判定平行四边形的五种方法
判定平行四边形的五种方法
判定平行四边形的五种方法平行四边形的判定方法有:(1 )证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行 且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
下面以近几年的中考题为例说明如何证明四边 形是平行四边形。
一、 两组对边分别平行如图1,已知△ ABC 是等边三角形, D E 分别在边BG AC 上,且CD=CE 连结DE 并延长至点F ,使EF=AE 连结AF 、BE 和CF(1)请在图中找出一对全等三角形,并加以证明; ⑵ 判断四边形ABDF 是怎样的四边形,并说明理由。
解:(1)选证△ BDE^A FEC证明:•••△ ABC 是等边三角形,••• BC=AC Z ACD=60•••CD=CEBD=AE A EDC 是等边三角形 • DE=EC Z CDE M DEC=60•••/ BDE M FEC=120又••• EF=AE • BD=FE ・」BDE^A FEC(2)四边形ABDF 是平行四边形理由:由(1)知,△ ABC △ EDC △ AEF 都是等边三角形•••/ CDE M ABC M EFA=60• AB// DF, BD// AF•••四边形ABDF 是平行四边形。
点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。
一组对边平行且相等例2 已知:如图2,在正方形 ABCD 中, G 是CD 上一点,延长 BC 到E ,使CE=CG 连结BG 并延长交 DE(1)求证:△ BCG^ DCE(2)将厶DCE 绕点D 顺时针旋转90°得到△ DAE ,判断四边形 E' BGD 是什么特殊四边形?并说明 理由。
分析:(2)由于ABCD 是正方形,所以有 AB// DC 又通过旋转 CE=AE 已知CE=CG 所以E' A=CGAD C这样就有BE' =GD可证E' BGD是平行四边形。
平行四边形五个判定方法
平行四边形五个判定方法
1、通过角度判定:如果四个内角相等就是平行四边形;
2、通过边长判定:如果有两条对角线长度相等,其余边长也都相等,就是平行四边形;
3、通过平分线判定:如果可以在四边形内部划出两条平分线,使得两条平分线交于两个对角线的中点,那么这个四边形就是平行四边形;
4、通过三角形判定:将一个平行四边形分成两个三角形,如果这两个三角形的外角和内角都相等,则说明四边形是平行四边形;
5、通过中心矩判定:如果四边形的中心矩是正方形,则这个四边形就是平行四边形。
证明平行四边形的判定定理
证明平行四边形的判定定理
1、两组对边分别平行的四边形是平行四边形;
2、两组对边分别相等的四边形是平行四边形;
3、对角线互相平分的四边形是平行四边形;
4、一组对边平行且相等的四边形是平行四边形;
5、两组对角分别相等的四边形是平行四边形。
1定义
有两组对边分别平行的四边形叫做平行四边形,包括长方形、菱形、正方形和一般平行四边形,其边与边、角与角、对角线之间存在着各种各样的关系,即是平行四边形性质定理。
2性质
两组对边平行且相等;
两组对角大小相等;
相邻的两个角互补;
对角线互相平分;
对于平面上任何一点,都存在一条能将平行四边形平分为两个面积相等图形、并穿过该点的线;
四边边长的平方和等于两条对角线的平方和。
判定平行四边形五种方法
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD 中,E 、F 在对角线AC 上,且AE =CF ,试说明四边形DEBF 是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD .解:连接BD 交AC 于点O .因为四边形ABCD 是平行四边形,所以AO =CO ,BO =DO . 又AE =CF ,所以AO -AE =CO -CF ,即EO =FO .所以四边形DEBF 是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF =BC =1,AB =FC =1,所以四边形ABCF 是平行四边形.同样可知四边形FCDE 、四边形ACDF 都是平行四四边形.