matlab第二章

合集下载

第二章: MATLAB仿真

第二章: MATLAB仿真

• 在通信与电子工程领域,Simulink 提供的常用专业模块库有:
(1)CDMA参考库 (2)通信系统模块库 (3)DSP模块库等
SIMULINK仿真步骤:
• 启动MATLAB,进入simulink模块库窗口 • 在simulink窗口单击菜单项file\new\model,
新建一个simulink模型文件 • 在simulink库中选取所需模块,拖到新建
第三部分 SIMULINK仿真
什么是SIMULINK?
• SIMULINK是 MATLAB 中的一个建立 系统方框图和基于方框图级的系统仿真 环境,是一个对动态系统进行建模、仿 真并对仿真结果进行分析的软件包。
SIMULINK的特点
• 可视化建模 • 仿真结果可近乎“实时”地通过可视化
模块,如示波器模块、频谱仪模块及数 据输入、输出模块等显示出来。 • 附带大量的专业仿真模块库
五、提高程序执行速度的原则
(1)尽量避免采用循环语句,可用向量化语 句替代
(2)对大型数组或矩阵先进行初始化,即用 “zeros”或”ones”对矩阵定维,可减少内存 分配耗时 (3)尽量使用MATLAB内在函数 (4)更先进有效的算法
第二部分 MATLAB编程仿真
一、时间连续信号与系统的计算机仿真
function in=f(t)
%输入信号
in=(t>0)*1;
%输入信号为阶跃信号
微分方程组求解:
%filename ex123.m
L=1;
%电感值
C=0.1;
%电容值
for R=[1.5 3 5] %仿真电阻值分别为1.5,3,5
[t,x]=ode45(‘funcforex123’,[-1,10],[0;1],[],R,L,C);

第二章 MATLAB基础

第二章 MATLAB基础
27
3 )向量是一个数学量,一般高级语言中也未引入, 它可视为矩阵的特例。从MATLAB的工作区可以查 看到:一个 n 维的行向量是一个 1 × n 阶的矩阵,而 一个n维的列向量则当成n×1阶的矩阵。 如A=[1 2 3 4]就是一个4维的行向量。也可看成是 一个一维数组,还要看成是一个1×4阶的矩阵。
3
数据类型转换函 数 uint8 uint16 uint32 uint64 int8 int16 int32 int64
说 明 无符号8位整数 无符号16位整数 无符号32位整数 无符号64位整数 有符号8位整数 有符号16位整数 有符号32位整数 有符号64位整数
字节数 1 2 4 8 1 2 4 8
22
【例 2.8】变量赋值 >> a=3.14 a= 3.1400 >> class(a) %函数class用来是判断变量数据类 型的 ans = double %变量a是双精度的浮点型数据
23
>> a='hello!' hello! >> class(a) ans = char
%变量a重新赋值
13
>> whos Name Size a 1x1 x 1x1 y 1x1 z 1x1
Bytes Class Attributes 16 double complex 4 int32 4 int32 8 int32 complex
14
2.2MATLAB的常量及变量
2.2.1常量 常量是程序语句中取不变值的那些量。如表达式 y=0.314*x,其中就包含一个0.314这样的数值常数,它 便是一个数值常量。而在另一表达式s='Hello'中,单引 号内的英文字符串“Hello”则是一个字符串常量。

matlab第2章

matlab第2章
21
2. MATLAB变量的显示
任何MATLAB语句的执行结果都可以在屏幕上显示,同时赋值
给指定的变量。没有指定变量பைடு நூலகம்,赋值给默认变量名ans,数据
的显示格式由format命令控制。
Format只影响结果的显示,不影响计算与存储。
MATLAB以双字长浮点数(双精度)执行所有的运算。
22
2.4.1.2 字符串
a在前面未赋值时,非法命令。
19
1. 变量命名规则 (1)变量名区分字母的大小写,A与a表示不同的变量。 (2)变量名必须以英文字母开头,之后可以使用字母、数字、下画线, 但不能使用空格和标点符号。 (3)变量名长度不能超过31个字符,超过部分将被忽略
(4)某些常量也可以作为变量使用。
如 i 在MATLAB中表示虚数单位,但也可以作为变量使用。
5
3.Debug主菜单项 (1)Open M-Files when Debugging:调试时打开M文件 (2)Step:单步调试程序
(3)Step In:单步调试进入子程序
(4)Step Out:单步调试从子程序跳出 (5)Continue:程序执行到下一断点 (6)Clear Breakpoints in All Files:清除所有打开文件中的断点 (7)Stop if Errors/Warnings:在程序出错或报警处停止往下执行
8
5.Window主菜单项 (1)Close All documents:关闭所有文档 (2)0 Command Window:选定命令窗口为当前活动窗口 (3)1 Command History:选定历史命令窗口为当前活动窗口 (4)2 Current Directory:选定当前路径窗口为当前活动窗口

