS〕教学容本节课主要容是探索三角形全等的条件〔SAS〕,及利用全等三角形证明.教学目标1.知识与技能领会“边角边〞判定两个三角形的方法.2.过程与方法经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.重、难点及关键1.重点:会用“边角边〞证明两个三角形全等.2.难点:应用结合法的格式表达问题.3.关键:在实践、观察中正确选择判定三角形全等的方法.教具准备投影仪、直尺、圆规.教学方法采用“操作──实验〞的教学方法,让学生有一个直观的感受.教学过程一、回忆交流,操作分析【动手画图】【投影】作一个角等于角.【学生活动】动手用直尺、圆规画图.:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】〔1〕作射线O1A1;〔2〕以点O为圆心,以适当长为半径画弧,交OA•于点C,•交OB于点D;〔3〕以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;〔4〕以点C1为圆心,以CD•长为半径画弧,交前面的弧于点D1;〔5〕过点D1作射线O1B1,∠A1O1B1就是所求的角.【导入课题】教师表达:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1•中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O1D1,OC=O1C1,∠COD=∠C1O1D1,△COD≌△C1O1D1.归纳出规律:两边和它们的夹角对应相等的两个三角形全等〔简写成“边角边〞或“SAS•〞〕. 【评析】通过让学生回忆根本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,开展探究新知的能力. 【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识. 二、例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显例如2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC•就全等了.证明:在△ABC 和△DEC 中12CA CDCB CE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEC 〔SAS 〕 ∴AB=DE想一想:∠1=∠2的依据是什么?〔对顶角相等〕AB=DE 的依据是什么?〔全等三角形对应边相等〕【学生活动】参与教师的讲例之中,领悟“边角边〞证明三角形全等的方法,学会分析推理和规书写.【媒体使用】投影显例如2.【教学形式】教师讲例,学生承受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.三、辨析理解,正确掌握【问题探究】〔投影显示〕我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等〞的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进展示,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC的端点B重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来〔课本图11.2-7〕,出现一个现象:△ABC与△ABD满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:〔如图1所示〕〔1〕画∠ABT;〔2〕以A为圆心,以适当长为半径,画弧,交BT于C、C′;〔3〕•连线AC,AC′,△ABC与△ABC′不全等.【形成共识】“边边角〞不能作为判定两个三角形全等的条件.【教学形式】观察、操作、感知,互动交流.四、随堂练习,稳固深化课本P10练习第1、2题.五、课堂总结,开展潜能1.请你表达“边角边〞定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为根底根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业,专题突破1.课本P15习题11.2第3、4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三局部,其中右边局部板书“边角边〞判定法,中间局部板书例题,右边局部板书练习题.11.2.3 三角形全等判定〔ASA〕教学容本节课主要容是探索三角形全等的判定〔ASA,AAS〕,•及利用全等三角形的证明.教学目标1.知识与技能理解“角边角〞、“角角边〞判定三角形全等的方法.2.过程与方法经历探索“角边角〞、“角角边〞判定三角形全等的过程,能运用已学三角形判定法解决实际问题.3.情感、态度与价值观培养良好的几何推理意识,开展思维,感悟全等三角形的应用价值.重、难点与关键1.重点:应用“角边角〞、“角角边〞判定三角形全等.2.难点:学会综合法解决几何推理问题.3.关键:把握综合分析法的思想,寻找问题的切入点.教具准备投影仪、幻灯片、直尺、圆规.教学方法采用“问题教学法〞在情境问题中,激发学生的求知欲.教学过程一、回忆交流,稳固学习【知识回忆】〔投影显示〕情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,•将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS〞,可以得到△EDH≌△FDH,从而EH=FH]2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=•DE〔SSS〕或∠BAC=∠DAE〔SAS〕].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.【教师活动】操作投影仪,提出问题,组织学生思考和提问.【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.【教学形式】用问题牵引,辨析、稳固已学知识,在师生互动交流过程中,激发求知欲.二、实践操作,导入课题【动手动脑】〔投影显示〕问题探究:先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B〔即使两角和它们的夹边对应相等〕,把画出的△A′B′C′剪下,•放到△ABC上,它们全等吗?【学生活动】动手操作,感知问题的规律,画图如下:画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B:1.画A′B′=AB;2.在A′B′的同旁画∠DA′B′=∠A,∠EBA′=∠B,A′D,B′E交于点C′。
(人教版初中数学)人教版八年级上册数学教案
1.重点:掌握“边边边”判定两个三角形全等的方法.