因为AE =DB =2,AB =DE =1,所以四边形ABDE 也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,DF =BE ,DF ∥BE ,试说明四边形ABCD 是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD 是平行四边形,但仔细观察可知,由已知条件可得△ADF ≌△CBE ,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件.解:因为DF ∥BE ,所以∠AFD =∠CEB .因为AE =CF ,所以AE +EF =CF +EF ,即AF =CE .又DF =BE ,所以△ADF ≌△CBE ,所以AD =BC ,∠DAF =∠BCE ,所以AD ∥BC .所以四边形ABCD 是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判图1 图2 A B C D EF 图3别例4 如图4,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,则四边形AECF 是平行四边形吗?为什么?分析:由平行四边形的性质易得AF ∥EC ,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF 是平行四边形.理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB =∠BCD ,所以AF ∥EC .又因为∠1=21∠DAB ,∠2=21∠BCD , 所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3,所以∠1=∠3,所以AE ∥CF .所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
平行四边形的性质与判定方法
平行四边形的性质与判定方法平行四边形是几何学中重要的一类四边形,具有独特的性质和判定方法。
在本文中,我们将介绍平行四边形的性质和判定方法,并探讨其应用。
一、平行四边形的性质1. 对边相等性质:平行四边形的对边相等。
即平行四边形的对边AB与CD相等,对边AD与BC相等。
2. 对角线互相平分性质:平行四边形的对角线互相平分。
即对角线AC平分对角线BD,同时对角线BD平分对角线AC。
3. 内角和为180度:平行四边形的内角和为180度。
即∠A + ∠B + ∠C + ∠D = 180°。
4. 侧边对应角相等性质:平行四边形的侧边对应角相等。
即∠A = ∠C,∠B = ∠D。
5. 相邻内角互补性质:平行四边形的相邻内角互补。
即∠A + ∠B = 180°,∠B + ∠C = 180°。
6. 对角线长度关系:平行四边形的对角线长度关系。
即对角线AC 与对角线BD长度相等。
二、平行四边形的判定方法1. 对边相等法:若一个四边形的对边相等,则它是平行四边形。
例如,已知AB = CD,AD = BC,可以判定ABCD是平行四边形。
2. 一组对角线互相平分法:若一个四边形的对角线互相平分,则它是平行四边形。
例如,已知AC平分BD,BD平分AC,可以判定ABCD是平行四边形。
3. 内角和为180度法:若一个四边形的内角和为180度,则它是平行四边形。
例如,已知∠A + ∠B + ∠C + ∠D = 180°,可以判定ABCD是平行四边形。
4. 一组侧边对应角相等法:若一个四边形的侧边对应角相等,则它是平行四边形。
例如,已知∠A = ∠C,∠B = ∠D,可以判定ABCD 是平行四边形。
5. 一组相邻内角互补法:若一个四边形的相邻内角互补,则它是平行四边形。
例如,已知∠A + ∠B = 180°,∠B + ∠C = 180°,可以判定ABCD是平行四边形。
三、平行四边形的应用平行四边形的性质和判定方法在几何学中有广泛的应用。
平行四边形的所有判定
平行四边形的所有判定
平行四边形是一种特殊的四边形,具有两对平行边以及对角线互相平分,是初中数学中重要的内容之一。
为了正确地判定一个四边形是否为平行四边形,需要掌握以下知识点。
一、平行四边形的定义
平行四边形是一个四边形,其对边两两平行,并且对角线互相平分。
二、判定平行四边形的方法
1. 判定两对边是否平行
如果一个四边形的两对边分别平行,则这个四边形是平行四边形。
2. 判定两对角是否平分