MATLAB 第2章 离散时间信号与系统

MATLAB 第2章 离散时间信号与系统

(2)移位:将 h(-m)移位 n,即得h(n-m).当 n为正整数时, 右移n位,当n为负整数时,左移n位.
(3) 相乘:再将h(n-m)和x(m)的相同m值的对应点值相乘. (4)相加:把以上所有对应点的乘积叠加起来,即得y(n)值. 依上法,取n=…, -2, -1, 0, 1, 2, …各值,即可得全部y(n)值.
y( 1 ) 0
1 1 y(1 ) 1 2 2
数字信号处理
图1-8 x(n)和h(n)的卷积和图解
第2章离散时间信号与系统
利用图1-8,求任意一个y(n)时,只需将两序 列对应位置上的点相乘再求和即可。
数字信号处理
第2章离散时间信号与系统
二. 常用的典型序列
1.单位采样序列(单位冲激序列,单位脉冲序列) ( n )
x(2n)
3
2 x(2 n)
2
4 2
1 1
0
1
n
0
1
2
3
n
数字信号处理
第2章离散时间信号与系统
2.2 离散时间系统
定义:一个离散时间系统是将输入序列变换成输出
序列的一种运算。
若以T[· ]来表示这种运算,则一个离散时间系统 可表示为:
y ( n ) T [ x ( n )]
离散时间系统中最重要、 最常用的是“线性移
例如 s i n n 4
N 8
/ 0 PQ / (2)当 2 / 0 不是整数,是一个有理数时,设 2
P和Q是互为素数的整数,取k=Q,则N=P; 例如 s i n 数字信号处理
4 5
时, 2 / 0
2 5 4 / 5 2
N 5
第2章离散时间信号与系统

第二章MATLAB数据及其运算

第二章MATLAB数据及其运算
– 方法二:利用linspace函数 linspace(a,b,n) » a和b是生成向量的第一个和最后一个元素,n是元素总数
显然,linspace(a,b,n) =a:(b-a)/(n-1):b
17
矩阵元素的引用
方法一:通过下标(subscript)引用矩阵的元素
– 例如 A(3,2)=200
方法二:采用矩阵元素的序号(index)来引用矩阵元素。
例:利用M文件建立MYMAT矩阵
– (1) 启动有关编辑程序或MATLAB文本编辑器,并输入待建矩阵: MYMAT=[101,102,103,104,105,106,107,108,109; 201,202,203,204,205,206,207,208,209; 301,302,303,304,305,306,307,308,309];
主要内容 MATLAB 数据的特点 变量及其操作 MATLAB矩阵的表示 MATLAB数据的运算 字符串 结构数据和单元数据
1
MATLAB数据的特点
矩阵是MATLAB最基本、最重要的数据对象 – MATLAB的大部分运算或命令都是在矩阵运算的意义 下执行的
问题: – 单个数据如何用矩阵表示?x=5 – 1*1矩阵 – 向量如何用矩阵表示?a=[1,2,3] – 行向量:1*n矩阵;列向量:n * 1矩阵
A(1,2) = [ ] 出错!
A(1,2) = 0
可以
21
主要内容 MATLAB 数据的特点 变量及其操作 MATLAB矩阵的表示 MATLAB数据的运算 字符串 结构数据和单元数据
22
MATLAB数据的运算
算术运算
– 基本算术运算 » +(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)

第2章 MATLAB的基础知识

第2章 MATLAB的基础知识

a=[1 2 1;2 2 1;2 1 2]; b=[1;2;3]; a/b %矩阵右除
运行程序,得到结果:
??? Error using ==> mrdivide Matrix dimensions must agree.
重新输入语句
a\b
%矩阵左除 ans = 1.0000 -0.3333 0.6667
运行程序,得到结果:
c= 0 0 1 1 1 0
说明 对于复数运算,“= =”与“~ =”运算,既比较实部, 又比较虚部。而其他运算仅比较实部。关系运算同样也可用于 常量与矩阵的比较,在这种情况下,该常量与矩阵的每一个元 素进行比较,其结果是一个与矩阵同维数的0、1矩阵。
逻辑操作符
逻辑操作符 说 明 相对应函数
-0.1667 0 0
(3)矩阵特征值运算
矩阵条件数cond( ) 矩阵的秩rank() 矩阵特征值eig ( )
矩阵范数norm( ) 矩阵的迹trace ( ) 矩阵奇异值svd ( )
例2-7 分别计算矩阵a的有关特征参数。输入以下 MATLAB语句
a=[1 2 3;4 5 6;7 8 0] [cond(a),norm(a),rank(a)]
2.MATLAB工作环境
图形窗口“Figure”
M文件窗口
3.MATLAB的M文件
所谓M文件,就是用户把要实现的命令写在一个 以.m为扩展名的文件中
M文件有两种格式(统称为M文件) 函数式M文件 程序式M文件 程序式M文件用于把很多需要在命令窗口输入的命 令放在一起,就是命令的简单叠加 函数式M文件用于把重复的程序段封装成函数供用 户调用。
&
|
逻辑与
逻辑或
and(a,b)

