固定化细胞技术综述样本
固定化细胞技术概要
二、固定化细胞载体
无机载体:如多孔玻璃、氧化铝、活性炭、石英砂、硅胶、硅藻土、多孔陶 瓷、高岭土、沸石等。 多糖类: 如纤维素、交联葡萄糖、DEAE-纤维素、几丁质、鹿 角菜胶和琼脂等。
(研究重点)
常 用 载 体
有机载体:
如胶原-纤维蛋白、胶朊和明胶等。 蛋白质类: 水凝胶:如聚丙烯酰胺。 如醋酸纤维素、聚氯乙烯和聚丙烯腈共聚物等。 空心纤维: 酚醛树脂类和微生物丸等
国内外没有关于固定化细胞方法的统一分类标准,但总体上可分为吸 附法、包埋法、共价结合法、交联法四大类。
1、吸附法
吸附法是利用微生物和载体之间形成静电、粘附力和表面张力等作用 将微生物细胞吸附,使细胞固定在载体表面和内部形成生物膜的方法。吸 附法又分为物理吸附法和离子吸附法2种。吸附法操作简单、载体可以反 复利用、对细胞活性影响小,但固定的微生物细胞数量有限且易脱落。
固定化细胞技术
目
录
一 二
三 四
固定化细胞技术概述
固定化细胞载体 固定化细胞的制备方法 固定化细胞的反应特性
一、固定化细胞技术概述 固定化细胞是指固定在水不溶性载体上,在一定的空间范围进行生 命活动的细胞。它是用于获得细胞的酶和代谢产物的一种方法,起源于 20世纪70年代,是在固定化酶的基础上发展起来的新技术。由于固定 化细胞能进行正常的生长、繁殖和新陈代谢,所以又称固定化活细胞或
(5)在反应器内长时间运转过程中,固定化系统具有良好的机械稳定性 和化学稳定性; (6)用于制备固定化细胞的载体对细胞来说是惰性的,不损伤细胞; (7)固定化系统使底物、产物和其他代谢产物能够自由扩散,因为产物 和其他代谢产物常常能抑制细胞的酶反应,更需要能够尽快扩散,以消 除抑制作用; (8)单位体积的固定化系统拥有尽可能多的细胞,以更好地起到生物催 化作用。
包埋法固定化细胞技术的研究进展
了 01 珠体的结构与直径对酶活的影响,发现珠体的直径越小, &8 的硼酸, 包埋菌量为 +8 G 58 时 K’1 凝胶机械强度大, 产酶 酶活越高,直径为 %> "22 的珠体细胞酶活是 "22 的珠体细胞 的 !+ 倍,可能是因为珠体越小,有利于珠内珠外之间营养交 酶活最高。 换。 研究还发现, 当所用氯化钙浓度为 !"8 时, 9(?@<= A;33;3( . B / 等利用 01 固定 5&6(*(**#+ (&64 细胞进行苹果汁中的 丙—乳酸发酵, 所使用的 01 浓度为 $> !8 , 获 C=C)$ 浓度为 &8 , 结果发现苹果酸的消耗与游离 得的珠粒直径为 $> #22 的珠粒, 的细胞相似, 但乙醇浓度却提高了。王克明 . D / 以 01 为载体包埋 固定紫色红曲霉 6 7(62+*#+ ,#’,#’&#+ 7 发酵生产红曲色素, 研究 最佳发酵条件,发现细胞接入量为 $%8 ,01 浓度为 +8 ,C=C)$ 浓度为 +8 时, 效果较佳。而陈九武
." /
该法不仅制作工艺简单, 而且机械强度较好,酶活保留率较高, 微生物无毒、 价格低廉等优点。近年来获得较广泛的应用。 等用
K’1 固定枯草杆菌用于生产 = 4 淀粉酶发现使用 !%8 的 K’1, 在制备珠 能力高。由于 K’1 凝胶颗粒具有非常强的附聚倾向, 体时比较困难,吕晓猛
. !B /
!综述
Y34@983. [ J5 N;7=3.76^ Q _5 N7;;9.8 ‘ U 1/ 3=E5 O9;<7D .3/79. 9: 09/ ]3/14 3.A 1/03.9= /9 69./49= 298/034C18/ A163? 9: 2136018 3.A .16/347.18E V=3./ [7813815 !(()5 #! ’ !$ * X !,%" & !,%(E R !% S V1878 a5 U3B41 Y5 Y347.3.8^? WJPE -.AB6/79. 9: 607==7.@ /9=143.61 7. ;3.@9 <? /1;2143/B41 69.A7/79.7.@5 013/5 =9] b$ 3.A 1/03.9= C329B48E J6/3 T94/5 !(()5 ,,"X K$( & K+,E
细胞固定化技术在制药中的应用
细胞固定化技术在制药中的应用一、细胞固定化技术概述细胞固定化技术是一种将细胞或酶固定于载体上,形成特定的固定化系统从而实现催化功能或合成生产的技术。
细胞固定化技术已广泛应用于制药、食品、环保等领域。
细胞固定化的优点是可以提高酶或细胞的稳定性、耐受性和催化效率,同时降低运行成本。
二、制药中细胞固定化技术的应用1. 生物合成在生物制药领域,利用细胞固定化技术可使细胞在生长和代谢过程中维持长期稳定性,提高生产效率。
例如,利用固定化细胞生产生长激素和转化因子,可以降低成本,提高产量。
同样的,利用固定化细胞合成青霉素和链霉素等抗生素,也可以提高收率和稳定性。
2. 药物代谢性能研究细胞固定化技术可用于药物代谢性能研究。
利用细胞固定化技术,可以建立高效、可靠的药物代谢酶模型,对药物代谢途径进行分析和评价。
同时,还可应用于对药物的毒理学研究。
3. 肿瘤治疗利用细胞固定化技术生产肿瘤治疗药物,可以提高抗肿瘤药物的疗效和耐受性,降低副作用和毒性。
如,固定化细胞生产的细胞毒素可靶向肿瘤细胞并杀死它们,对治疗肿瘤有较好的效果。
三、各种细胞固定化技术的优缺点1. 滴定法利用滴定法将细胞悬浮液滴入凝胶中,使其逐渐凝固形成固定化细胞。
这种方法操作简单,成本低,适用于规模较小的生产。
但是,凝胶的阻力大,不利于氧气和营养物质的进出。
2. 包埋法将细胞直接包埋于凝胶中,形成固定化细胞。
这样可以保护细胞,但凝胶的成分和物理性质很难保证一致性,因此制备工作量大,也不利于细胞的氧气和营养物质的进出。
3. 真空降温法将细胞或酶悬浮液置于低温真空中冷冻干燥,然后用特殊处理的沸石或陶粒等介质在常温下进行固定化。
真空降温法可以保留细胞活力,可以大量生产,适合规模化生产。
但是,操作比较复杂且需要特殊的设备和介质。
4. 细胞外固定化法利用聚合物和载体具有催化能力(如陶瓷、金属等)对细胞或酶进行固定化。
细胞外固定化可提高稳定性和耐受性,但是具体的固定化效率与固定化材料的选择和制备有关。
固定化细胞技术应用于国内酱油生产的研究进展
摘要 : 传统 法酿造 的酱 油产 品 营养 丰 富 , 酱 香 及 酯 香 浓郁 , 但 发 酵 周期 长 , 且 占 用大 量发 酵设 备 。近 年
来, 研 究人 员将 固定化 细胞技 术应 用 于酱 油生产 中。 具 有 节约 能耗 、 降低 成本 、 便 于连 续化 生 产 等优 势 。 就 国内近几 年 关于 固定化 细胞技 术在 酱 油生产 中的应 用研 究及发 展趋 势进行 了介 绍 。 关键 词 : 酱油; 传 统发 酵 ; 固定化 细胞技 术 ; 发展 趋 势