如果一个四边形的两条对角线互相平分,则这个四边形是平行四边形。
3. 利用平行线性质推出平行四边形的性质
如果一个四边形的两对对边分别平行,则这个四边形是平行四边形。
可以利用平行线外错角相等、内错角相等、同旁内角互补等性质来判定。
4. 利用平移性质推出平行四边形的性质
如果一个四边形可以通过平移得到一条平行于其对角线的四边形,则这个四边形是平行四边形。
三、平行四边形的性质
1. 对角线互相平分
平行四边形的两条对角线互相平分。
2. 对边相等
平行四边形的对边相等。
3. 同旁内角互补
平行四边形的同旁内角互补。
4. 内角和为360度
平行四边形的内角和等于360度。
四、应用
平行四边形是很多几何题目的基础,熟练掌握平行四边形的判定方法和性质,可以帮助我们正确解题。
特别是在证明中,平行四边形往往是一个重要的中间步骤。
总之,平行四边形是初中数学中一项基本的几何知识,掌握好平行四边形的定义、判定方法和性质,不仅可以在考试中得高分,还能在生活中灵活运用。
特殊平行四边形知识点总结
特殊平行四边形知识点总结
平行四边形、矩形、菱形、正方形的性质:
所有这些图形都有对边相等且平行的性质,四条边都相等的图形是正方形,对角线互相平分的图形是平行四边形,对角线相等的图形是矩形,有一组邻边相等的图形是菱形。
判定方法小结:
判定平行四边形的方法有五种:①两组对边分别平行;②两组对边分别相等;③两组对角分别相等;④对角线互相平分;
⑤一组对边平行且相等。
判定矩形的方法有四种:①有一个角是直角的平行四边形;
②对角线相等的平行四边形;③有三个角是直角的四边形;④对角线相等且互相平分的四边形。
判定菱形的方法有四种:①有一组邻边相等的平行四边形;
②对角线互相垂直的平行四边形;③四边都相等的四边形;④对角线互相垂直平分的四边形。
判定正方形的方法有七种:①有一组邻边相等且有一个角是直角的平行四边形;②对角线互相垂直且相等的平行四边形;
③有一组邻边相等的矩形;④对角线互相垂直的矩形;⑤有一
个角是直角的菱形;⑥对角线相等的菱形;⑦对角线互相垂直平分且相等的四边形。
基础达标训练:
1.两条对角线的四边形是平行四边形;
2.两条对角线的四边形是矩形;
3.两条对角线的四边形是菱形;
4.两条对角线的四边形是正方形;
5.两条对角线的平行四边形是矩形;
6.两条对角线的平行四边形是菱形;
7.两条对角线的平行四边形是正方形;
8.两条对角线的矩形是正方形;
9.两条对角线的菱形是正方形。
平行四边形的判定定理五条
平行四边形的判定定理五条平行四边形是构成很多重要几何图形的基础,其具有非常重要的意义,它的存在被用于解决许多几何问题。
众所周知,任何一个平行四边形都具备着某种形式的定理,其中有五条定理是平行四边形最为重要的定理。
本文将就这五条定理进行介绍,以供读者参考。
第一条定理:恒等边定理。
指出,如果一个四边形的四条边分别相等,那么它一定是平行四边形。
而且,由于所有四条边相等,因此这个平行四边形中所有四边和它四个顶点共线。
第二条定理:对边平行定理。
这条定理说明,如果一个四边形的两条对边是平行的,那么它就是一个平行四边形。
其中,对边的定义是,两条边的长度和角度一样,但是方向相反。
第三条定理:相邻边与对边平行定理。
这条定理指出,如果一个四方形的四个顶点连成四条边,使得相邻边之间是平行的,那么它就是一个平行四边形。
第四条定理:对角线垂直定理。
它显示,如果一个四边形的对角线垂直相交,那么它就是一个平行四边形。
第五条定理:面积定理。
这条定理指出,如果一个四边形的面积是平行四边形的面积,那么它就是一个平行四边形。
上述就是平行四边形的判定定理五条。
通过这五条定理,我们可以很容易地确定一个四边形是否是平行四边形,从而对几何图形的性质有更深入的了解。
判定定理不仅被用于几何,而且也被用于投资、经济学等学科中,它使平行四边形的判定变得更加简单和便捷。
四边形的判定定理五条,为我们在几何图形的研究提供了重要的依据。
平行四边形的判断虽然看似简单,但背后却有很多深奥的数学知识,帮助人们更好的把握几何图形的特征,更加深入的了解几何结构带来的美感和几何形状的布局能力。
总之,平行四边形的判定定理五条为我们几何研究提供了重要的依据,不仅可以用来研究几何图形,而且也有助于经济和投资领域的研究,以及对于布局特征的研究。
在未来,我们将继续深入研究平行四边形的判定定理,以充分发挥它们在几何及其他学科中的应用。