matlab第二章习题答案

matlab第二章习题答案

第一大题:(1)a = 7/3b = sym(7/3)c = sym(7/3,'d')d = sym('7/3')v1=vpa(abs(a-d))v2=vpa(abs(b-d))v3=vpa(abs(c-d))a =2.3333b =7/3c =2.3333333333333334813630699500209d =7/3v1 =0.0v2 =0.0v3 =0.00000000000000014802973661668756666666667788716(2)a = pi/3b = sym(pi/3)c = sym(pi/3,'d')d = sym('pi/3')v1=vpa(abs(a-d))v2=vpa(abs(b-d))v3=vpa(abs(c-d))a =1.0472b =pi/3c =1.047197551196597631317786181171d =pi/3v1 =0.0v2 =0.0v3 =0.00000000000000011483642827992216762806615818554(3)a = pi*3^(1/3)b = sym(pi*3^(1/3))c = sym(pi*3^(1/3),'d')d = sym('pi*3^(1/3)')v1=vpa(abs(a-d))v2=vpa(abs(b-d))v3=vpa(abs(c-d))a =4.5310b =1275352044764433/281474976710656c =4.5309606547207899041040946030989d =pi*3^(1/3)v1 =0.00000000000000026601114166290944374842393221638 v2 =0.00000000000000026601114166290944374842393221638 v3 =0.0000000000000002660111416629094726767991785515第二大题:(1)c1=3/7+0.1c1 =0.5286双精度(2)c2=sym(3/7+0.1)c2 =37/70符号(3)c3=vpa(sym(3/7+0.1))c3 =0.52857142857142857142857142857143完整显示精度第三大题:(1)findsym(sym('sin(w*t)'),1)ans =w(2)findsym(sym('a*exp(-X)' ) ,1)ans =a(3)findsym(sym('z*exp(j*theta)'),1)ans =z第四大题:A=sym('[a11 a12 a13;a21 a22 a23;a31 a32 a33]')A =[ a11, a12, a13][ a21, a22, a23][ a31, a32, a33]DA=det(A)DA =a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31w=inv(A)w =[ (a22*a33 - a23*a32)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31), -(a12*a33 -a13*a32)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 +a13*a21*a32 - a13*a22*a31), (a12*a23 - a13*a22)/(a11*a22*a33 -a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)] [ -(a21*a33 - a23*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31), (a11*a33 -a13*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 +a13*a21*a32 - a13*a22*a31), -(a11*a23 - a13*a21)/(a11*a22*a33 -a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)] [ (a21*a32 - a22*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31), -(a11*a32 -a12*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 +a13*a21*a32 - a13*a22*a31), (a11*a22 - a12*a21)/(a11*a22*a33 -a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)] IAs=subexpr(w,'d')d =1/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)IAs =[ d*(a22*a33 - a23*a32), -d*(a12*a33 - a13*a32), d*(a12*a23 -a13*a22)][ -d*(a21*a33 - a23*a31), d*(a11*a33 - a13*a31), -d*(a11*a23 -a13*a21)][ d*(a21*a32 - a22*a31), -d*(a11*a32 - a12*a31), d*(a11*a22 -a12*a21)]第六大题:syms ksyms x positives_s=2/(2*k+1)*((x-1)/(x+1))^(2*k+1)s_ss=simple(symsum(s_s,k,0,inf))s_s =(2*((x - 1)/(x + 1))^(2*k + 1))/(2*k + 1)警告: simple will be removed in a future release. Use simplify instead. [> In sym.simple at 41]s_ss =log(x)第八大题:syms x clearsyms xh=exp(-abs(x))*abs(sin(x))si=vpa(int(h,-5*pi,1.7*pi),64)h =abs(sin(x))*exp(-abs(x))si =1.087849417255503701102633764498941389696991336803454392428439159 第九大题:syms x y clearsyms x yr=int(int(x^2+y^2,y,1,x^2),x,1,2)r =1006/105第十大题:syms t x;f=sin(t)/t;y=int(f,t,0,x)y1=subs(y,x,sym('4.5'))ezplot(y,[0,2*pi])y =sinint(x)y1 =syms x clearsyms x ny=sin(x)^nyn=int(y,0,1/2*pi)y31=vpa(subs(yn,n,sym('1/3')))y32=vpa(subs(yn,n,1/3))y =sin(x)^nyn =piecewise([-1 < real(n), beta(1/2, n/2 + 1/2)/2], [real(n) <= -1, int(x^n/(1 - x^2)^(1/2), x, 0, 1)])y31 =1.2935547796148952674767575125656y32 =1.2935547796148952674767575125656第二十题:clearsyms y xy=dsolve('(Dy*y)/5+x/4=0','x')y =2^(1/2)*(C6 - (5*x^2)/8)^(1/2)-2^(1/2)*(C6 - (5*x^2)/8)^(1/2)y1=subs(y,'C6',1)y1 =2^(1/2)*(1 - (5*x^2)/8)^(1/2)-2^(1/2)*(1 - (5*x^2)/8)^(1/2)clfhy1=ezplot(y1(1),[-2,2,-2,2],1)set(hy1,'Color','r')grid onhold onhy2=ezplot(y1(2),[-2,2,-2,2],1)set(hy2,'Color','b')grid onxlabel('Y')ylabel('X')hold offbox onlegend('y(1)','y(2)','Location','Best')hy1 =174.0155hy2 =177.0145。