s t r o n g f l a v o r 。b u t i t h a s a l o n g e r f e r me n t i n g c y c l e a n d n e e d s a l o t o f f e r me n t a t i o n e q u i p me n t s .I n r e — c e n t y e a r s ,i m mo b i l i z e d c e l 1 t e c h n i q u e h a s t h e a d v a n t a g e s o f s a v i n g e n e r g y,r e d u c i n g t h e c o s t a n d c o n —
( De p a r t me n t o f F o o d E n g i n e e r i n g ,Lu o h e Me d i c a l Co l l e g e ,Lu o h e 4 6 2 0 0 2 ,Ch i n a )
Ab s t r a c t ;Th e s o y s a u c e p r o d u c t b r e we d b y t r a d i t i o n a l f e r me n t a t i o n me t h o d i s o f r i c h n u t r i t i o n a n d
酵母细胞的固定化(定)
作用: 将葡萄糖转化为果糖
如何改进?
特点: 酶稳定性好,可持续发挥作用
直接使用酶时的缺点: 酶溶于葡萄糖溶液后,就无法 从糖浆中回收,造成很大①反应柱能连续使用半 年,大大降低了生产成 本。
②提高了果糖的产量和 品质。
三、实验操作 (一)制备固定化酵母细胞 (二)用固定化酵母细胞发酵
(一)制备固定化酵母细胞 1、酵母细胞的活化:
1g干酵母+10mL蒸馏水→50mL烧杯→搅拌均匀→放 置1h,使之活化。
〖思考〗活化是指什么?
在缺水状态下,微生物处于休眠状态。活化是指让 处于休眠状态的微生物重新恢复正常生活状态的过 程。 操作提示
五、结果分析与评价
(一)观察凝胶珠的颜色和形状 如果制作的凝胶珠颜色过浅、呈白色: 说明海藻酸钠的浓度偏低,固定的酵母细胞数目较少; 如果形成的凝胶珠不是圆形或椭圆形:
说明海藻酸钠的浓度偏高。 二者都说明制作失败,需要再作尝试。
(二)观察发酵的葡萄糖溶液 利用固定的酵母细胞发酵产生酒精,可以看到产 生了很多气泡,同时会闻到酒味
〖思考〗 1、发酵过程中锥形瓶为什么要密封? 酵母菌的酒精发酵需要缺氧条件。
〖思考〗 2、锥形瓶中的气泡和酒精是怎么形成的? 酵母菌进行无氧呼吸产生的
本请 并
节 结
完 成 习
做 好 复
束题 习
!
谢谢!
〖思考〗为什么要将海藻酸钠冷却至室温?
以免海藻酸钠温度过高杀死酵母菌
操作提示 海藻酸钠溶液必须冷却至室温,搅拌要彻底充分, 使两者混合均匀,以免影响实验结果的观察。
(5)固定化酵母细胞
以恒定的速度缓慢的将注射器中的溶液滴加CaCl2 溶液中,将形成的凝胶珠在CaCl2溶液中浸泡 30min左右。
固定化技术应用-酶和细胞的固定化
固定化技术应用-酶和细胞的固定化试题中出现固定酶能不能催化一系列反应,查找资料,没有权威资料认为已经存在催化系列反应的酶,应该是研究方向。
选修知识的考查已经出现应用方向,也拓展到了技术的前景。
也就是说,需要在教学中创设情境适当扩大知识面,结合试题进行教学会收到很好的效果,如固定化酶技术可以拓展到固定化细胞。
问题:固定化技术以及发展前景如何?什么是固定化酶?什么是固定化细胞?011.固定化酶技术固定化酶技术是用物理或化学手段。
将游离酶封锁住固体材料或限制在一定区域内进行活跃的、特有的催化作用,并可回收长时间使用的一种技术。
酶的固定化技术已经成为酶应用领域中的一个主要研究方向。
经固定化的酶与游离酶相比具有稳定性高、回收方便、易于控制、可反复使用、成本低廉等优点,在生物工业、医学及临床诊断、化学分析、环境保护、能源开发以及基础研究等方面发挥了重要作用。
2.固定化酶技术的发展以前,固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。
1916年Nelson和GrImn最先发现了酶的固定化现象。
科学家们就开始了同定化酶的研究工作。
1969年日本一家制药公司第一次将固定化的酰化氨基酸水解酶用于从混合氨基酸中生产L-氮基酸,开辟了固定化酶在工业生产中的新纪元。
我国的固定化酶研究开始于1970年,首先是微生物所和上海生化所的工作者开始了固定化酶的研究。
当今,固定化酶技术发展方向是无载体的酶固定化技术。
邱广亮等用磁性聚乙二醇胶体粒子作载体,采用吸附-交联法,制备出具有磁响应性的固定化糖化酶,简称磁性酶(M I E)一方面由于载体具有两亲性,M I E可稳定的分散于水相或有机相中,充分的进行酶催化反应;另一方面,由于载体具有磁响应性,M I E又可借助外部磁场简单地回收,反复使用,大大提高酶的使用效率。
Puleo等将钛合金表面用丙烯酸胺等离子体处理引入氨基,然后将含碳硝化甘油接枝于钛合金表面,或者将等离子体处理的钛合金先由琥珀酸酐处理,再用含碳硝化甘油接枝,进而将溶菌酶和骨形态蛋白进行固定,实现了生物分子在生物惰性金属上的固定化。
细胞的固定化方法
细胞的固定化方法
1. 凝胶固定化:将细胞悬浮液和凝胶混合,然后使其凝固。
凝胶可以是物理凝胶(如琼脂、聚丙烯酰胺)或化学凝胶(如明胶、半乳糖)
2. 微胶囊固定化:将细胞包裹在微小的胶囊中。
微胶囊可以是物理制备的(如油水混合法)或化学制备的(如酞菁染料-聚乙烯醇复合物制备法)
3. 纤维固定化:将细胞培养在纤维网上,使其附着在纤维上成为固定化细胞
4. 包埋固定化:将细胞嵌入固定化的基质中,如蜡、树脂、玻璃等
5. 电化学固定化:将细胞电化学固定化在电极表面,如金属电极或碳材料电极。
这种方法可用于微生物电化学反应和电生物学研究。
6. 3D打印固定化:使用3D打印技术将细胞固定化在支架上,构建细胞组织工程。
固定化细胞技术
固定化细胞技术(简称IMC),也称固定化微生物技术,是指通过 化学或物理手段,将微生物细胞固定在载体上使之成为不悬浮于水但仍保 留其固有的生物催化活性,在适宜条件下能被重复连续使用的生物工程技 术。最初主要用于工业微生物发酵中。70年代后期,由于水污染问题日 益严重,迫切需要开发高效废水处理技术。于是人们开始考虑将固定化细 胞技术引入废水处理领域。该技术可将筛选出的优势菌种或微生物加以固 定,从而构成一个高效的废水处理系统。
Thank you!