到此,本文就《平行四边形的判定定理五条》的介绍到这里,以期让读者对平行四边形有更深入的了解,从而更好的应用到解决几何问题中去。
判定平行四边形的五种方法
判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
下面以近几年的中考题为例说明如何证明四边形是平行四边形。
一、 两组对边分别平行如图1,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF 是怎样的四边形,并说明理由。
解:(1)选证△BDE≌△FEC证明:∵△ABC 是等边三角形,∴BC=AC,∠ACD=60°∵CD=CE,∴BD=AE,△EDC 是等边三角形∴DE=EC,∠CDE=∠DEC=60°∴∠BDE=∠FEC=120°又∵EF=AE,∴BD=FE,∴△BDE≌△FEC(2)四边形ABDF 是平行四边形理由:由(1)知,△ABC、△EDC、△AEF 都是等边三角形∵∠CDE=∠ABC=∠EFA=60°∴AB∥DF,BD∥AF∵四边形ABDF 是平行四边形。
点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。
二、 一组对边平行且相等例2 已知:如图2,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连结BG 并延长交DE于F(1)求证:△BCG≌△DCE;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形?并说明理由。
分析:(2)由于ABCD 是正方形,所以有AB∥DC,又通过旋转CE=AE′已知CE=CG ,所以E′A=CG,A FB DC E 图1这样就有BE′=GD,可证E′BGD是平行四边形。
平行四边形的判定方法
平行四边形的判定方法
平行四边形是指具有两组对边分别平行的四边形,它是几何学中的基本图形之一。
在日常生活和工程实践中,我们经常需要判定一个四边形是否为平行四边形。
下面将介绍几种判定平行四边形的方法。
1. 对角线互相平分。
判定一个四边形是否为平行四边形的一个简单方法是检查其对角线。
如果一个四边形的对角线互相平分,即相交于中点,那么这个四边形就是平行四边形。
这是因为平行四边形的对角线互相平分是其特征之一。
2. 对边互相平行。
平行四边形的定义就是具有两组对边分别平行的四边形。
因此,判定一个四边形是否为平行四边形的方法之一就是检查其对边是否互相平行。
如果一个四边形的对边分别平行,则它就是平行四边形。
3. 对角线长度相等。
另一个判定平行四边形的方法是检查其对角线的长度。
如果一个四边形的对角线长度相等,那么它就是平行四边形。
这是因为平行四边形的对角线长度相等是其特征之一。
4. 内角相等。
最后一个判定平行四边形的方法是检查其内角是否相等。
如果一个四边形的内角相等,那么它就是平行四边形。
这是因为平行四边形的内角相等是其特征之一。
综上所述,判定一个四边形是否为平行四边形有多种方法,可以根据具体情况选择合适的方法进行判定。
在实际应用中,可以结合多种方法进行判定,以确保结果的准确性。
希望以上介绍能够帮助您更好地理解和判定平行四边形。
平行四边形判定方法
平行四边形判定方法一、边的要素方法1:两组对边分别相等的四边形是平行四边形.【例1】如图1,已知△ABC,分别以它的三边为边长,在BC边的同侧作三个等边三角形,即△ABD、△BCE、△ACF.试判断四边形ADEF是一个什么样的四边形?【解析】四边形ADEF是平行四边形.因为△ABD、△BCE、△ACF都是以△ABC的三边为边长在BC的同侧所作的等边三角形,所以△BDE和△CFE可以分别看成是△ABC绕点B、点C旋转60°后而得到的.于是有DE=AC=AF,AD=BD=AB=EF,所以四边形ADEF是平行四边形(两组对边分别相等).方法2:一组对边平行且相等的四边形是平行四边形.【例2】如图2,?荀ABCD中,点E、F分别是BC、AD上的一点,且BE=DF.试说明四边形AECF是平行四边形的理由.【解析】因为四边形ABCD是平行四边形,所以AD∥BC,且AD=BC.又因为BE=DF,所以AF=CE,即AF∥CE且AF=CE.故四边形AECF是平行四边形(一组对边平行且相等).方法3:两组对边分别平行的四边形是平行四边形.【例3】如图3,已知?