Matlab第2章

Matlab第2章
2 2 2 2
程序控制结构
3.break语句和continue语句 break语句用于终止循环的执行。当在循环体内执行到该语 句时,程序将跳出循环,继续执行循环语句的下一语句。 continue语句控制跳过循环体中的某些语句。当在循环体内 执行到该语句时,程序将跳过循环体中所有剩下的语句,继 续下一次循环。 【例2.11】输入两个整数,求它们的最小公倍数。 程序如下: x=input('请输入第一个数:'); y=input('请输入第二个数:'); z=max(x,y); while or(rem(z,x)~=0,rem(z,y)~=0) z=z+1; end disp([num2str(x),'和',num2str(y),'的最小公倍数是: ',num2str(z)])
3.try语句 try语句是一种试探性执行语句,为开发人员提供了一种捕获错误的机制,其语 句格式为 try 语句块1 catch 语句块2 end try语句先试探性执行语句块1,如果语句块1在执行过程中出现错误,则将错误 信息赋给保留的lasterr变量,并转去执行语句块2。 【例2.6】矩阵乘法运算要求两矩阵的维数相容,否则会出错。先求两矩阵的乘 积,若出错,则自动转去求两矩阵的点乘。 A=input('请输入A矩阵:'); B=input('请输入B矩阵:'); lasterr(''); %清除原有的错误信息 try C=A*B; catch C=A.*B; end C disp(lasterr) %显示出错原因
2.2 程序控制结构
3.程序的暂停 当程序运行时,为了查看程序的中间结果或者观看输出的图 形,有时需要暂停程序的执行。这时可以使用pause函数, 其调用格式为 pause(延迟秒数) 如果省略延迟时间,则将暂停程序,直到用户按任一键后程 序继续执行。 若要强行中止程序的运行可使用Ctrl+C组合键。

MATLAB第二章

MATLAB第二章

2 特殊数据判断函数
常用的特殊数据判断函数:
• isinf(A) 返回一个与A同型的数组,该数组元素的 值根据A的相应位置元素的值为无穷大inf时设置为1, 否则为0。 • isnan(A) 返回一个与A同型的数组,该数组元素的 值根据A的相应位置元素的值为NaN 时设置为1,否 则为0。 • isfinite(A) 返回一个与A同型的数组,该数组元素 的值根据A的相应位置元素的值为有限值时设置为1, 否则为0。
关系运算规则
关系运算符的运算法则为: • 1 当两个比较量是标量时,直接比较两数的大 小。若关系成立,关系表达式结果为1,否则 为0。 • 2 当参与比较的量是两个同型的矩阵时,比较 是对两矩阵相同位置的元素按标量关系运算规 则逐个进行,并给出元素比较结果。最终的关 系运算的结果是一个与原矩阵同型的矩阵,它 的元素由0或1组成。
当a=[pi NaN Inf -Inf]时,分析下列 语句的执行结果
• isinf (a) • isnan (a) • isfinite (a)
例 当A=[-6,NaN,Inf,5;-Inf,-pi, eps,0] 时,分析下列语句的执行结果。 • • • • • • • all(A) all(all(A)) any(A) any(any(A)) isnan(A) isinf(A) isfinite(A)

建立任意的3×3的矩阵,并求 出能被3整除的元素。
9 -1;-3 -9 0];
A=[1 0 3 ;2
%生成3×3的矩阵A P=rem(A,3)==0
%判断A的元素是否可以被3整除 A(P) %求出被3整除的元素 如果求上述矩阵中能被5整除的元素呢? P=rem(A,5)==0
例 求三阶魔方矩阵中绝对值大于7的元素。 a=magic(3);

MATLAB基础教程第2章

MATLAB基础教程第2章

第二章 数组、矩阵及其运算
2.1 数组的创建和寻访
例2-2 一维数组的生成与访问
命令:X=rand(1,5) 命令:X(3) 命令:X([1 2 5]) 命令:X(1:3) 命令:X(3:end) 命令:X(3:-1:1) 命令:X(find(X>0.5)) 命令:X([1 2 3 4 4 3 2 1])
第二章 数组、矩阵及其运算
2.2 矩阵的运算
例2-6 矩阵的乘法(接着上面的例子) A*B 3*A
注意:矩阵相乘时要求A的列数等于B的行数
第二章 数组、矩阵及其运算
2.2 矩阵的运算
A/B(矩阵右除)表示的是方程X*B=A的解 A\B(矩阵左除)表示的是方程A*X=B的解
例2-7 矩阵的除法( 见教材P.23)
第二章 数组、矩阵及其运算
2.3 数组的运算
1、数组的基本运算
例2-8 ( 见教材P.25)
第二章 数组、矩阵及其运算
2.3 数组的运算
数组运算和矩阵运算指令对照表
数组运算 指令 A.’ A=s A+s,A-s s.*A s./A,A.\s A.^n A+B,A-B A.*B A./B B.\A 含义 非共轭转置,相当于conj(A’) 把标量s赋给A中每个元素 标量s分别于A的元素之和(差) 标量s分别于A的元素之积 S分别被A的元素除 A的每个元素自乘n次 对应元素相加(减) 对应元素相加(乘) A的元素被B的对应元素相除 (与上相同) A^n A+B,A-B A*B A /B B\A 方阵A自乘n次 矩阵和(差) 同内维矩阵相乘 A右除B A左除B S*A 标量s分别于A的元素之积 A’ 指令 共轭转置 矩阵运算 含义
第二章 数组、矩阵及其运算

第2章 MATLAB数据及其运算.

第2章 MATLAB数据及其运算.