2、包埋法 包埋法的原理是将微生物细胞截留在水不溶性的凝胶聚合物孔隙的
网络空间中或埋于半透膜聚合物的超滤膜内,通过聚合作用、离子网络形 成、沉淀作用,以及通过改变溶剂、温度、pH 值来阻止细胞的泄漏,同 时能让底物渗入和产物扩散出来。
目前应用最为广泛的是凝胶包埋法固定大肠杆菌细胞。与液体发酵 相比,包埋的大肠杆菌生产周期短、产物分离方便、能耗低、设备投资少 且大大改善操作条件。包埋法仍存在一些不足,如包埋材料对细胞的毒性 作用、材料本身阻碍大分子底物和氧的扩散、使用过程中的杂菌污染等, 这些还需要进行更深入的研究。
(5)在反应器内长时间运转过程中,固定化系统具有良好的机械稳定性 和化学稳定性; (6)用于制备固定化细胞的载体对细胞来说是惰性的,不损伤细胞; (7)固定化系统使底物、产物和其他代谢产物能够自由扩散,因为产物 和其他代谢产物常常能抑制细胞的酶反应,更需要能够尽快扩散,以消 除抑制作用; (8)单位体积的固定化系统拥有尽可能多的细胞,以更后,氧和底物的传质速率也发生了变化,尤其是采用多 孔载体时,由于载体的作用,使得反应系统中主体的底物浓度及氧浓度与 微生物所处区域的底物及氧浓度发生差异,从而引起固定化后传质效果的 变化。通常,固定化后氧传质收到的阻碍更为明显,因此在好氧条件下, 由于氧传质的限制,固定化微生物处理的废水中的有机物浓度不能过高, 以免限制高密度的微生物活性的充分发挥;在厌氧条件下,由于不存在氧 传质供应的问题,废水中有机物的浓度可以大大高于好氧情况。所以,固 定化微生物的高处理能力可以得到充分体现,而且可以长时间地保持较高 的生物量和活性,充分显示出固定化微生物的优越性。
酶及细胞固定化技术
酶及细胞固定化技术酶作为生物体内的催化剂,具有高效性和高特异性的特点。
但在工业生产中,酶稳定性差、易流失,造成成本过高,限制其广泛应用。
因此将酶采用固定化技术,使酶在发挥其高效、专一性同时,还能增强酶的贮存稳定性,提高了生产效率,节约了成本。
本文对酶和细胞的固定化技术进行综述。
【关键词】酶细胞固定化载体应用酶及细胞固定化技术是生物技术的重要组成部分。
20世纪60年代出现了固定化酶技术,60年代末固定化酶技术用于工业生产,70年代出现了固定化细胞技术,80年代又发展了固定化增殖细胞技术以及包括辅助因子在内的固定化多酶反应体系技术。
工程技术日益成熟,成为近代工业生产中不可缺少的组成部分。
所谓固定化技术,是指利用化学或物理手段将游离的酶或细胞(微生物),定位于限定的空间区域并使其保持活性和可反复使用的一种基本技术,包括固定化酶技术和固定化细胞技术。
固定化细胞的制备方法是多种多样的,任何一种限制细胞自由流动的技术,都可以用于制备固定化细胞。
一般来说,固定化技术大致可以分成吸附法、共价结合法、交联法和包埋法等4大类,其中以包埋法使用最为普遍。
一、固定化技术分类1.吸附法很多细胞都有吸附到固体物质表面的能力,这种吸附能力可以是天生具有的,也可以是经过处理诱导产生的,依靠这种吸附能力,人们发展起许多廉价而又有效的固定化方法。
吸附法可分为物理吸附法和离子吸附法,前者是使用具有高度吸附能力的硅胶、活性炭、多孔玻璃、石英砂和纤维素等吸附剂将细胞吸附到表面上使之固定化,是一种最古老的方法,操作简单、反应条件温和、载体可以反复利用,但结合不牢固,细胞易脱落。
后者根据细胞在解离状态下可因静电引力(即离子键合作用)而固着于带有相异电荷的离子交换剂上,如DEAE-纤维素、DEAE-Sephadex、CM-纤维素等。
2.共價结合法共价结合法是细胞表面上功能团和固相支持物表面的反应基团之间形成化学共价键连接,从而成为固定化细胞。
固定化细胞技术综述
固定化细胞技术综述及其应用张弘扬1401024103 高娟丽1401024122天津农学院农学与资源环境生物技术(1)班摘要固定化细胞是将动植物或微生物细胞固定于合适的不溶性载体上的一种技术,它既可以提高生产效率和生产能力、延长生产周期,又易于细胞的分离和回收。
在生物、医药、环境保护、食品工业等方面得到了广泛应用。
本文主要介绍了固定化细胞技术的方法,载体的选择与应用,综述了固定化细胞技术在工业、环境中的应用,并对其发展前景进行展望。
关键词细胞固定化固定化方法细胞固定载体生物反应器酒精发酵环境治理固定化技术包括固定化酶技术与固定化细胞技术。
固定化细胞技术起步较晚,在20世70年代后才从固定化酶技术发展而来,它是指通过物理或化学的方法将分散、游离的微生物细胞固定在某一限定空间区域内,以提高微生物细胞的浓度,使其保持较高的生物活性并反复利用的方法。
相对于固定化酶技术,该方法不需把酶从细胞中提取出来,且无需纯化,酶活力损失小。
目前,固定化细胞技术的应用范围涵盖生物学、生化工程、有机化学、合成化学、高分子化学、食品与发酵工业、环境净化、能源生产等多个领域,已经成为生物技术中十分活跃的跨学科研究领域。
本文主要对该技术及其应用进行了简单介绍,并对其发展前景进行展望。
一、生物细胞固定化技术1、细胞固定化的原理及方法固定化技术是使生物催化剂更广泛、更有效应用的一种重要手段,任何一种限制生物催化剂自由流动的技术都可以用于制备固定化生物催化剂。
由于细胞的种类多种多样,大小和特性各不相同,故此细胞固定化的方法有很多种。
Karel 等人将其归纳为表面吸附、多介质包埋、隔离和自凝集4大类;王建龙把目前常用的固定化方法分为吸附法、包埋法、胶联法和截留法;杨文英等介绍了吸附法、包埋法、共价结合法、胶联法、多孔物质包络法、超过滤法、多种固定化方法联用等7种常用方法;成庆利等按有无外加载体将细胞固定化方法分为有载体固定化法和无载体固定化法2种;张磊等按照固定化载体与方式的不同将其分为吸附法、包埋法、共价结合法和胶联法。