荀ABCD中,点E是AB延长线上的一点,且EC∥BD.试说明线段BE与AB相等的理由.【解析】由四边形ABCD是平行四边形可知AB∥CD且AB=CD,即BE∥CD.又因为BD∥EC,所以四边形BECD是平行四边形(两组对边分别平行).所以BE=CD.故BE=AB.二、角的要素方法4:两组对角分别相等的四边形是平行四边形.【例4】如图4,已知AE、CF分别是ABCD的∠DAB、∠BCD的平分线.试说明四边形AFCE是平行四边形.【解析】由四边形ABCD是平行四边形可知:∠DAB=∠BCD,AB∥CD.又AE、CF分别是∠DAB、∠BCD的平分线,所以∠EAF=∠ECF,∠AED=∠EAF=∠ECF=∠BFC,所以∠AEC=∠CFA,故四边形AFCE 是平行四边形(两组对角相等).三、对角线的要素方法5:两条对角线互相平分的四边形是平行四边形.【例5】如图5,已知M、N是ABCD的对角线上两点,且BM=DN.试探索∠MAN与∠MCN的关系,并说明你的理由.(请大家自己想一想)下面再举一例说明如下.【例】如图所示,四边形ABCD中,AB=CD,∠ADB=∠CBD=90°,四边形ABCD是平行四边形吗?说说你的理由.【思考与分析】本题是平行四边形判定题,我们可以根据平行四边形的判定定理从多角度攻破此题,比如利用两组对角分别相等,一组对边平行且相等,两组对边分别相等及其它一些定理进行判定.解法1:∵ AB=CD,∠ADB=∠CBD=90°,DB=BD,∴Rt△ABD≌Rt△CDB.∴∠ABD=∠CDB,∠A=∠C.∴∠ABD+∠CBD=∠CDB+∠ADB,即∠ABC=∠CDA.∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形).解法2:∵ AB=CD,∠ADB=∠CBD=90°,DB=BD,∴Rt△ABD≌Rt△CDB.∴∠ABD=∠CDB.∴ AB∥CD.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).解法3:∵ AB=CD,∠ADB=∠CBD=90°,DB=BD,∴Rt△ABD≌Rt△CDB.∴ AD=CB.又∵ AB=CD,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).解法4:∵ AB=CD,∠ADB=∠CBD=90°,DB=BD,∴Rt△ABD≌Rt△CDB.∴∠ABD=∠CDB.∴ AB∥CD.又∵∠ADB=∠CBD,∴ AD∥CB.∴四边形ABCD是平行四边形(平行四边形的定义)。
平行四边形9个判定
平行四边形9个判定平行四边形是初中数学中常见的图形之一,平行四边形的判定方法也是比较经典的问题。
本文将围绕“平行四边形9个判定”进行讲解。
一、平行四边形的定义平行四边形是有四边的四边形,其中相邻两边两两平行。
二、平行四边形的基本性质1. 对角线互相平分2. 对角线相交于中心点3. 相邻角互补,即相邻两角和为180度4. 对角线长度相等5. 对边平等6. 具有对称性三、平行四边形的判定平行四边形的判定方法有很多,根据实际条件选择不同的判定方法即可。
下面列举9种平行四边形的判定方法。
1. 对边平等:如果一个四边形的对边平等,那么它就是平行四边形。
2. 对角线互相平分:如果一个四边形的对角线互相平分,那么它就是平行四边形。
3. 对角线互相垂直:如果一个四边形的对角线互相垂直,那么它就是平行四边形。
4. 一组对边平行:如果一个四边形的一组对边平行,那么它就是平行四边形。
5. 同位角相等:如果两个平行线之间的同位角相等,那么它们所对应的四边形是平行四边形。
6. 利用夹角的性质:如果一个四边形的内部相邻两角是补角,则它是平行四边形。
7. 直角定理:如果一个四边形有两个相对的直角,则它是平行四边形。
8. 垂直平分线的性质:如果一个四边形有一个内部点与相邻两边垂直平分线相交,则它是平行四边形。
9. 等角平分线的性质:如果一个四边形有一个内部点与相邻两边等角平分线相交,则它是平行四边形。
四、总结平行四边形是初中数学中比较基础的图形,学好平行四边形的属性和判定方法,有利于以后的学习。
通过以上的九种判定方法,学生们可以灵活运用,来解决实际的问题。
建议同学们在学习过程中注重实际运用,并多做习题来加深理解,从而真正理解和掌握平行四边形的知识。
平行四边形判定方法.(最新整理)
⑤两组对角分别相等的四边形是平行四边形.