2.难点:理解证明的基本过程,学会综合分析法.
3.关键:掌握图形特征,寻找适合条件的两个三角形.
教具准备
一块形状如图1所示的硬纸片,直尺,圆规.
(1) (2)
教学方法
采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.
教学过程
2.难点:掌握找对应边、对应角的方法.
3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,两条对应边所夹的角是对应角.
教学方法
采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.
教学过程
【教学形式】先独立思考,再合作交流,师生互动.
四、随堂练习,巩固深化
课本P8练习.
【探研时空】
如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC≌△DFE)
五、课堂总结,发展潜能
1.全等三角形性质是什么?
2.正确地判断出全等三角形的对应边、对应角,利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?
3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.
重、难点及关键
1.重点:会用“边角边”证明两个三角形全等.
2.难点:应用结合法的格式表达问题.
3.关键:在实践、观察中正确选择判定三角形全等的方法.
教具准备投影仪、直尺、圆规.
教学方法采用“操作──实验”的教学方法,让学生有一个直观的感受.
三、实践应用,合作学习
人教版初中数学八年级上册全册教案
人教版初中数学八年级上册全册教案第一课数与代数
教学目标
- 掌握数字的读法和写法。
- 了解数的分类和数的特性。
- 掌握数的比较和数的大小顺序。
- 能够解决实际问题中的数的应用。
教学内容
1. 数的概念和分类
- 自然数、整数、有理数的概念和特性
- 正整数、负整数、零的概念和表示方法
2. 数的比较和大小顺序
- 数的大小比较
- 数的大小顺序
3. 数的应用
- 数的读法和写法
- 数的应用实例分析和解决
教学步骤
1. 引入数字的概念和分类,介绍数的基本特性。
2. 通过示例演示和练,巩固学生对数的比较和大小顺序的掌握。
3. 教授数字的读法和写法,让学生进行读数和写数的练。
4. 结合实际问题,教学数的应用,并引导学生分析和解决问题。
5. 进行小组讨论和总结,复本节课的内容。
6. 布置作业,让学生练巩固所学知识。
教学评价
1. 课堂表现:观察学生的参与度、注意力、回答问题的准确性
和自信度。
2. 作业完成情况:检查学生对课堂内容的理解和应用能力。
参考资料
- 《初中数学八年级上册》,人教版
- 《数学教学指导大纲》,教育部发布
>注意: 以上为简要教案概述,具体教学内容和安排可根据实际
情况进行调整和修改。
最新人教版初中八年级数学上册《斜边、直角边》精品教案
第4课时 “斜边、直角边”1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边”判定三角形全等如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:Rt △ABF ≌Rt △DCE .解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL ”即可判定Rt △ABF 与Rt △DCE 全等.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF 与△DCE 都为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩⎪⎨⎪⎧BF =CE ,AB =CD ,∴Rt △ABF ≌Rt △DCE (HL).方法总结:利用“HL ”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.探究点二:“斜边、直角边”判定三角形全等的运用 【类型一】 利用“HL ”判定线段相等如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .解析:根据“HL ”证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL ”证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD -CD =BF -EF .即BC =BE .方法总结:证明线段相等可通过证明三角形全等解决,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【类型二】 利用“HL ”判定角相等或线段平行如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等.证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt △ABC和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2. 方法总结:证明角相等可通过证明三角形全等解决.【类型三】 利用“HL ”解决动点问题如图,有一直角三角形ABC ,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:本题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP=AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【类型四】 综合运用全等三角形的判定方法判定直角三角形全等如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL ”外,还有:SSS 、SAS 、ASA 、AAS.三、板书设计“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL ”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL ”,除此之外,还可以选用“SAS ”“ASA ”“AAS ”以及“SSS”.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.作者留言:非常感谢!您浏览到此文档。
人教版初中八年级上册数学《全等三角形》精品教案可编辑全文
综合应用
2.如图,△ABC≌△ADE,则AB = ___A_D___, ∠E = __∠__C___.若∠BAE = 120°,∠BAD = 40°,则∠BAC = __8_0_°___.
