常压稠化仪-科力奥尔

合集下载

实验仪器仪表科尔帕默使用方法

实验仪器仪表科尔帕默使用方法

实验仪器仪表科尔帕默使用方法
科尔帕默(Coriolis meter)是一种用于测量流体质量流量的仪器,下面是其使用方法:
1. 安装:首先需要将科尔帕默根据其安装说明安装在管道上,并且保证管道的进出口处均为平直的段落。

2. 启动:启动仪器之前需要确认其电气和机械系统都处于正常状态,然后打开流体流动的阀门,确保流体进入科尔帕默内部的管道中。

3. 测量参数设置:进入仪器的参数设置界面,设置好需要测量的流体类型、流量范围、温度、压力等参数。

4. 测量:通过输入仪器所需的操作指令,开始进行测量。

科尔帕默通过测量流体在仪器内部的弯曲变化,得出流体的质量流量和体积流量等参数。

5. 数据处理:获得测量结果后,需要进行数据处理和分析,得出需要的参数和统计量,比如质量流量平均值、流量变化率等。

6. 系统维护:按照科尔帕默的维护手册进行定期的清洁、校准等维护操作,保证仪器的准确性和性能。

检测中心仪器设备台账

检测中心仪器设备台账

/ 2013-11-6 2013-11-6 2013-11-6 / / 2013-11-6 /
/ 2014-11-5 2014-11-5 2014-11-5 / JZ-2013504(38)-15号 JZ-2013504(86)-27号 JZ-2013504(93)-30号
/ 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 / /
17
0300228
沥青粘韧性测试仪
SYD-0624
0~1000N,0~610mm
500±10mm/min
GK-01-016
上海昌吉
2005-12-31
2005-12-21
45000
12个月
2008-11-20
2009-11-19
湖北省计量测试技术研究院
校准
停用
111室
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
仪器设备登记表
表C010-10 序号 公司资产编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0300183 0300311 0300308 0300288 0300304 0300287 0300054 0300178 0300168 0300088 0300093 0300214 0300132 0300290 0300188 仪器名称 延度仪 沥青延度试验器 全自动电脑针入度仪 全自动针入度仪 全自动沥青软化点试验器 克利夫兰闪燃点仪 闪点试验器 沥青薄膜烘箱 旋转薄膜烘箱 电热恒温干燥箱 石油沥青蜡含量试验器 分析天平 分析天平 离心沉淀机 空气压缩机 沥青全自动抽提仪 型号 B055 SYD-4508C SYD-2801I H-1240D SYD-2806G SYD-3536型 SYD-0633 82型 85型 101A-2型 SYD-0615 HF-400 AUY220 LXJ-Ⅱ Y21K-1 45-3800 量程或规格 延伸长度:150cm 1500±10mm 0~500针入度 0~400针入度 5~80℃,32~160℃ / 0~93℃ 163℃ 163℃ 50~200℃ -20℃ 0~410g / 4000r/min 10/142 1500g~3000g,0~2500rpm 精度等级 / ±1mm,±0.1℃ 0.1针入度,25±0.1℃ 0.1针入度 0.01℃ 2℃ 1℃ ±0.5℃ ±0.5℃ ±5℃ ±0.5℃ 0.001g,Ⅱ级 0.1mg 定时误差:≤±8min / / 中心仪器编号 GK-01-001-002 GK-01-001-003 GK-01-002-005 GK-01-002-006 GK-01-003-004 GK-01-004-003 GK-01-004-004 GK-01-006-002 GK-01-007 GK-01-008 GK-01-009-002 GK-01-011-002 GK-01-011-004 GK-01-012 GK-01-014-001 GK-01-015 产地 意大利 上海昌吉 上海昌吉 美国 上海昌吉 上海路达 上海昌吉 无锡 无锡华南 上海 上海昌吉 日本 岛津 上海 台湾 英国 出厂编号 B055/AZ/0005 065 07-10-39 09111240D 39450 5003 05 / 20299 98431 013 12835865 D449812299 19397 XJD3230 / 购置日期 2010-12-2 2010-12-2 2008-5-30 2010-12-2 2008-5-10 2006-5-20 2011-1-10 2003-9-20 2000-8-1 2000-4-27 2005-4-30 1998-11-6 2008-4-10 2004-8-25 2000-8-1 2004-3-20 价格(元) 128000 9000 32000 46000 16000 1900 4600 13000 28500 2850 19500 13900 8500 8800 25320 48820 12个月 检定校准周期 12个月 12个月 12个月 12个月 12个月 12个月 12个月 12个月 12个月 12个月 12个月 12个月 12个月 最近检定/校准 有效期 日期 2012-6-30 2014-5-5 2014-7-6 2014-5-5 2014-3-5 2013-11-6 2014-5-5 2013-11-6 2013-11-6 2014-5-5 2013-11-6 2014-3-3 2014-3-2 2013-12-9 / 2013-12-9 2013-6-29 2015-5-4 2015-7-5 2015-5-4 2015-3-4 2014-11-5 2015-5-4 2014-11-5 2014-11-5 2015-5-4 2014-11-5 2015-3-2 2015-3-2 2014-12-8 / 2014-12-8 JL2013120570030 JZ-2014161(01)-01号 JZ-2014246(09)-51号 JZ-2014161(09)-08号 JZ-2014161(11)-10号 JZ-2013504(55)-17号 JZ-2014161(55)-35号 JZ-2013504(13)-08号 JZ-2013504(39)-06号 JZ-2014161(26)-27号 JZ-2013504(85)-26号 JZ-2014147(02)-02号 JZ-2014147(02)-03号 JL2013120570010 证书编号 检定单位 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北土木工程计量校准中心 湖北省计量测试技术研究院 / 湖北省计量测试技术研究院 证书类型 检定 检定 检定 检定 检定 校准 校准 校准 检定 校准 校准 检定 检定 校准 / 校准 状态标识 合格 合格 合格 合格 合格 合格 合格 合格 合格 合格 合格 合格 合格 合格 合格 合格 存放地点 襄随中心试验室 新沥青试验室 113室 新沥青试验室 113室 113室 新沥青试验室 112室 112室 112室 113室 113室 113室 111室 112室 111室

