高考物理备考之法拉第电磁感应定律压轴突破训练∶培优易错试卷篇(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理备考之法拉第电磁感应定律压轴突破训练∶培优易错试卷篇(1)

一、法拉第电磁感应定律

1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.

(1)求磁感应强度B的大小;

(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;

(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.

【答案】(1)1 T (2)0.3 m(3)0.3n J

【解析】

【详解】

(1)当h=2L时,bc进入磁场时线框的速度

===

v gh gL

222m/s

此时金属框刚好做匀速运动,则有:

mg=BIL

E BLv

==

I

R R

联立解得

1mgR

=

B

L v

代入数据得:

1T

B=

(2)当h>2L时,bc边第一次进入磁场时金属线框的速度

022v gh gL =>

即有

0mg BI L <

又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有

'222v v gL =+

解得:

6m /s v '=

根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有

2v v gh '==

即有

0.3m h =

(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:

'2211

(2)22

mv mg L mv Q +=+ 代入解得:

00.3J Q =

则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。

2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:

(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v

Q R

=(3)43cd Blv U =

【解析】 【详解】

(1)线框离开磁场的过程中,则有:

2E B lv =g

E I R = q It = l t v

=

联立可得:2

2Bl q R

=

(2)线框中的产生的热量:

2Q I Rt

=

解得:234B l v

Q R

=

(3) cd 间的电压为:

2

3

cd U I R =g

解得:43

cd Blv

U =

3.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求

(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.

【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220

B l t m

【解析】 【分析】 【详解】

(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③

联立①②③式可得:0F E Blt g m μ⎛⎫

=-

⎪⎝⎭

④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E

R

⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦

联立④⑤⑥⑦式得: R =220

B l t m

4.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:

(1)初始时刻导体棒2的加速度a 大小. (2)系统运动状态稳定时1的速度v 大小.

(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少? 【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m 【解析】 【详解】

解:(1)初始时:0E BLv =

E

I R r

=

+ 对棒2:F 安BIL ma ==

解得:2220

10m/s B L v a R r

==+

(2)对棒1和2的系统,动量守恒,则最后稳定时:0()Mv m M v =+ 解得:8m/s v =

(3)对棒2,由动量定理:BIL t mv ∆= ,其中q I t =∆ 解得:8C mv

q BL

== (4)由E t φ∆=

∆ 、E I R r

=+、 q I t =∆

相关文档
最新文档