【能力解读】
1. 掌握平行四边形的判定方法,会利用平行四边形的性质和判定进行有关线段的证明和角
的计算。
2. 将平行四边形转化成三角形来研究,深入理解平行四边形的性质和判定。
3. 平行四边形的性质和判定是中考命题的热点,特别是平行四边形的判定多与其他知识点
结合命题,以平行四边形为基架而精心设计的的中考题更是璀璨夺目,精彩四射。
欲证四边形 AGCH 为平行四边形,由已知 A D∥BC,即 AH∥CG,故只需证 HC∥AG,也
即转化证∠AEB=∠CFD.由△ABE≌△CDF 可得∠AEB=∠CFD,从而转化证 HC∥AG,问题得证.Fra bibliotek②类比思想
平行四边形的五种判定方法中,有一种与对角线有关,一种与对角有关,其他三种与边有关这,
体现。 例 4.(河南课改实验区)如图 4,在□ABCD 中,点 E、F 在 BD 上,且 BF=DE。 ⑴ 写出图中所有你认为全等的三角形; ⑵ 延长 AE 交 BC 的延长线于 G,延长 CF 交 DA 的延长线于 H(请补全图形),证明四边形
AGCH 是平行四边形.
A
D
F
E
B
C
图 4-1
H
A
D
图5
【解】可由 AE CF ,证得 AFCE 是平行四边形,所以 AF∥CE
同理:四边形 BFDE 是平行四边形,所以 BE∥DF,所以四边形 EGFH 是平行四边形,EF、GH 互相平分。
平行四边形的判定
【知识要点】
同学们都知道,平行四边形具有对边平行且相等,对角相等,对角线互相平分等性质,
并且我们得到了平行四边形的五种判定方法:
判定四边形是平行四边形的7种方法
判定四边形是平行四边形的7种方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!在几何学中,平行四边形是指有四条边且对边平行的四边形。
判定平行四边形的五种方法
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F 在对角线AC上,且AE=CF,试说明四边形DEBF 是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,图1AB C DEF并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判图3别平行四边形所需的“一组对边平行且相等”的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE,所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判别例 4 如图4,在平行四边形ABCD中,∠DAB、∠BCD的平分线分别交BC、AD边于点E、F,则四边形AECF是平行四边形吗?为什么?分析:由平行四边形的性质易得AF∥EC,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF是平行四边形.AB CDEF图41 32理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB=∠BCD ,所以AF ∥EC.又因为∠1=21∠DAB ,∠2=21∠BCD ,所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3, 所以∠1=∠3,所以AE ∥CF.所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
平行四边形的性质与判定方法
平行四边形的性质与判定方法在几何学中,平行四边形是四边形的一种特殊形式,具有独特的性质和判定方法。
本文将介绍平行四边形的性质以及常用的判定方法。
一、平行四边形的性质1. 对边平行性质:平行四边形的对边是平行的。
也就是说,如果一条线段与一边平行,并且与另一边平行,则该线段与其他两条边也是平行的。
2. 对角线性质:平行四边形的对角线相互平分。
也就是说,平行四边形的对角线相交于一点,并且该交点将对角线分成相等的两段。
3. 对边长度性质:平行四边形的对边长度相等。
也就是说,对边AB与CD长度相等,对边BC与AD长度相等。
4. 内角性质:平行四边形的内角是180度的。
也就是说,平行四边形的相邻内角和为180度。
二、平行四边形的判定方法1. 对边平行判定方法:如果两组对边分别平行,则该四边形是平行四边形。