HTD1200常压稠化仪和常压稠化仪价格

HTD1200常压稠化仪和常压稠化仪价格
HTD1200常压稠化仪和常压稠化仪价格
HTD1200常压稠化仪
标题:HTD1200常压稠化仪
1.用途及特点严格按照美国石油学会(the American Petroleum Institute)的“油井水泥材料和试验规范(Specification for Materials and Testing for Well Cements)”规范10研发生产的HTD1200型常压稠化仪,是用于油井水泥多项试验的新型仪器。该仪器不仅可直接用于油井水泥游离液及常压下油井水泥稠化时间的测定,还可辅助进行水泥浆含水量的测量、失水试验、水泥浆流变性能测定等多项油井水泥பைடு நூலகம்验。改进的HTD1200型常压稠化仪使用了高精度、低噪音的新技术,使传动更加平稳。HTD1200型常压稠化仪采用了国外先进的智能温度调节技术,可严格控制并数字显示液箱内的液体温度,并对稠化时间进行数字显示。2.型号及规格HTD1200 3.主要技术参数本仪器完全符合API规范...
厂家:南北温灭菌机组(连体管式)
标题:ZGJZ-A型智能化超高温灭菌机组(连体管式)
适用范围该机组加热方式为蒸汽加热,广泛适用于保质期长的纯牛奶、乳饮料、巴氏奶、酸奶、各种果汁饮料、酱油、醋、葡萄酒、啤酒、药用基液的巴士杀菌、超巴士杀菌、UHT超高温杀菌。机组功能特点●具有自动完成消毒程序、生产程序、CIP清洗程序的全过程控制运行与监控,基本实现无人值守●全部采用进口PLC程序控制系统,触摸屏人机界面、施耐德电器元件、卫生级气动(电磁)阀组●具有均质预热功能●预杀菌功能●具有冰水(冷水)冷却功能●管道消毒功能●CIP清洗功能●机组与灌装机直接和控制系统互相通讯功能●满足多产品、多工艺参数、多生产能力的转换和不同的灭菌问题要求主要技术参数性能/单位/型号ZGJZ-03A ZGJZ-05A ZGJZ-1A ...