固定化细胞制备及应用事例
固定化细胞制备及应用事例固定化细胞是将活细胞固定在材料上,以实现其在生物反应或工业生产中的应用。
利用固定化细胞可以提高细胞的稳定性和生物活性,延长其寿命,并简化细胞分离和生产过程。
下面将介绍固定化细胞制备及应用的一些事例。
一、酶固定化1. 葡萄糖异构酶固定化:葡萄糖异构酶(GI)是一种重要的酶,用于将葡萄糖转化为果糖。
将GI固定在聚丙烯酸酯(PVA)凝胶中,可以实现连续和稳定的果糖生产。
此外,还可以将GI固定在金属氧化物纳米粒子上,以提高反应速率和酶稳定性。
2. 乳酸脱氢酶固定化:乳酸脱氢酶(LDH)是一种用于乳酸生产的重要酶。
将LDH固定在Ca2+交换树脂上,可以实现连续乳酸生产。
固定化LDH不仅具有较高的稳定性和重复使用性,还可以避免产物污染。
二、生物传感器1. 葡萄酒品质传感器:利用固定化酵母细胞制备的生物传感器,可以检测葡萄酒中的氨基酸和糖分等物质,以评估葡萄酒的品质。
固定化酵母细胞可以提高传感器的灵敏度和稳定性。
2. 环境污染物传感器:将大肠杆菌等细菌固定在传感器的电极表面上,可以实现对环境中污染物的实时监测。
固定化细菌可以与特定的污染物发生反应,并产生电流信号,从而实现环境污染物的快速检测。
三、药物传递系统1. 肿瘤靶向治疗:将抗癌药物固定在载体上,并加上靶向配体,可以实现对肿瘤细胞的选择性靶向治疗。
固定化药物可以提高药物的稳定性和生物利用率,减少药物对正常组织的毒性。
2. 糖尿病治疗:将胰岛素固定化在高分子材料上,并用于制备胰岛素缓释系统,可以实现糖尿病的长期治疗。
固定化胰岛素可以延长药物的作用时间,减少频繁注射的需要。
四、废水处理1. 有机废水处理:将具有降解有机物能力的细菌固定在废水处理装置中,可以高效降解废水中的有机物。
固定化细菌可以在较宽的温度和pH范围内工作,减少对环境的影响。
2. 污水氨氮去除:将氨氧化细菌固定在生物反应器中,可以实现对污水中氨氮的高效去除。
固定化细菌可以提高氨氮去除速率和稳定性,减少传统处理方法所需的空间和时间。
酵母细胞的固定化技术
酵母细胞的固定化技术学习目标:1.简述固定化酶、固定化细胞的应用、原理和意义;2.说出制备固定化酶、固定化细胞的一般方法;3.尝试用包埋法制备固定化酵母细胞,并利用固定化酵母细胞进行发酵。
课前导学:一、固定化酶技术的应用1.固定化酶:是指用物理学或化学的方法将___________与_______________结合在一起形成的仍具有酶活性的酶复合物。
2. 制备固定化酶的方法主要有:______________、交联法、______________等。
二、固定化细胞技术1.固定化细胞:通过各种方法将________与_________结合,使细胞仍保持原有的生物活性。
2. 固定化细胞的方法:吸附法和两大类。
3.直接使用酶、固定化酶和固定化细胞催化的优缺点比较(一)制备固定化酵母细胞1.活化酵母细胞:活化就是处于________状态的微生物重新恢复正常的生活状态。
2.配制CaCl2溶液:3.配制海藻酸钠溶液:溶解海藻酸钠,最好采用酒精灯的方法,直至海藻酸钠完全融化。
如果加热太快,海藻酸钠会发生。
4.海藻酸钠溶液与酵母菌细胞混合:一定要将溶化好的海藻酸钠溶液________,加入已活化的酵母细胞,进行充分搅拌,再转移至注射器。
5.固定化酵母细胞:以的速度缓慢地将注射器中的溶液滴加到配制好的CaCl2溶液中,逐渐形成凝胶珠。
(二)用固定化酵母细胞发酵1.制备麦芽汁:2.将固定好的酵母细胞用冲洗2-3次。
3.将固定好的酵母细胞凝胶珠加入无菌麦芽汁中,温度为℃。
(三)实验结果的观察:利用固定的酵母细胞发酵产生酒精,可以看到产生了很多气泡,同时会闻到酒味。
质疑讨论:1.在固定化酶时,一般宜采用什么方法?固定化细胞时,又适宜采用什么方法?2.海藻酸钠溶液的浓度对实验有什么影响?3.怎么判断凝胶珠制作是否成功?例题精讲:1.固定化酶的优点是 ( ) A.有利于增加酶的活性 B.有利于产物的纯化C.有利于提高反应速度 D.有利于酶发挥作用2.酶的固定化常用的方式不包括 ( ) A.吸附 B.包埋 C.连接D.将酶加工成固体3.固定化细胞常用包埋法而不用吸附法固定化,原因是 ( ) A.包埋法固定化操作最简便 B.包埋法对酶的活性影响最小C.包埋法固定化具有普遍性D.细胞体积大,难以吸附或结合4.如下步骤是制备固定化酵母细胞的实验步骤,请回答:酵母细胞的活化→配制CaCl2溶液→配制海藻酸钠溶液→海藻酸钠溶液与酵母细胞混合→固定化酵母细胞(1)在状态下,微生物处于休眠状态。
固定化酶和固定化细胞的制作方法
固定化酶的制作方法固定化酶的方法主要有吸附法、包埋法、共价结合法、共价交联法、结晶法(一)、吸附法吸附法是通过载体表面和酶分子表面间的次级键相互作用而达到固定目的的方法。
只需将酶液与具有活泼表面的吸附剂接触,再经洗涤除去未吸附的酶便能制得固定化酶。
是最简单的固定化技术,在经济上也最具有吸引力.物理吸附法(physical adsorption)是通过氢键、疏水键等作用力将酶吸附于不溶性载体的方法。
常用的载体有:高岭土、皂土、硅胶、氧化铝、磷酸钙胶、微空玻璃等无机吸附剂,纤维素、胶原以及火棉胶等有机吸附剂。
离子结合法(ion binding)是指在适宜的pH和离子强度条件下,利用酶的侧链解离基团和离子交换基间的相互作用而达到酶固定化的方法(离子键)。