8 1 d 3 5
(2)利用空矩阵删除矩阵的元素 a=[ ] a的维数为0。 例:a( 2 , : )= [ ]; 8 1 6 得: 3 5 7 a a= 4 9 2 8 1 6 4 9 2
2.3.5

复数(Com part)和虚部(imaginary part)组 成。 虚数单位用i或j来表示。 6+5i = 6+5j
format bank format rat
2.3 MATLAB矩阵的表示
2.3.1 矩阵 MATLAB中最基本的数据结构是矩阵(matrix)。 1*1的矩阵----标量(scalar): [5] 只有一行或一列的矩阵-----向量(vector): [1 3 5 7]
2 4 6 8
2.4 Matlab数据的运算(Operators ) 运算符(Operators )
+ Addition
*
Subtraction
Multiplication
/
\
Division
Left division
^
Power
2.4.1 算术运算 (1)矩阵加减运算: 两个同维矩阵,才能进行加减运算,对应无素相加减。 一个标量与矩阵相加减时,结果为这个标量与矩阵的 每一个元素相加减。 x=[2,-1,0;3 2 -4]; y=ones(2,3); x-y=? [1,-2,-1;2,1,-5] x+1=? [3,0,1;4,3,-3]
在线性代数中,本没有矩阵除法,它是由逆 矩阵引申来的。 MATLAB中,矩阵求逆(Matrix inverse)的函 数为: Y = inv(X) 方程A*X=B的解为:X=inv(A)*B=A\B, A\B称为A左除B,左除时要求两矩阵行数相等。 方程X*A=B的解为:X=B*inv(A)=B/A, A/B称为A右除B,右除时要求两矩阵列数相等。

第2章_MATLAB的基本操作

第2章_MATLAB的基本操作
浮点数
浮点数包括单精度(4个字节)和双精度(8个字 节),默认为双精度。
single :将其它类型的数据转换成单精度浮点数。 double :将其它类型的数据转换成双精度浮点数。
浮点数与其它类型数据运算表
operand single double int/uint char logical X single single single single single double single double int/uint double double
MATLAB数据类型
例:
MATLAB数据类型
细胞变量的定义
可以通过以下两种方式定义一个细胞变量:
用赋值语句直接定义; 由 cell 函数预先分配存储空间,然后对细
胞的每个元素逐个赋值。
MATLAB数据类型
MATLAB数据类型
细胞变量可以嵌套定义
MATLAB数据类型
细胞变量的元素的引用
MATLAB数据类型
str2num:将字符数组转换为
数值数组
abs,double,char按照 ASCII码 转换; num2str,int2str,mat2str,str2num 直接转换。
MATLAB数据类型
字符串的连接
水平连接:strcat 或 中括号中用逗号连接
在中括号中直接水平连 接,结果中包括原字符 串结尾处的空格。 用 strcat 连接,结果 中忽略原字符串结尾处 的空格。
把数字直接转换为字符 串,每个数字为一个独 立的字符串。
把数字取整后转换为字 符串,注意和 num2str 的区别。
把矩阵转换为一个字符 串,方括号、分号和空 格都是其元素。
MATLAB数据类型

第二章 MATLAB基础知识

第二章 MATLAB基础知识

2.2 数组及其运算
例 ascii_a=double(a) %将字符转换为相应的双精度值 ascii_a = Columns 1 through 13 84 104 105 115 32 105 115 32 97 110 32 101 120 Columns 14 through 19 97 109 112 108 101 46 例 char(ascii_a) %将双精度值转换为字符 ans = This is an example. 例 w=find(a>=‘a’&a<=‘z’); %查找所有小写字母的位置 ascii_a(w)=ascii_a(w)-32; %将小写字母ascii值转换为大写 char(ascii_a) %将双精度值转换为字符 ans = THIS IS AN EXAMPLE.
2.2 数组及其运算
2.2.2 数组的运算
运算 加 运算符 + 表达式 a+b
减 乘 除 幂 点乘 点除 点幂
*
/或\ ^ .* ./或.\ .^
a-b a*b
a/b或a\b a^b a .* b a ./ b或a.\b a.^b
2.2 数组及其运算
例 a=3 14 7 1 4 9 3 6 10 b=2 8 3 2 10 0 11 2 7 a+b ans= 5 22 10 3 14 9 14 8 17
2.2 数组及其运算
高维数组的创建
直接通过“全下标”元素赋值方式创建高维数组; 由若干个同样大小的低维数组组合成高维数组; 由函数ones、zeros、rand、randn直接创建标准
高维数组;
借助cat、repmat、reshape等函数构造高维数组。
Am

matlab-第二章

matlab-第二章

1,在一个MA TLAB命令中,6+7i和6+7*i有何区别?i和I有何区别?第一个i代表一个变量,6+7i是一个函数,第二个代表虚数,6是实部,7代表虚步.I只代表变量.2,.设A和B是两个同大小的矩阵,试分析A*B和A.*B、A./B和B.\A、A/B和B/A的区别?如果A和B是两个标量数据,结论又如何?A *B是矩阵相乘,A.*B表示A和B单个元素之间对应相乘。

A./B和B.\A值相等,是一样的。

A/B等效于B的逆右乘A的矩阵,B\A等效于B矩阵逆左乘A矩阵。

如果A和B是两个标量数据,结论是都没有区别。

3,写出完成下列操作的命令。

(1)删除矩阵A的第7号元素A(7)=[](2)将向量t的0元素用机器零来代替t(find(t==0))=eps(3)将含有12个元素的向量x转换成3*4矩阵newA=reshape(A,3,4)(4) 求一个字符串的ASCIIch=['a b c';'1 2 3'];abs ch(5) 产生和A同样大小的幺矩阵ones(size(A))(6) 从矩阵A提取主对角线元素,并以这些元素构成对角阵B。