点A与点D是对应点,则下列结论错误的是( D ).
(A) ∠COA =∠BOD ;
(B) ∠A =∠;
(D) OB =OA .
O
A
D
练习2 △ABN ≌△ACM, ∠ABN 和
∠ACM 是对应角,AB 和AC 是对应边.则下列 结论错误的是( C ).
(A)∠AMC =∠ANB ; (B)∠BAN =∠CAM ; A (C)BM =MN ; (D)AM =AN .
推进新课
问题2 请同学们用复写纸画出两个三角形, 并用剪刀剪下其中一个三角形,观察这两个三角 形有何关系?
知识点1 全等形、全等三角形及其有关概念
问题3 请同学用语言归纳出问题1 和问题2 中 两个图形有何关系?
全等形的定义: 能够完全重合的两个图形叫做全等形. 全等三角形的定义: 能够完全重合的两个三角形叫做全等三角形.
追问1 请同学们将问题2 的两个三角形分别 标为△ABC、△DEF,观察这两个三角形有何对 应关系?
点A 与点D、点B 与点E、 点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、 边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、 ∠C 与∠F 重合,称为对应角.
追问2 你能用符号表示出这两个全等三角形吗?
人教版八年级上册数学第二十一章《解析几何》全章教学设计
人教版八年级上册数学第二十一章《解析几何》全章教学设计1. 教学内容概述1.1 课程标准根据《义务教育数学课程标准(2011年版)》,本章主要让学生掌握解析几何的基本概念和方法,培养学生的几何直观和逻辑思维能力。
1.2 教材分析人教版八年级上册数学第二十一章《解析几何》共4个小节,主要内容包括:- 直角坐标系- 坐标轴上的点- 两点间的距离- 直线的斜率本章内容是初中数学的重要内容,对于学生掌握几何知识和提高数学思维能力具有重要意义。
1.3 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识和一些基本的代数知识,如函数、方程等。
但学生对于坐标系和解析几何的概念和方法可能较为陌生,需要通过本章的学习来逐步掌握。
2. 教学目标根据课程标准和学生的实际情况,本章的教学目标为:1. 理解直角坐标系、坐标轴上的点、两点间的距离和直线的斜率等基本概念。
2. 掌握解析几何的基本方法和步骤,能够运用解析几何的知识解决一些实际问题。
3. 培养学生的几何直观和逻辑思维能力,提高学生的数学素养。
3. 教学重难点3.1 教学重点1. 直角坐标系、坐标轴上的点、两点间的距离和直线的斜率等基本概念。
2. 解析几何的基本方法和步骤。
3.2 教学难点1. 坐标系和解析几何的概念和方法的理解和运用。
2. 解决实际问题时,如何运用解析几何的知识和方法。
4. 教学策略与方法4.1 教学策略1. 采用直观演示、实例分析、练习巩固等教学策略,帮助学生理解和掌握直角坐标系、坐标轴上的点、两点间的距离和直线的斜率等基本概念。
2. 通过问题解决、小组讨论等方式,引导学生运用解析几何的知识和方法解决实际问题。
3. 注重知识点的衔接和拓展,提高学生的综合运用能力。
4.2 教学方法1. 讲授法:讲解直角坐标系、坐标轴上的点、两点间的距离和直线的斜率等基本概念和方法。
2. 案例分析法:分析实际问题,引导学生运用解析几何的知识和方法解决实际问题。
最新人教版初中八年级上册数学《全等三角形》精品教案
性质: 全等三角形的对应边相等,对应角相等.