最常用的交换剂有CM-纤维素、DEAE-纤维素、DEAE-葡聚糖凝胶等;其他离子交换剂还有各种合成的树脂如Amberlite XE-97、Dowe X-50等。
离子交换剂的吸附容量一般大于物理吸附剂。
影响酶蛋白在载体上吸附程度的因素:1. pH:影响载体和酶的电荷变化,从而影响酶吸附。
2. 离子强度:多方面的影响,一般认为盐阻止吸附。
3. 蛋白质浓度:若吸附剂的量固定,随蛋白质浓度增加,吸附量也增加,直至饱和。
4. 温度:蛋白质往往是随温度上升而减少吸附。
5. 吸附速度:蛋白质在固体载体上的吸附速度要比小分子慢得多。
6. 载体:对于非多孔性载体,则颗粒越小吸附力越强。
多孔性载体,要考虑吸附对象的大小和总吸附面积的大小。
吸附法的优点:操作简单,可供选择的载体类型多,吸附过程可同时达到纯化和固定化的目的,所得到的固定化酶使用失活后可以重新活化和再生。
吸附法的缺点:酶和载体的结合力不强,会导致催化活力的丧失和沾污反应产物;经验性强。
(二)、包埋法包埋法是将酶物理包埋在高聚物网格内的固定化方法。
(如将聚合物的单体和酶溶液混合后,再借助聚合促进剂的作用进行聚合,将酶包埋于聚合物中以达到固定化的目的)。
固定化酶与固定化细胞技术
固定化酶与固定化细胞技术酶是具有生物催化功能的生物大分子(蛋白质或RNA),但通常指的是由氨基酸组成的酶,本章也仅探讨此类酶。
作为一种生物催化剂,参与生物体内各种代谢反应,而且反应后其数量和性质不发生变化。
由于酶的高级结构对环境十分敏感,各种因素(包括物理因素、化学因素和生物因素)均有可能使酶丧失活力。
但在常温常压条件下能高效地进行反应,且具有很高的专一性,副反应少,许多难以进行的有机化学反应在酶的作用下都能顺利进行。
由于酶的这些特点,大大促进了酶的应用和酶技术的研究。
酶被人们广泛应用于酿造、食品、医药等领域,特别是近几年来,随着分子生物学的发展,酶的应用更加活跃。
由于酶反应随着时间的延长,反应速度会逐渐降低,反应后酶不能回收,这就限制了酶的应用范围。
如果能将酶固定在惰性支持物上制成固定化酶,仍具有催化作用,还能回收反复使用,并且生产可以连续化、自动化。
从20世纪60年代固定化酶技术发展以来,不仅在酶学理论研究中发挥独特作用,在实际应用中也显示出强大的威力。
随着技术的不断发展,广义的固定化酶发展到固定化辅酶、固定化细胞及固定化细胞器等,固定化酶在食品、医药、化工和生物传感器制造上都有成功的应用实例。
对一个特定的目的和过程来说,是采用细胞,还是采用分离后的酶作催化剂,要根据过程本身来决定。
一般来说,对于一步或两步的转化过程用固定化酶较合适;对多步转换,采用固定化细胞显然有利。
第一节固定化酶固定化酶(immobilized enzyme)是指在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复使用。
酶的固定化是将酶与水不溶性载体结合,制备固定化酶的过程。
固定化酶的形状依不同用途有颗粒、线条、薄膜和酶管等,颗粒状占绝大多数;颗粒和线条主要用于工业发酵生产;薄膜主要用于酶电极;酶管机械强度较大,主要用于化学工业生产。
目前,由于固定化酶的性质比游离酶及其相关技术优越,人们对其极感兴趣,因此固定化酶的应用也与日俱增。
7细胞固定化技术
例如将多孔陶瓷颗粒洗净和灭菌后臵悬浮细胞中
进行振荡培养,一段时间后细胞就会吸附在多孔 陶瓷的孔洞内,并在其中生长繁殖和新陈代谢
细胞工程 黄林彬 lbhuang@
根据吸附剂的特点分:
1)物理吸附法(physical adsortion) 作用力:氢键、疏水键 常用载体:氧化铝、硅藻土、多孔陶瓷、多孔玻璃、 硅胶、羟基磷灰石、纤维素等 2)离子结合法(ion binding) 作用力:离子键 常用载体:DEAE-纤维素、DEAE-葡聚糖凝胶、CM纤维素
细胞工程 黄林彬 lbhuang@
聚丙烯中空纤维膜
细胞工程 黄林彬 lbhuang@
此法近似于植物体内物质的传递与交换形式,有
利于细胞生长和新陈代谢的进行
中空纤维作为固定化载体的缺点 有时纤维管会阻塞而影响物质传递 中空纤维成本较高,难以大规模生产利用
细胞工程 黄林彬 lbhuang@
角叉菜胶具有一定的凝胶强度、对细胞无毒害 通透性较好,是一种良好的固定化载体 应用广泛
细胞工程 黄林彬 lbhuang@
④明胶包埋法
明胶是一种蛋白质,易受蛋白酶的分解 高压蒸汽灭菌,105℃,1.05 MPa,15分钟 冷却至35℃以上
机械强度高,孔径与丙烯酰胺浓度相关 但丙烯酰胺单体对细胞有一定的毒害作用,应尽
量缩短聚合时间
细胞工程 黄林彬 lbhuang@
⑥光交联树脂包埋法
在光的作用下分子间发生交联反应,生成不溶性
网状聚合物——光交联树脂
作用原理:在一定波长的光引发下,带有可以发
生光交联反应官能团高分子之间发生加成性交联 聚合反应,生成不溶性交联产物
培养细胞的组织化水平越接近整体植株水平,就
实验室做细胞常用的细胞固定及染色方法(详细)
实验室做细胞常用的细胞固定与染色方法一、爬片前盖玻片处理方法对于悬浮培养的细胞,在进行各种染色前常需先制备成涂片。
为了保证细胞在长时间的染色过程中不从载玻片脱落,必须使其牢固贴附于载玻片上。
在载玻片上涂布一层有助于细胞黏附的物质是经常采用的方法之一。
能促进细胞黏附的物质主要有多聚赖氨酸、铬矾明胶等,这里介绍多聚赖氨酸的涂布方法。
1、将载玻片用玻璃专用洗涤剂(如Decon)浸泡5min,间或振荡。