A=[1 2 3;4 5 6;7 8 9];D=diag(A)B=diag([1,5,9])4, .要生产均值为3,方差为1的500个正态分布的随机序列,写出相应的表达式y=3+sqrt(1)*randn(500)5,(1)主对角元素1 1 5 9上三角矩阵1 -1 2 30 1 -4 20 0 5 20 0 0 9下三角矩阵1 0 0 05 1 0 03 0 5 011 15 0 9逆矩阵-0.1758 0.1641 0.2016 -0.0227-0.1055 -0.1016 -0.0391 0.0664-0.0508 -0.0859 0.1516 0.00230.3906 -0.0313 -0.1813 0.0281行列式的值1280秩4范数A1=norm(A,1)=20 A2=norm(A)= 21.3005 A3=norm(A,inf)=35条件数A1=cond(A,1)= 14.4531 A2=cond(A,2)= 11.1739 A3=cond(A,inf)= 22.0938迹16(2)主对角元素0.43 4上三角矩阵0.4300 43.0000 2.00000 4.0000 21.0000下三角矩阵0.4300 0 0-8.9000 4.0000 0逆矩阵0.0022 -0.01750.0234 -0.0017-0.0035 0.0405行列式的值秩2范数B1=norm(B,1)= 47 B2=norm(B)= 43.4271 B3=norm(B,inf)= 45.4300 条件数B2=cond(B,2)= 1.9354迹4.43006,all(A)=0any(A)=1isnan(A)= 0 1 0 0 0 0 0isinf(A)= 0 0 1 1 0 0 0isfinite(A)= 1 0 0 0 1 1 1。

MATLAB第二章

MATLAB第二章

function [egg1,egg2,chicken1]=myegg(n)
% egg1 隔1天的蛋个数 % egg2 隔2天的蛋个数 % chicken1 过n天后母鸡个数 if n==1
egg1=1; egg2=0; chicken1=1; elseif n==2 egg1=1; egg2=1; chicken1=1;
27
>> x=0:0.1:2*pi; >> y=sin(x); >> plot(x,y) >> plot(x,y,‘ro’) %默认是蓝色曲线 >> x=[0 1 2 5];y=[4 -2 1 2]; >> plot(x,y) >> fplot(‘x^2+4*x+1’,[-15 15]) %函数用字符串表示
1 -8 4 9 -4 5 7 -9 >> fun=@myfun5 %例28中的函数 fun =
@myfun5 >> y=fun(A) %直接调用 y=
1 -13 16 81 -5 25 49 -15 >> y=feval(fun,A) %利用feval y=
1 -13 16 81 -5 25 49 -15
1 4 9 16 5 10 15 20
2024/7/5
第二章 MATLAB编程与作图
24
>> k=5;
>> ff=@(x)x^2+2*x+k %可以使用空间中的变量k
ff =
@(x)x^2+2*x+k
>> ff(5)
ans =
40
>> A=[1 2 ;3 4]

MATLAB实用教程第二章

MATLAB实用教程第二章
1.矩阵的合并 2.矩阵行列的删除
1.矩阵的合并
矩阵的合并就是把两个或者两个以上的矩阵 连接成一个新矩阵矩阵构造符 可用于构造矩阵并 可以作为一个矩阵合并操作符 ➢ 表达式C=A B在水平方向合并矩阵A和B; ➢ 表达式C=A;B在竖直方向合并矩阵A和B
具有相同行数的两个矩阵合并为一个新矩阵
12 34 56 3×2
1.访问单个元素
2.线性引用元素
➢ 对于矩阵A线性引用元素的格式为 Ak通常这样的引用用于行向量或列 向量但也可用于二维矩阵
➢ MATLAB按列优先排列的一个长列向量格 式线性引用元素来存储矩阵元素
3.访问多个元素
操作符:可以用来表示矩阵的多个元 素若A是二维矩阵其主要用法如下: ➢ A:: 返回矩阵A的所有元素 ➢ Ai: 返回矩阵A第i行的所有元素
3.用满矩阵和稀疏矩阵存储方式分别构造下述矩 阵:
4.采用向量构造符得到向量159…41 5.按水平和竖直方向分别合并下述两个矩阵:
6. 分别删除第5题两个结果的第2行 7. 分别将第5题两个结果的第2行最后3列的数值
改为11 12 13 8. 分别查看第5题两个结果的各方向长度 9. 分别判断pi是否为字符串和浮点数 10.分别将第5题两个结果均转换为29的矩阵 11.计算第5题矩阵A的转秩 12.分别计算第5题矩阵A和B的A+B、A.* B和
行运算; ➢ 不同优先级的运算符采用先进行优先高的
运算
运算符的优先等级表
由表中可以看到括号的优先级别最高因此可 以用括号来改变默认的优先等级
2.4 字符串处理函数
2.4.1 字符串的构造 2.4.2 字符串的比较 2.4.3 字符串的查找和替换 2.4.4 字符串与数值间的转换