A
D
B
CE
F
应用格式: 如图:∵△ABC≌△DEF,
∴AB=DE,BC=EF,AC=DF
( 全等三角形的对应边相等 ),
∠A=∠D,∠B=∠E,∠C=∠F
( 全等三角形的对应角相等).
一个三角形经过平移、旋转、翻折后所得到的三角形与原三
角形全等.
A
M
E
其中点A和 点D,点B和 点E ,点C和_ 点F _是对应顶点.
AB和 DE ,BC和 EF ,AC和 DF 是对应边.
∠A和 ∠D ,∠B和 ∠E , ∠C和 ∠F 是对应角.
A
D
B
C
E
F
A
D
B
CE
F
全等的表示方法:
“全等”用符号“≌”表示,读作“全等于”.
如上图:△ABC全等于△DEF记作:△ABC ≌△DEF (注意:书写时应把对应顶点写在相对应的位置上). ∆ABC≌ ∆DEF,对应边大小有什么关系?对应角呢?
1.老师引导学生归纳本课知识点。 2.师生共同反思学习心得。
教科书本课课后习题第一题。完成后同桌之间 相互订正
2.如图,已知△ABC≌△ADE 请指出图中对应边和对应角.
E
D
2
A
1
B
C
边 AB= AD 边 AC= AE 边 BC= DE
角 ∠BA∠C=1=∠∠D2AE
角 ∠B= ∠D 角 ∠C= ∠E
归纳 有对顶角的,两个对顶角一定为一对对应角.
3.如图,已知△ABC≌△BAD 请指出图中的对应边和对应角.
归纳 有公共角的,公共角一定是对应角.
变式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形的边》 “三角形的边”是第十一章三角形的第一节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在小学已学过三角形的初步知识以及对三角形的表象认识的基础上,本节课给出了“严格”的定义,进一步深入了解三角形的特征、性质,为今后学习多边形作好准备,本课设计的思路是学生通过了解三角形的定义,进而质疑三角形的三边长度有没有一定的规律,通过观察分析、比较以及推断等过程,得出三角形的三边的关系。
【知识与能力目标】1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题。
【过程与方法目标】经历摆三角形,画三角形、测量三角形的三边长度的过程,培养学生自主、合作、探索的学习方式,并锻炼其发现问题、提出问题、分析问题和解决问题的能力。
【情感态度价值观目标】认识到通过观察、比较、推断获得解决实际问题的方法,使学生体会到数学源于生活,而又在生活实践探索中得到解决,这样培养了学生学习数学的兴趣。
【教学重点】理解三角形三边不等关系。
【教学难点】三角形三边不等关系的应用。
相应课件; 三角尺等。
◆ 教材分析◆ 教学目标◆ 教学重难点◆ ◆ 课前准备◆一、情景导入三角形是一种最常见的几何图形,如古埃及金字塔,埃菲尔铁塔,自行车等等,处处都有三角形的形象。
那么什么叫做三角形呢?二、三角形及有关概念 不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC 用符号表示为△ABC。
三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示。
三、三角形三边的不等关系任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从B →C ,(2)从B →A →C ;不一样, AB+AC >BC ①;因为两点之间线段最短。
同样地有 AC+BC >AB ②AB+BC >AC ③由式子①②③我们可以知道什么?◆ 教学过程ab c (1)CBA三角形的任意两边之和大于第三边。
四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。