2、用自来水冲洗5min。
3、以1%盐酸—70%乙醇溶液浸泡5min。
4、烤箱干燥(至此即可用于普通染色)。
5、多聚L-赖氨酸(1:10溶于去离子水)浸泡5min,振荡。
6、入60℃烤箱1 h,或室温过夜干燥(用于细胞化学、免疫细胞化学及原位杂交细胞化学)。
二、细胞固定常用方法固定细胞的目的在于把组织和细胞的原有结构尽可能完整地保存下来,避免组织和细胞发生降解、自溶、腐败和变形等,使细胞和组织内的各种酶失去活性,防止细胞和组织的各种分子变性、解离,使细胞的化学物质和酶能准确定位,并在以后的处理和制片过程中亦不发生改变和破坏。
同时,固定还可使细胞的各部分易于着色,适于观察、长期保存和分析。
1.固定组织、细胞的基本原则:尽可能选用新鲜培养物;根据检测工具、对象、目的和要求选择固定剂和固定方法。
2.培养物的准备和固定前处理:各种细胞培养物,如双盖片悬滴培养物、悬液培养物、单层培养物和盖片单层培养物都可作固定材料。
对双盖片悬滴培养物和悬液培养物来说,常通过离心收集细胞,PBS漂洗2~3次后,备固定制片;对盖片单层培养物来说,将盖片从培养器皿中取出后,PBS液漂洗2~3次,以洗去血清和附着于细胞表面的残渣,备固定用。
3.常用固定液:常用的固定液分两类,一类是以单一化学物质配成的固定液,称简单固定液。
主要有甲醇、乙醇、甲醛、醋酸、丙酮、戊二醛、苦味酸、铬酸、重铬酸钾、氯化汞、氯化镉、四氧化锇(锇酸)。
另一类是用两种或两种以上化学物质配合成的固定液,称混合固定液。
生物药学论文综述(2)
生物药学论文综述(2)生物药学论文篇3浅谈生物制药技术摘要:现代生物制药技术是一项与制药产业结合极为密切的高新技术,不断为医药行业提供新产品、新剂型,为制药界开创一条崭新之路,正在改变生物制药业的面貌,为解决人类医药难题提供最有希望的途径。
文章分析了几项生物制药技术,并对生物制药的展望进行了分析。
关键词:生物制药技术一、生物制药技术简介1。
基因工程技术:激素和许多活性因子是调节人体生理代谢与机能的重要物质,其活性强,临床疗效明显,但这些物质自然界甚为稀少,从人体及动物中提取难度大,来源有限,无法满足临床需要,而现代生物制药技术却为临床提供了这类廉价、高效的药品。
胰岛素是治疗糖尿病的激素类药物,一般从动物中提取,其资源缺乏,价格昂贵,利用基因工程手段将人或动物胰岛素合成基因分离后移植到微生物细胞中,并实现基因表达,这样用基因工程手段得到基因重组微生物被称为基因工程菌,利用基因工程菌在200L发酵灌中产生10克胰岛素相当于450千克胰脏中提取的产量。
人生长激素(简称HGH)是脑下垂体前叶分泌的由191种氨基酸组成蛋白质类激素,分子量为22000D。
以前,人生长激素只能从人脑垂体前叶中分离纯化,应用深受限制,而目前利用基因工程技术动物细胞工艺可得到,并且与人生长激素相同,临床用于治疗垂体前叶HGH分泌障碍引起的侏儒症,促进烧伤及骨折等创伤性组织的恢复,也用于改善老年性肾萎缩的症状及治疗胃溃疡。
2. 酶及细胞固定化技术:微生物转化及酶催化工艺早已在制药工业中广泛应用。
酶与固定化技术结合弥补酶的不足,在制药界取得显著发展,如用大肠杆菌酞化酶生产6一APA、犁头霉素生产氢化可的松、乳酸菌转化蔗糖制备右旋糖醉等。
原西德BeohringerNannhein公司在青霉素酞化酶固定化方面取得了很大的进展,他们用聚丙酞胺凝胶包埋法制成微型小球状固定化酶已投人生产,其表面活性为100一150U/g,1kg固定化酶可生产500kg6一APA,能连续反应300次,他们用第二代工程菌的固定化酶转化率达到85%一90%,反应次数达900次,有人用固定化后活力可维持100天以上,固定化细胞、特别微生物细胞在抗生素、激素、氨基酸等药物的合成中得到广泛的研究和应用。
固定化细胞实验报告
一、实验目的1. 了解固定化细胞技术的原理和操作方法。
2. 掌握固定化细胞在生物反应器中的应用。
3. 探讨固定化细胞在发酵过程中的稳定性和重复利用性。
二、实验原理固定化细胞技术是将细胞固定在固体载体上,使其在生物反应器中保持一定的空间结构,从而实现细胞催化反应的连续进行。
固定化细胞具有以下优点:1. 提高细胞催化反应的稳定性和重复利用性。
2. 减少细胞流失,降低生产成本。
3. 方便操作和分离。
三、实验材料与试剂1. 载体:海藻酸钠、琼脂糖、聚丙烯酰胺等。
2. 细胞:大肠杆菌、酵母菌等。
3. 试剂:CaCl2、NaOH、葡萄糖、磷酸盐缓冲溶液等。
4. 仪器:恒温培养箱、生物反应器、显微镜等。
四、实验步骤1. 细胞培养:将大肠杆菌接种于LB培养基中,37℃恒温培养18小时。
2. 细胞固定化:将培养好的细胞用无菌生理盐水洗涤,按1%的比例加入海藻酸钠溶液,混合均匀。
将混合液滴加到CaCl2溶液中,形成凝胶珠。
将凝胶珠用无菌生理盐水洗涤,去除未固定的细胞。
3. 固定化细胞反应:将固定化细胞放入生物反应器中,加入磷酸盐缓冲溶液,控制温度、pH值和搅拌速度,进行细胞催化反应。
4. 反应产物检测:采用高效液相色谱(HPLC)或酶联免疫吸附试验(ELISA)等方法检测反应产物。
5. 固定化细胞再生:将反应后的固定化细胞用无菌生理盐水洗涤,重新加入到生物反应器中,进行下一次反应。
五、实验结果与分析1. 固定化细胞在生物反应器中的稳定性:实验结果显示,固定化细胞在生物反应器中具有较好的稳定性,反应过程中细胞形态、活性均未发生明显变化。
2. 固定化细胞在发酵过程中的重复利用性:实验结果显示,固定化细胞经过多次反应后,仍能保持较好的催化活性,重复利用性良好。