常用的判定方法有以下几种:a. 使用角度关系:如果四边形的内角满足相邻内角和为180度,且任意一组对边上的对应角相等,则该四边形是平行四边形。
b. 使用边长关系:如果四边形的两组对边长度相等,则该四边形是平行四边形。
2. 对角线等分判定方法:如果一组对角线互相等分,则该四边形是平行四边形。
常用的判定方法有以下几种:a. 使用距离关系:如果四边形的两组对角线上的中点相互连接后,相交的线段等长,则该四边形是平行四边形。
b. 使用角度关系:如果四边形的一组对角线与另一组对角线的交点将两组对边等分,则该四边形是平行四边形。
三、示例应用假设我们有一个四边形ABCD,其中AB与CD平行,AD与BC平行。
我们可以通过以下步骤来判定该四边形是否为平行四边形:1. 计算角度关系:测量四边形的内角,如果相邻内角和为180度,且两组对边上的对应角相等,那么我们可以初步判断该四边形可能是平行四边形。
2. 计算边长关系:测量四边形的对边长度,如果对边AB与CD长度相等,对边AD与BC长度相等,那么我们可以确认该四边形是平行四边形。
3. 进一步验证:我们可以通过判断对角线等分关系来进一步验证。
平行四边形的判定
平行四边形的判定
根据平行四边形的定义来判断:两组对边分别平行的四边形是平行四边形。
简单记就是:两组对边分别平行。
平行四边形的判定方法
1、两组对边分别平行的四边形是平行四边形(定义判定法);
2、一组对边平行且相等的四边形是平行四边形;
3、两组对边分别相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);
5、对角线互相平分的四边形是平行四边形。
补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。
平行四边形性质
有两组对边分别平行的四边形叫做平行四边形,包括长方形、菱形、正方形和一般平行四边形,其边与边、角与角、对角线之间存在着各种各样的关系,即是平行四边形性质定理。
两组对边平行且相等;
两组对角大小相等;
相邻的两个角互补;
对角线互相平分;
对于平面上任何一点,都存在一条能将平行四边形平分为两个面积相等图形、并穿过该点的线;
四边边长的平方和等于两条对角线的平方和。
判定平行四边形的五种方法(最新整理)
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F在对角线AC上,且AE=CF,试说明四边形DEBF是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE,所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判别图1图2AB C DEF图3例4 如图4,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,则四边形AECF 是平行四边形吗?为什么?分析:由平行四边形的性质易得AF ∥EC ,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF 是平行四边形.理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB =∠BCD ,所以AF ∥EC .又因为∠1=∠DAB ,∠2=∠BCD ,2121所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3,所以∠1=∠3,所以AE ∥CF .所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判定平行四边形的五种方法
平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
下面以近几年的中考题为例说明如何证明四边形是平行四边形。
一、
两组对边分别平行
如图1,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF
(1)请在图中找出一对全等三角形,并加以证明;
(2)判断四边形ABDF 是怎样的四边形,并说明理由。
解:(1)选证△BDE≌△FEC 证明:∵△ABC 是等边三角形, ∴BC=AC,∠ACD=60°
∵CD=CE,∴BD=AE,△EDC 是等边三角形 ∴DE=EC,∠CDE=∠DEC=60° ∴∠BDE=∠FEC=120°