瑞士百思得Pascal系列汞入侵孔隙度测量仪器操作说明书

瑞士百思得Pascal系列汞入侵孔隙度测量仪器操作说明书

Maximum resolution in minimum time!Pascal SeriesMercury Intrusion PorosimetersReservoir rocks Ceramic Materials Building materials Polymers and resins PharmaceuticalsRestoration and conservation Geology MiningPart of Thermo Fisher Scientifics u r f a c e a n a l y s i sCommon featuresand benefits of the Pascal SeriesPascal method of pressurization Decreases run times by up to 30% without sacrificing the reliability of the curves and does not require any prior knowledge about the sample characteristics.Extremely high resolutionPascal units can provide curves with up to 2500 data points depending on the selected speed and sample nature. At this incredibly high resolution the data points on the curve form a continuous line.Separately selectable speed ranges for intrusion and extrusionNine speed ranges are selectable so that both sophisticated researchers, who don’t want to miss anything, and those who are in a hurry, as in the case of quality control, can be satisfied. Decreased speed ranges can be selected independently of increased speed ranges to better define the extrusion curve and minimize instrumental hysteresis effects.On-board microprocessor and memory data buffer forstand-alone operationThe on-board microprocessor controls all the instrument functions and collects the experimental data storing them in a memory buffer, therefore a PC is not required to run the Pascal but only for data elaboration. On the other hand the whole analysis can be programmed and controlled from a PC, which can be disconnected at any time during the analysis freeing it for other tasks. The operator can verify the instrument status and can transfer the experimental data to the PC to verify the analysis results at any time.One data station – fourinstruments via multi RS232 linkThe instruments are connected to the PCthrough a standard serial RS232 port. Asingle data station can control up to fourinstruments from a serial port (Pascal140/240/440 and the Sorptomatic forexample). Thus a complete MicrostructureLab can be realized minimizing costs andbench space.Choice of operation via controlpanel or PCBoth the analysis and the instrument can beprogrammed and controlled in real timeeither from an easy-to-use control panelwith liquid crystal display or from thecomputer screen. Thus the instruments canbe operated even if they are not in the sameroom as the data station, as often occurs inQC labs.Automatic porosimetercalibrationA special calibration kit is available as anoption to verify the calibration of the system.In addition, a number of certified referencematerials are nowadays available toregularly check the instrument performance.Pascal porosimeters achieveutmost safety certificationsAll Pascal devices are fully CE certifiedaccording to electromagnetic compatibilityand safety. In addition, the high pressuredevices achieved the full PED (PressureEquipment Directive) certification regularlycontrolled by an external certification body.The utmost certified safety and unmatchedanalytical performance are the best addedvalues of these products.The Pascal 140 has a dual role:it prepares the sample and thedilatometer for the analysis andcarries out low pressureporosimetry measurementsOperations are done automatically thus freeing the operator for other tasks. Thanks to its modular concept, it can be used by itself or together with other Pascal porosimeters, thus modularity of the Pascal system features a “buy what you need” approach. Data from the low pressure intrusion can be combined with data from the other high pressure modules (240 or 440) to get aDilatometer in vertical positionThe vertical position of the dilatometer preventsany mercury spilling during the filling operationand permits a continuous degassing, thusavoiding the risk of air bubble trapping in thedilatometer.complexity that makes the operator’s life difficultPED conformity assures utmost safety for high pressure devicesPascal porosimeters assure to customers the utmost certified safety and maximum quality.Pascal 240 and 440 models, reaching 200and 400 MPa respectively, are completely certified according to the PED (Pressure Equipment Directive) certification. PED is intended to guarantee essential safety requirements to users, and it is applied according to several parameters related to fluids, volume-pressure