3. 反应产物检测:采用HPLC检测反应产物,结果表明固定化细胞催化反应效果良好,产物产量较高。
六、实验结论1. 固定化细胞技术在生物反应器中具有较好的应用前景。
2. 固定化细胞在发酵过程中具有较高的稳定性和重复利用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固定化细胞技术综述及其应用张弘扬高娟丽天津农学院农学与资源环境生物技术(1)班摘要固定化细胞是将动植物或微生物细胞固定于适当不溶性载体上一种技术,它既可以提高生产效率和生产能力、延长生产周期,又易于细胞分离和回收。
在生物、医药、环保、食品工业等方面得到了广泛应用。
本文重要简介了固定化细胞技术办法,载体选取与应用,综述了固定化细胞技术在工业、环境中应用,并对其发展前景进行展望。
核心词细胞固定化固定化办法细胞固定载体生物反映器酒精发酵环境治理固定化技术涉及固定化酶技术与固定化细胞技术。
固定化细胞技术起步较晚,在20世70年代后才从固定化酶技术发展而来,它是指通过物理或化学办法将分散、游离微生物细胞固定在某一限定空间区域内,以提高微生物细胞浓度,使其保持较高生物活性并重复运用办法。
相对于固定化酶技术,该办法不需把酶从细胞中提取出来,且无需纯化,酶活力损失小。
当前,固定化细胞技术应用范畴涵盖生物学、生化工程、有机化学、合成化学、高分子化学、食品与发酵工业、环境净化、能源生产等各种领域,已经成为生物技术中十分活跃跨学科研究领域。
本文重要对该技术及其应用进行了简朴简介,并对其发展前景进行展望。
一、生物细胞固定化技术1、细胞固定化原理及办法固定化技术是使生物催化剂更广泛、更有效应用一种重要手段,任何一种限制生物催化剂自由流动技术都可以用于制备固定化生物催化剂。
由于细胞种类各种各样,大小和特性各不相似,故此细胞固定化办法有诸各种。
Karel等人将其归纳为表面吸附、多介质包埋、隔离和自凝集4大类;王建龙把当前惯用固定化办法分为吸附法、包埋法、胶联法和截留法;杨文英等简介了吸附法、包埋法、共价结合法、胶联法、多孔物质包络法、超过滤法、各种固定化办法联用等7种惯用办法;成庆利等按有无外加载体将细胞固定化办法分为有载体固定化法和无载体固定化法2种;张磊等按照固定化载体与方式不同将其分为吸附法、包埋法、共价结合法和胶联法。
[1]老式细胞固定化办法有四大类:包埋法、吸附法、交联法、共价结合(偶联)法。
包埋法:运用物理办法将细胞包埋在多空载体内部而制成固定化细胞办法称为包埋法。
包埋法可分为凝胶包埋法和半透膜包埋法。
凝胶包埋法是应用最广泛细胞固定办法。
包埋法反映条件温和,酶蛋白构造很少受变化,并且固定化时保护剂存在不影响酶包埋产率。
此办法对大多数酶、粗酶制剂甚至完整微生物细胞都是合用。
但是包埋法仅合用于小分子底物和产物酶,并且由于底物和产物扩散受阻,酶反映速率也许受到影响。
吸附法:运用各种吸附剂,将细胞吸附在其表面而使细胞固定办法称为吸附法。
用于细胞固定化吸附剂重要有硅藻土、多孔陶瓷、多孔玻璃、多孔塑料、金属丝网、微载体、和中空纤维等。
按吸附原理又可分为物理吸附和离子吸附两种。
吸附法长处是操作简便、价廉、条件温和,对细胞活性影响小,但缺陷是细胞结合不牢且数目有限,条件变化时易脱落。
交联法:交联法又称无载固定化法,是一种不用载体工艺,通过化学、物理手段使生物体细胞间彼此附着交联。
化学交联法它普通是运用醛类、胺类等具备双功能或多功能基团交联剂与生物体之间形成共价键互相联结形成不溶性大分子而加以固定,所使用交联剂重要有戊二醛、聚乙烯酞胺、表氯醇等等。
物理交联法在是指在微生物培养过程中,恰当变化细胞悬浮液培养条件(如离子强度、温度、pH值等),使微生物细胞之间发生直接作用而颗粒化或絮凝来实现固定化,即运用微生物自身自絮凝能力形成颗粒一种固定化技术。
该法操作简便,但在较激烈条件下进行,普通固定化细胞活性不高,因而该办法推广应用受到了一定限制。
共价结合(偶联)法。
共价结合法是细胞表面上官能团和固相支持物表面反映基团形成化学共价键连接,从而固定微生物。
该办法固定化微生物稳定性好,不易脱落,但限制了微生物活性,同步反映激烈,操作与控制复杂苛刻,并且成本较高。
尽管固定化办法各种各样,但没有一种抱负、普遍合用办法。
化学固定化法(涉及化学交联法和共价结合法)涉及细胞化学修饰,但化学试剂毒性对细胞会有损害,因而,不合用于制备固定化活细胞。
但由于细胞与细胞或细胞与载体间结合力强,因此操作稳定性高。
交联法和聚电解质复合包埋法突出长处是可以获得很高细胞密度,但由于缺少良好机械强度而不能得到广泛应用。
2、固定化细胞载体载体材料性质很大限度上决定了微生物附着固定和生长代谢状态,微生物量多少也与载体材料构造关于。
因而固定化细胞载体是细胞固定化技术能否成功核心因素。
2.1载体普通规定普通状况下,一种抱负优良载体应具备如下特性:固定化操作以便,成型快;载体表面应具备化学活性集团,可以直接或通过活化后与生物分子偶联;载体应具备一定容量,可以偶联足够生物分子;载体作用仅是使生物分子固定化,对生物分子无毒害作用,反映温和;载体应具备良好生物相容性,对反映物和生成物扩散阻力小;耐微生物分解,使用时间长和重复使用次数多;载体原材料广泛并且成本低廉。
事实上,很少有一种载体材料能满足上述所有条件。
普通总是依照工作性质去选取较为适当载体材料。
2.2载体材料影响因素普通状况下,固定化速率受载体材料表面粗糙度和电荷影响,载体材料表面粗糙度越大,微生物附着越稳定;同步载体材料表面空隙能较好地保护微生物,免受水力负荷损害。