按角分类:三角形 直角三角形 斜三角形 锐角三角形 钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。
三边都相等的三角形叫做等边三角形;有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。
显然,等边三角形是特殊的等腰三角形。
按边分类:三角形 不等边三角形 等腰三角形 底和腰不等的等腰三角形 等边三角形五、例题小晶有两根长度为5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择?( C )A 、2cmB 、3cmC 、8cmD 、15cm分析: ∵ 第三根可选择的范围是:大于8-5=3(cm)小于8+5=13(cm)∴只有8cm 的木条能钉成三角形木框,所以答案选C 。
解题技巧:三角形第三边的取值范围是:两边之差<第三边<两边之和小明有两根长为10cm 和3cm 的木条,他要钉一个三角形像框,并且使所选择的第三根木条长度是6的整数倍。
聪明的你帮他想想,第三根木条应取多长?底边 底角底角⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩解:三角形像框第三边的取值范围是:∵两边之差<第三边<两边之和即10-3 < x < 10+3(7 < x < 13)符合条件的数是12∴第三根木条应取12cm六、课堂练习课本第4面练习1、2题。
七、课堂小结1、三角形及有关概念;2、三角形的分类;3、三角形三边的不等关系及应用。
略。
《三角形的高、中线与角平分线》学生已学习了角的平分线,线段的中点,垂线和三角形的有关概念及边的性质等,本节课在此基础上进一步认识三角形,为今后学习三角形的内切圆及三心等知识埋下了伏笔.本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段——中线、角平分线。
通过本节内容学习,可使学生掌握三角形的高、中线、角平分线与垂线、角平分线的联系与区别。
另外,本节内容也是日后学习等腰三角形等特殊三角形的基础.故学好本节内容是十分必要的。
【知识与能力目标】1.掌握三角形的高、中线与角平分线定义.。
2.会画三角形的高、中线与角平分线。
3.掌握三角形的三条高线、三条中线与三条角平分线的有关性质。
【过程与方法目标】对学生进行操作训练,边训练边讲解,然后学以致用。
【情感态度价值观目标】训练同学们动手操作的能力,提高学习兴趣。
【教学重点】1.了解三角形的高、中线与角平分线的概念。
2.能利用三角形的高、中线和角平分线的性质进行简单计算。
【教学难点】1.能用自己的语言说出三角形高、中线与角平分线的概念。
2.熟练运用三角形的高、中线和角平分线的性质进行有关计算。
相应课件;三角板等教具。
一. 回顾旧知AEB D C(设计说明:通过对已学知识的回忆来巩固基础知识的运用,并借此引入新课.) 问题1:数一数,图中共有多少个三角形?请将它们全部用符号表示出来。
学生回答:图中共有5个三角形。
它们分别是:△ABC、△ABD、△ACD、△ADE、△CDE。
问题2:利用长为3、5、6、9的四条线段可以组成几个三角形?为什么?学生回答:可以组成2个三角形。
从四条线段中任选三条组成三角形,共有四种选法:①3、5、6,②3、5、9,③3、6、9,④5、6、9,其中,满足“三角形两边之和大于第三边”的只有第①、④这两组。
问题3:利用△ABC的一条边长为4cm,面积是24 cm2这两个条件,你能求出什么结论? 学生回答:能够求出的△ABC高是3 cm.(教学说明:教师利用问题让学生回顾所学知识,特别是问题3内容的变化,可以引起学生注意和疑问,将学生的思路引入与三角形有关的线段中。
)二、自主探究1.通过作图探索三角形的高(设计说明:通过经历画三角形的高的过程,使学生在头脑中留下清晰形象,并能结合这些具体形象叙述高的定义。