又∵EF=AE,∴BD=FE,∴△BDE≌△FEC (2)四边形ABDF 是平行四边形
理由:由(1)知,△ABC、△EDC、△AEF 都是等边三角形 ∵∠CDE=∠ABC=∠EFA=60° ∴AB∥DF,BD∥AF
∵四边形ABDF 是平行四边形。
点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。
二、 一组对边平行且相等
例2 已知:如图2,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连结BG 并延长交DE
于F
(1)求证:△BCG≌△DCE;
A
F
B
D
C
E
图1
(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形并说明理
由。
分析:(2)由于ABCD是正方形,所以有AB∥DC,又通过旋转CE=AE′已知CE=CG,所以E′A=CG,这样就有BE′=GD,可证E′BGD是平行四边形。
解:(1)∵ABCD是正方形,
∴∠BCD=∠DCE=90°又∵CG=CE,△BCG≌△DCE
(2)∵△DCE绕D顺时针
旋转90°得到△DAE′,
∴CE=AE′,∵CE=CG,∴CG=AE′,
∵四边形ABCD是正方形
∴BE′∥DG,AB=CD
∴AB-AE′=CD-CG,即BE′=DG
∴四边形DE′BG是平行四边形
点评:当四边形一组对边平行时,再证这组对边相等,即可得这个四边形是平行四边形
三、两组对边分别相等
例3如图3所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE,等边△BCF。
求证:四边形DAEF是平行四边形;
分析:利用证三角形全等可得四边形DAEF的两组对边分别相等,从而四边形DAEF是平行四边形。
解:∵△ABD和△FBC都是等边三角形
∴∠DBF+∠FBA=∠ABC+∠FBA=60°
∴∠DBF=∠ABC
又∵BD=BA,BF=BC ∴△ABC≌△DBF
∴AC=DF=AE同理△ABC≌△EFC
∴AB=EF=AD
∴四边形ADFE是平行四边形
点评:题设中存在较多线段相等关系时,可证四边形的两组对边分别相等,从而可证四边形是平行
四边形。
四、对角线互相平分
例4已知:如图4,平行四边形ABCD的对角线AC和BD相交于O,AE⊥BD于E,BF⊥AC于F,CG⊥BD 于G,DH⊥AC于H,求证:四边形EFGH是平行四边形。
图4
分析:因为题设条件是从四个顶点向对角线引垂线,这些条件与四边形EFGH的对角线有关,若能证出OE=OG,OF=OH,则问题可获得解决。
证明:∵AE⊥BD,CG⊥BD,
∴∠AEO=∠CGO,
∵∠AOE=∠COG,OA=OC
∴△AOE≌△COG,∴OE=OG
同理△BOF≌△DOH
∴OF=OH
∴四边形EFGH是平行四边形
点评:当已知条件与四边形两对角线有关时,可证两对角线互相平分,从而证四边形是平行四边形。
五、两组对角相等
例5 将两块全等的含30°角的三角尺如图1摆放在一起
四边形ABCD是平行四边形吗理由。
(1)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗说
出你的结论和理由:。
分析:因为题设与四边形内角有关,故考虑四边形的两组内角相等解决问题。
解:(1)四边形ABCD 是平行四边形,理由如下: ∠ABC=∠ABD+∠DBC=30°+90°=120°, ∠ADC=∠ADB+∠CDB=90°+30°=120° 又∠A=60°,∠C=60°, ∴∠ABC=∠ADC,∠A=∠C
(2)四边形ABC 1D 1是平行四边形,理由如下:
将Rt△BCD 沿射线方向平移到Rt△B 1C 1D 1的位置时,有Rt△C 1BB 1≌Rt△ADD 1 ∴∠C 1BB 1=∠AD 1D ,∠BC 1B 1=∠DAD 1
∴有∠C 1BA=∠ABD+∠C 1BB 1=∠C 1D 1B 1+∠AD 1B=∠AD 1C 1,∠BC 1D 1= ∠BC 1B 1+∠B 1C 1D 1=∠D 1AD+∠DAB=∠D 1AB 所以四边形ABC 1D 1是平行四边形
点评:(2)也可这样证明:由(1)知ABCD 是平行四边形,∴AB∥CD,将
Rt△BCD 沿射线BD 方向平移到Rt△B 1C 1D 1的位置时,始终有AB∥C 1D 1,故ABC 1D 1是平行四边形。
=
=。