matlab第二章

matlab第二章
3)ceil,与floor相反,它的意思是天花板,也就是取比它大的最小整 数,即朝正无穷方向取整,如ceil(-1.3)=-1; ceil(1.3)=2;ceil(-1.8)=-1,
ceil(1.8)=2
4)round四舍五入到最近的整数,如round(-1.3)=-1;round(-1.52)=2;round(1.3)=1;round(1.52)=2。
MATLAB 中的变量不需要事先定义,在 遇到新的变量名时,MATLAB会自动建立该变 量并分配存储空间。当遇到已存在的变量时, MATLAB会更新其内容,如有必要会重新分配
存储空间。
下一页
变量名由字母、数字和下划线构成, 并且必须以字母开头,最长为31个字符。 MATLAB能区分大小写字母,变量A和a是
例如: if a>1
disp('a>1')
elseif a==1
disp('a=1')
else disp('a<1') end 上一页 返回
3、逻辑函数
MATLAB提供了许多测试用的逻辑函数,
主要有all、any、find、exist、is*等。
返回
all函数
利用all函数可以测定矩阵每列所有
元素是否非零。若该列所有元素非零,则
利用重复函数repmat可以将小矩阵以
重复的形式产生大矩阵。
例如: f=repmat(a,2,3)
3、矩阵缩小 将大矩阵变成小矩阵的方法有两种: 抽取法和删除法。 (1)抽取法是指从大的矩阵中抽取中 的一部分,从而构成新的矩阵。例如: a=[1:4; 5:8; 9:12; 13:16] b=a(2:3, 3:4) c=a([1 4],[1 3]) d=a([2 4],[1 3])
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能否用linspace产生 a=[1:2:10]的结果
(4)函数法
调用特殊函数产生矩阵。注意事项: 生成矩阵的维数, 所调用函数的输入参数。
函数法(特殊矩阵)(ones,zeros, rand, randn等) A = ones(n);或A = ones(m,n) A = ones(5)与A=ones(5,5)等价;
(1)直接输入法_命令行输入
》a=1; b=2; c=3; 》x=[5 b c; a*b a+c c/b] x=
5.000 2.000 3.000 2.000 4.000 1.500
》y=[2,4, 5 3 6 8] y=
245 368
矩阵生成不但可以使用纯数字(含复数),也可以 使用变量(或者说采用一个表达式)。矩阵的元素 直接排列在方括号内,行与行之间用分号隔开,每 行内的元素使用空格或逗号隔开。大的矩阵可以用示
a) 矩阵元素的访问 A=[1 2;3 4]; A(1,1) ans = 1 A(1,3)
2.3 MATLAB矩阵的表示
b) 矩阵的扩充 1),自动扩充矩阵元素 A=[1 2;3 4]; A(3,3)=10;
A= 1 2 0 340 0 0 10
2) []的使用 C = [A;1 3];
2.5 字符串
扩充与删除 A =[‘a’ ‘b’; ‘c’ ‘d’]; A(1,3) = ‘f’; A(:,1) = [];
2.5 字符串
• 矩阵乘法 A =[‘a’ ‘b’; ‘c’ ‘d’]; B = A.*A; C = A*A;
建立一个字符串向量,然后做如下处理: 1)将字符串到过来重新排列 2)将字符串按字母顺序排列(不分大小写) 3)将字符串中的所有大写字母转成小写
b、乘方与开方,矩阵必须为方阵
c、点运算 d、常用数学函数
第四节 数据运算
2、关系运算
判断语句 提供6种关系运算符,<,<=,>,>=,= =,~=
3、逻辑运算
与,或,非 y1 = (y>=0).*y;
例2.4 在[0,3π]区间,求y=sinx的值,要求: 1、消去负半波,即(π,2π)区间内的函数值设为零 2、 (π/3,2 π/3)和(7π/3,8 π/3)区间内取值均为
第二节 变量及其操作 2.2.2、变量的管理
(1)变量的显示与删除 who,whos,clear,
(2)变量的存储和载入 save,load
内存变量的显示与删除
第一种调用方式: who:显示当前工作空间中所有变量的一个简
单列表 whos:则列出变量的大小、数据格式等详细信
息 clear :清除工作空间中所有的变量 第二种调用方式 whos 变量名:则列出指定变量的详细信息 clear 变量名:清除指定的变量 第三种调用方式, whos 变量名*:则列出一类变量的详细信息
第二种,没有将表达式的值赋给一个指定的变 量,因此系统默认将该值赋给ans。
分号’;’ 的作用。 注释的表示方法。%
第二节 变量及其操作
2.2.1 变量与赋值
(3)预定义变量。 如ans 计算结果的默认值
eps 机器零阈值 i, j 虚数单位 pi 圆周率的近似值 inf, Inf,NaN, nargin nargout 函数输入输出参数个数 等
2.4.3关系与逻辑运算函数
exist 判断变量(文件)是否存在 exist(‘名称‘,’属性‘) exist(‘a’,’var’);
2.4.3关系与逻辑运算函数
find 找到矩阵中特定元素的位置和值
二维
2.4.3关系与逻辑运算函数
find 找到矩阵中特定元素的位置和值
一维
2.5 字符串_matlab中作为行向量
第二节 变量及其操作
2.2.1 变量与赋值
(1)变量的命名: 字母开头、区分大小写、变量名不超过
31位、不能有中文(包括文件名)。尤其注 意命令时,变量名不与已有的M文件、内 建函数名称等重名。 例:A,a, Myphoto,myphoto…