rates, materials, etc.In the case of Pascal 240 and 440, it is relevant to all the hydraulic parts submitted to high pressures, specifically the pressure multiplier, the high pressure inlet pipe and the two bodies of the autoclave. Thesecomponents have been certified as a system,and single components are regularly verified by an official certification institute. Safety is the best added value of our products.Pascal 240The Pascal 240 porosimeter operates up to the maximum pressure of 200 MPa. Its large autoclave together with the special electrode system makes it an extremely versatile porosimeter as it can accept all the dilatometers and is thus able to measure a wide range of solid materials:homogeneous, heterogeneous, low and high porosity. The accuracy and reproducibility are the utmost thanks to the Pascal system.Pascal 440The Pascal 440 is not only the highestpressure model but it also offers the highest speed of the series. It reaches its maximum pressure of 400 MPa in the same time as the Pascal 240 reaches its maximum of 200MPa. It is particularly suited for ceramics,sintered metals, very hard materials and, in general, for all the solids which have aporosity approaching the micropore region.Thanks to its high pressurization speed, it is highly recommended in QC labs where short run times and productivity are the priorities.The Pascal 240 and Pascal 440 high pressure porosimeters take over where the Pascal 140 leaves off to measure pores down to the lower mesopore region. They incorporate a new pressurization system,developed to meet the sophisticated analytical requirements of laboratories working with modern materials. The pressurization system uses a reversible pump operating continuously, which permits a perfect control in increasing/decreasing the pressurization speed, and a new type of pressure multiplier.The key features of this system are the extremely high maximum speed of pressurization and theimmediate acceleration or deceleration response permitting the optimal application of the Pascal system during the analysis. The easy-to-use control panel with liquid crystal display permits the unit to be operated also without a PC. It lets the operator program the analysis or the calibration and provides a useful guide to operate correctly. It shows the analysis status in real time and indicates incorrectoperations by means of error messages.Automatic autoclaveopening/closingThe motor driven raising/lowering of the autoclave simplifies the operation and contributes to the userfriendliness of the unit. Autoclave oilfilling by a pumping systemThe pumping system reduces the time necessary to fill the autoclave before the analysis begins and assures that air bubbles are removed.Real blank correctionThe Pascal 240/440 permit a real “blank”analysis, that is a run without any sample. The blank curve is memorized by the data station and is then automatically subtracted from the normal analyses. This prevents erroneous interpretations of the sample porosity due to the presence of “ghost” pores which result when the mercury compression and temperature effect are not taken into consideration.Control panel with liquid crystaldisplayIt informs the user about the instrumentstatus in real time while the analysis isrunning regardless of whether or not the PC isconnected. It increases safety by continuouslymonitoring the piston position and displayingerror messages if anything goes wrong. Thisinformation can also be shown on the PC’sscreen.Up to 2500 experimental points inevery runThis means an almost limitless curveresolution. When the low and high pressureanalyses are joined the total number of pointscan be even more!“Hold pressure” functionThe analysis can be stopped on request bythe operator and the pressure is maintainedconstant at the actual value without timelimits. This permits the study of extremelyslow penetration phenomena.Pascal240 accepts all typedilatometersThe Pascal 240 is exceptionally versatile dueto its unusually large autoclave which acceptsthe complete range of dilatometers and thuscan analyze practically any kind of sample.Only9 minutes to reach themaximum pressureThe incredibly short time required to reach themaximum pressure makes the Pascal 240 andPascal 440 particularly suited for QCapplications where short analysis times andhigh productivity are most important.offer more than meets the eye。