研究表白微生物表面普通带负电荷,使用表面带正电荷材料作为固定化载体能中和微生物表面负电荷,可加速固定化速度,在液相中更易于微生物向载体表面传播。
2.3载体材料分类当前,固定化技术所使用载体材料重要有:天然载体材料、合成高分子载体材料、人造无机载体材料、复合载体材料等[2]。
(1)天然载体材料天然载体材料涉及天然无机载体材料和天然有机载体材料两大类。
其中,运用沙粒、沸石、硅藻土等制作为天然无机载体材料,此类载体在水中不易流化,表面积较小,吸附微生物量少,因而普通作为辅助材料。
天然有机载体材料重要运用琼脂、海藻酸盐等天然多糖类材料,这些材料均具备良好生物相容性、反映温和性、无毒性,多在研究和应用中被选用,其中又以海藻酸钠应用最为广泛[3]。
但天然有机载体缺陷是其制作固定化小球其强度稳定性较低,传质能力差,且易被微生物分解,故使用寿命较短,因而需及时更新制备,以补充降解所耗。
(2)合成高分子有机载体材料在实验和研究中常采用是聚乙烯醇(PVA)、聚乙二醇(PEG)、聚氨酯(PU)等作为原材料。
此类载体材料对微生物无毒害作用,反映温和,可提高微生物存活率,相比于天然载体材料,此类载体材料更不易被微生物降解,使用寿命更长,因而人们选用合成高分子载体较多。
聚乙烯醇是一种人工合成有机多聚体凝胶,作为包埋载体有机械强度高,化学性能稳定、对微生物无毒、抗微生物分解能力强、价格低廉和使用寿命长等长处[4]。
(3)人工制造无机载体材料此类载体材料运用是人为制造微孔构造将微生物进行固定,由此提高了载体中微生物浓度,从而达到更好解决效果。
常用人造无机载体有活性炭、多孔陶瓷、微孔玻璃、泡沫金属等。
这些材料对于微生物毒性较低,机械稳定性较高,因而提高了微生物对于废水耐受性,同步由于她们不会被微生物所降解,因而使用寿命普通比较长。
(4)复合载体材料由于有机载体材料和无机载体材料各有有缺陷,而两类材料在许多性能方面互补,因而,运用构成和构造可调控有机聚合物对老式无机载体材料进行改性修饰,制备兼具两者优良特性负荷载体用于微生物固定化研究,受到了众多学者青睐。
3、固定化细胞生物反映器固定化细胞生物反映器分类办法诸多,但重要按催化物分布形式,结合反映器机械构造进行分类。
依照生物催化物在反映器内分布形式可将生物反映器分为生物团块反映器和生物膜反映器[5]。
生物团块是指细胞被包埋或固定为絮凝物或颗粒,以及自身形成菌丝球,采用反映器涉及机械搅拌式反映器、鼓泡塔反映器气升式反映器和环流反映器。
生物膜是指微生物在支持物上形成一层黏膜状物,采用反映器有固定床(填充床)反映器、流化床反映器、生物转盘、渗滤器、膜反映器等。
如下是几种常用固定化细胞生物反映器。
填充床反映器:在此反映器中,细胞固定于支持物表面或内部,支持物颗粒堆叠成床,培养基在床层间流动。
填充床中单位体积细胞较多,由于混合效果不好,使得床内氧传递、气体排出、温度、pH控制较为困难。
此外支持物颗粒破碎还会使填充床阻塞。
流化床反映器:典型流化床是运用流体(液体或气体)能量使支持物颗粒处在悬浮状态。
该反映器混合效果较好,但流体剪切力和固体化颗粒碰撞常使支持物颗粒破损,此外,流体剪切力学复杂使其扩大生产困难。
膜反映器:膜固定化是采用品有一定孔径和选取透性膜固定细胞。
营养物质可以通过膜渗入到细胞中,细胞产生次级代谢产物通过膜释放到培养液中。
膜反映器重要有中空纤维反映器和螺旋卷绕反映器。
与凝胶固定化相比,膜反映器操作压下降较低,流体动力学易于控制,易于放大,并且提供更均匀环境条件,同步还可以进行产物及时分离以解除产物反馈抑制,但构建膜反器成本较高。
二、固定化细胞技术应用实例固定化细胞技术应用当前还处在研发阶段,高性能载体选取与研制、固定化细胞生物反映器性能提高,固定化细胞生长环境检测均有待发展。
因而,大规模生产应用受到限制。
但是,世界各国把固定化细胞研究成果应用于生产已产生了很大经济价值。
当前在食品、医药、环境解决等方面已经获得了初步成果。
(1)固定化酵母细胞在酒精发酵中应用老式葡萄酒生产多采用游离酵母细胞发酵,存在着发酵周期长、生产效率低下、不利于持续生产、酵母细胞不能重复使用、生产成本较高等许多缺陷,运用固定化细胞技术可以克服以上缺陷,实现葡萄酒迅速低温持续发酵。
低温发酵有助于提高酒度、改进葡萄酒香气和抑制细菌生长,但同步也会减慢发酵速度,延长发酵周期。
采用固定化酵母细胞进行持续发酵可以大幅度提高低温条件下酒精生产能力,加快发酵进程。
与游离细胞相比,固定化酵母细胞活化能大大减少,其在低温条件下对葡萄浆发酵速度也明显加快。
固定化酵母细胞持续发酵生产系统可持续操作而不污染,并且酒精生产能力也未见下降。
同步,对所得酒样进行分析表白,固定化细胞持续发酵制得葡萄酒总酸及挥发酸含量均低于游离细胞发酵制得葡萄酒[6]。
(2)固定化细胞技术在环境治理上应用当前随着经济发展,环境污染问题越来越明显,污水更是一种严峻问题。
过去化学、物理污水解决都不抱负,物理解决办法不彻底,化学解决办法会导致二次污染,而微生物在废水解决领域中具备独特优越性,慢慢突显出了它优势。
由于微生物在自然状态下浓度不是很高,解决效果不是较好,而分离、筛选出优势菌种加以固定,增强了细胞对有毒或高渗物质承受能力和降解能力,因而细胞固定技术得到了广泛应用,可用于解决氨氮废水、难降解有机废水、含重金属废水、有色废水等。
它具备效率高、稳定性强、耐负荷、产污泥量少等优势。
通过不断研究和改进,固定化细胞技术在废水治理领域中已成为一项高效而实用废水解决技术。