)问题1:你能画出下列三角形的所有的高吗?A A AB C B C B C学生画出三角形所有的高,观察这些高的特点。
问题2:根据画高的过程说明什么叫三角形的高?学生讨论回答,师完善并归纳:从三角形的一个顶点向它的对边所在直线作垂线,连接顶点和垂足之间的线段称为三角形的高。
问题3:在这些三角形中你能画出几条高?它们有什么相同点和不同点?学生回答:每个三角形都能画出三条高。
相同点是:三角形的三条高交于同一点。
不同点是:锐角三角形的高交于三角形内一点,直角三角形的高交于直角的顶点,钝角三角形的高交于三角形外一点。
问题4:如图所示,如果AD是△ABC的高,你能得到哪些结论?AB D C学生回答:如果AD是△ABC的高,则有:AD⊥BC于D,∠ADB=∠ADC=90°。
(教学说明:三角形的高的概念在书中并没有具体给出,所以学生在归纳定义的时候会有一定的困难.那么在授课时就要留给学生充足的时间进行思考和讨论,教师可以引导学生先利用具体图形进行定义,再由具体图形中抽出准确、简明的语言,同时要强调:三角形的高是一条线段.在问题3中,有些学生会认为直角三角形只能画出斜边上的一条高,这时教师要给予讲解,说明另外两条直角边也是这个直角三角形的高.而问题4是要将三角形的高用符号语言表示出来,这是为以后学习证明打基础。
)2.类比探索三角形的高的过程探索三角形的中线(设计说明:利用类比的方法进行探索,可以留给学生更多思考与探究的空间,有得于拓展学生的思维,培养学生自主探究的学习习惯。
)问题1:如图,如果点C是线段AB的中点,你能得到什么结论?A C B学生回答:问题2:如图,如果点D是线段BC的中点,那么线段AD就称为△ABC 的中线.类比三角形的高的概念,试说明什么叫三角形的中线?由三角形的中线能得到什么结论?AB D C学生回答:三角形中连结一个顶点和它对边中点的线段称为三角形的中线.如果线段AD是△ABC的中线,那么问题3:画出下列三角形的所有的中线,并讨论说明三角形的中线有什么特点?A A AB C B C B C学生回答:无论哪种三角形,它们都有三条中线,并且这三条中线都会交于一点,这一点都在三角形的内部.问题4:如图所示,在△ABC中,AD是△ABC的中线,AE是△ABC的高.试判断△ABD和△ACD 的面积有什么关系?为什么?AB D E C学生回答:△ABD和△ACD的面积相等.理由:∵AD是△ABC的中线∴BD=CD∵AE既是△ABD的高,也是△ACD的高∴△ABD和△ACD的面积相等.问题5:通过问题4你能发现什么规律?学生回答:三角形的中线将三角形的面积平均分成两份。
(教学说明:让学生利用对三角形的高的探究过程,利用类比的方法进行对三角形的中线的探究.“类比思想”是数学学习中常用的一种思想,所以在授课过程中要让学生体会运用这种思想进行探究的好处,培养自主探究的能力。
问题4和问题5的设立是对三角形中线的知识进行扩展,并不是教科书中的内容,但能够使学生更深刻地体会三角形中线的特点,同时,根据课堂时间的需要,对于这两个问题的讲授,教师可以自行调节。
)3.通过类比的方法探究三角形的角平分线(设计说明:再次使用类比的方法进行探究,让学生经历动脑思考探索的过程,对知识有进一步的理解。
)问题1:如图,若OC是∠AOB的平分线,你能得到什么结论?ACO B学生回答:问题2:如图,在△ABC中,如果∠BAC的平分线AD交BC边于点D,我们就称AD是△ABC 的角平分线.类比探索三角形的高和中线的过程,你能得到哪些结论?三角形的角平分线与角的角平分线相同吗?为什么?AB D C学生回答:三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段称为三角形的角平分线。
三角形有三条角平分线,并且这三条角平分线在三角形内交于一点。
如果AD是△ABC的角平分线,那么就有三角形的角平分线与一个角的角平分线不一样,三角形的角平分线是一条线段,有长度,而角的平分线是一条射线,没有长度。