高温高压稠化仪-科力奥尔

高温高压稠化仪-科力奥尔

天津科力奥尔工程材料技术有限公司第三节 高温高压稠化仪1 高温高压稠化仪的用途高温高压稠化仪是严格按照API 规范10的要求进行设计制造的,用以模拟井下高温高压状态,测定水泥浆的稠化时间,从而确定安全的施工时间。

2 高温高压稠化仪的结构和原理高温高压稠化仪由高压釜体、磁力驱动器、超高压泵、气动液压管路系统、温度控制仪及加热器、釜盖起吊装置、电气控制装置、浆杯、浆叶、用于测量稠度的电位器、冷却系统和壳体组成。

釜体是由特种高强钢构成,而且能承受很高的工作温度和压力。

釜内压力由一个气动超高压泵提供,稠化仪导热油经油箱、油滤、各阀门,由压缩空气压入釜内,再由超高压泵加压,提供初始压力。

高温高压稠化仪的最大工作温度为315℃,最大工作压力为275Mpa ,釜内部使用一个额定功率为2500瓦的加热器。

三笔记录仪与仪器相连,可同时记录釜内温度和浆杯里的水泥浆稠度随时间的变化曲线,浆杯由磁力驱动器带动,以顺时针150r/min 恒速转动。

高温高压稠化仪装有两支J 型热电偶,用来测量油温和水泥浆的温度。

温度调节器显示热电偶测定的温度,并可设定和控制程序升温,压力由压力调节器控制程序升压和恒压,釜内温度和压力即是模拟固井施工作业时的井下温度和压力。

在高压回油管路中,装有单向油滤,滤出油中各种杂质和水泥颗粒。

高压管路装有爆破碟片,可以承受310Mpa 的压力,这是超压的最后保护装置,用来保护整个超高压系统的安全,当碟片破裂时,油随即排到油箱中。

水泥浆杯上部有一个大容积的帽子,由于高温试验时,水泥浆膨胀厉害,会产生溢出现象,此帽就是捕获试验中密封不严,防止水泥浆溢出,污染釜体和油等作用。

测试水泥浆稠度时,水泥浆注入浆杯中,浆杯由磁力驱动器带动,电位计与浆叶轴上的驱动档固定好,水泥浆相对浆叶转动,浆叶受到阻力,使电位计上的弹簧变形。

稠度与扭矩成正比,随着弹簧扭矩及指针旋转角度的增大,电位计的电阻值及电压也随之增大,因此电位计所反应出来的电压值,不仅表示了弹簧扭矩的大小,也反映了测量水泥浆稠度值的大小。

美国CANNON公司CAV2100全自动运动粘度测定仪中文样本

美国CANNON公司CAV2100全自动运动粘度测定仪中文样本
全自动进样恒温粘度测试清洗干燥粘度计不需人员随机操作操作可以离开现场仪器可以自动完成全部任务粘度指数和赛波特通用粘度自动计算具计算机自我故障诊断程序可以通过网络进行远程故障诊断降低质量成本真正提高测试效率彻底解放劳动生产力个恒温浴方便以后扩容pdf文件使用试用版本创建www
※※※※※※※※※※※※※※※ ※美国凯能仪器 世界粘度权威※ ※※※※※※※※※※※※※※※
PDF 文件使用 "pdfFactory Pro" 试用版本创建
样品槽系统: 标准样品槽可放置 13 个玻璃样品瓶,自动和手动进行编号由计算机键盘输入。 样品槽用于高粘度样品的测量。 也可以选配一支粘度计附带 50 个履带型进样器,这样一个恒温浴附带有 100 个 履带型进样器,可全自动地连续不间断测量 100 个样品。
粘度计末端、排放管及废液收集器均有加热装置: 加热功能能防止在测量含腊 样品时的结块和固化,在测量含腊样品和残渣燃料时应选用。
主机分部: 包括 24 伏直流电源,相同的控制电路板用于各个恒温浴,并附有识别开关及信 号指示、插入式探头卡、插入式温控卡 、主电源泵和加热管开关系统,用于监 测电压及探头调整的显示表。 外围设备部分: 包括截止阀、过滤器、压力调节阀、主空气压力表、脱湿系统、压缩空气系统、 真空截止阀、真空调节阀、真空表及真空系统。 CAV 软件及资料。 溶剂箱及溶剂选择: 包括 34 升(9 加仑)不锈钢容器安装在不锈钢箱体中,并附有液位指示器,截止 阀及单向阀。 用户可以使用直馏汽油、庚烷和甲苯作为溶剂,一般先用直馏汽油或甲苯清洗, 然后用庚烷清洗(双溶剂系统) 。CANNON 仪器公司在仪器出厂时不 附带溶剂, 由用户在当地选购。 警告:本仪器禁止丙酮作为溶剂 外形尺寸: CAV2 和 CAV3 主机:720mm 宽 x762mm 深×2080mm 高 重量: 218kg CAV4 主机: 864mm 宽 x762mm 深×2080mm 高 重量: 272kg 溶剂箱: 重量: 360mm 宽 x360mm 深×860mm 高 27kg