第二节 变量及其操作
2.2.1 变量与赋值
(2)赋值语句:两种格式 a)变量=表达式 b)表达式
Ch = ‘ABab123decwbop’; rech = Ch(end:-1:1) sortch = sort(Ch)
ans = 123ABabbcdeopw k1=find(Ch>=‘a’&Ch<=‘z’); Ch(k)=ch(k)-(‘a’-’A’);
eval的功能是把字符串的内容作为对应的matlab语 句来执行
单引号的运用 xm = ‘sichuan university’; ch = [‘abcdf’;’123456’]; ch[1,1] ans = a
字符串是以ASCII码形式存储的。abs和double都可以 用来获取字符串矩阵所对应的ASCII码数值矩阵。反 之,可以用char函数将ASCII码矩阵转换为字符串
99.12345678900000 format short e:短格式e方式
9.9123e+001 format long e:长格式e方式
9.912345678900000e+001 format bank:2位十进制 99.12 format hex:十六进制格式
2.3 MATLAB矩阵的表示
1.矩阵的建立 2.矩阵的拆分_矩阵尺寸的变化 3.矩阵元素的删除
2.3 MATLAB矩阵的表示
1、矩阵的建立
(1)直接输入法[…]。注意元素间隔和行间隔。 (2) 由文件生成 (3)冒号法(1×N)。注意元素的个数问题。 (4)函数法(特殊矩阵)(ones,zeros,rand等) A = ones(5);或A=ones(5,5); (5)网格矩阵(meshgrid) [A,B]=meshgrid(a,b)或 [A,B]=meshgrid(a) ,或A = linspace(x1,x2,N)。 (6) 稀疏矩阵(sparse spdiags)
sin(π/3)。 法一、x = 0:pi/100:3*pi;
y = sin(x); y1 = (x<pi|x>2*pi).*y; q = (x>pi/3&x<2*pi/3)|(x>7*pi/3&x<8*pi/3); qn = ~q; y2 = q*sin(pi/3) + qn.*y1;
例2.4 在[0,3π]区间,求y=sinx的值,要求: 1、消去负半波,即(π,2π)区间内的函数值设为零 2、 (π/3,2 π/3)和(7π/3,8 π/3)区间内取值均为
(2)M文件输入法
(3)冒号表达式
用线性等间距生成向量矩阵(start:step:end) 》a=[1:2:10]
a=
13579
其中start为起始值,step为步长,end为 终止值。当步长为1时可省略step参数; 另外step也可以取负数。
用linspace产生向量 linspace(a,b,n)
定义不同的存储格式(ASCII、V4等)
( 2)SAVE('filename','var1','var2')
2.2.3
数据的输出格式
如果结果为整数,则显示没有小数;如果 结果不是整数,则输出形式有: format short:短格式(5位定点数)
99.1253 format long:长格式(15位定点数
P=strcat(‘sichuan’,’university’,num2str(2009))
sin(π/3)。 法一、x = 0:pi/100:3*pi;
y = sin(x); y1 = (y>=0).*y; p = sin(pi/3); y2 = (y>=p)*p + (y<p).*y1;
例2.4 在[0,3π]区间,求y=sinx的值,要求:
1、消去负半波,即(π,2π)区间内的函数值设为零 2、 (π/3,2 π/3)和(7π/3,8 π/3)区间内取值均为sin(π/3)。
2.3 MATLAB矩阵的表示
e) 矩阵元素的删除 利用空矩阵删除矩阵的元素 例:A = [1 2 3; 2 3 4]; A(:,[2 3]) =[]; A(:,2) = []; A(1,1)=[];
2.3 MATLAB矩阵的表示
两个常用的命令 length和size 例:A = [1 2 3 2 3 4];
2.3 MATLAB矩阵的表示
c) 矩阵的重组 1)冒号重组 A=[1 2;3 4]; A(:)
2) reshape的使用
2.3 MATLAB矩阵的表示
c) 矩阵的重组 2) reshape(A,m,n) m为行数,n为列数 A = [1 2 3;3 4 5]; B = reshape(A,6,1) B = reshape(A,3,2) B = A(:)
可产生任意维矩阵 产生一维矩阵: a = ones(1,n)或a=ones(n,1);
(5)matlab的特殊命令
a、 网格矩阵(meshgrid)_产生二维矩阵 [A,B]=meshgrid(a,b)
[A,B]=meshgrid(a,a)等价于[A,B]=meshgrid(a)
输入a和b不受限制,只能参数二维矩阵。 例,[a,b] = meshgrid(ones(1,5),ones(1,5));
length(A)
A = [1 2 3; 2 3 4];
size(A) size(A,1) size(A,2) size(A,3)
第四节 数据运算 1、算术运算
a、基本算术运算——加、减、乘和除: 1)进行矩阵加减时,参与运算的矩阵必须同维。 2)A/B时,A、B列数必须相同。A\B时, A、B行数 必须相同。 3)矩阵的左乘与右乘不同。(A*B 不等于 B*A) 4)矩阵的左除与右除不同。(A/B不等于 A\B)
相关文档
最新文档