附表1:西南石油大学大型仪器设备有偿使用收费标准清单

附表1:西南石油大学大型仪器设备有偿使用收费标准清单


附表1:西南石油大学大型仪器设备有偿使用收费标准清单
说明:根据西南石大设[2011]6号文件第十五条规定,大型仪器设备有偿使用收费的校内优惠政策如下:
⑴承担学校下达的计划内实验教学任务,不得收取任何费用,实验消耗费由学院在学校下拨的实验教学经费中安排支出。

⑵承担大学生课外开放实验项目、大学生创新性实验项目以及学科竞赛项目,只收取实验消耗费,由学生承担项目所获得的资助经费列支。

⑶因特殊原因需无偿提供使用的,必须事先报大型仪器设备管理中心审核同意,并经主管校长批准。

⑷本校教师科研项目使用仪器设备,收费标准中未分别注明校内外收费标准的按公布标准的50%的优惠价收取。

备注:以上设备详细的功能和应用领域请登录学校大精设备专管共享网络平台查询,网址:。

Pellicon 超滤(UF) 浓稠化(DF)操作指南说明书

Pellicon 超滤(UF) 浓稠化(DF)操作指南说明书

Notice: The information in this document is subject to change without notice and should not be construed as a commitment by Merck Millipore or an affiliate. Neither Merck Millipore nor any of its affiliates assumes responsibility for any errors that may appear in this document.Introduction .........................................................................................................................................3Objectives, Methods and Materials ...............................................................................................4Installation ...........................................................................................................................................6Pre-use Flushing Procedure ............................................................................................................7Normalized Water Permeability (NWP) Measurement ............................................................9Determination of System Hold-up Volume..............................................................................11System Equilibration ......................................................................................................................12Determination of Optimum TMP ................................................................................................13Concentration ..................................................................................................................................14Diafiltration ......................................................................................................................................15Recovery Operations ......................................................................................................................17Clean In Place (CIP) ........................................................................................................................19Post CIP Normalized Water Permeability Measurement .....................................................20Storage ...............................................................................................................................................21Appendix 1: Diafiltration Buffer Volume Requirements (22)Pellicon ® Ultrafiltration (UF)/ Diafiltration (DF) Operations Protocol GuideIntroductionObjectives of a UF/DF StudyThe objectives of a UF/DF study include determination of cassette capacity (volume/area) and sizing estimations for large volume processing of a given feed stream.Methods of a UF/DF StudyFeed StreamThe feed stream used in the study should be as representative (as possible) to the actual process (temperature, concentration, density, etc.). Initial and filtrate (post-testing) samples should be taken and tested for product recovery.MaterialsPellicon® 3 88 cm2 Cassettes with Ultracel® MembranePellicon® 3 88 cm2 Cassettes with Biomax® MembranePellicon® 2 Mini Cassettes with Ultracel® MembraneObjectives, Methods and Materials AccessoriesAdditional Ordering Information1.1 Set up system per general arrangement drawing. In principle, the tubing lengths should be minimized so as to minimize the working volume of the system. This enhances the ability to reach higher concentrations and lowersnon-recoverable volumes (recovery loss).1.2 The permeate (or filtrate) pressure gauge may be omitted in standard UF operation since there should not be any filtrate pressure in this line.1.3 Install the membrane as per the installation guide included in the membrane device box. Silicone gaskets areincluded in the Pellicon® 2 Device Box and must be used with the Pellicon® 2 membranes to achieve a proper device to holder seal. Pellicon® 3 devices (mini and micro) have gaskets that are integral to the device that make the device to holder seal.1.3.1 When working with micro (0.88cm 2) devices the required torque might be lower than the specification. If during the flushing procedure a high feed pressure (≥14psig) is observed loosen the membrane fromthe holder and re-torque to 140 in-pounds.3-Way Figure 1.UF/DF SystemGeneral Arrangement2.1 Pellicon® devices come from the factory pre-wet with preservative solution that must be removed beforeprocessing product. See Table 1 for flush volume recommendations.2.2 Arrange the system flowpath into the Single-Pass Filtrate Open mode (SPFO) as shown in Figure 2.2.3 Fill the feed vessel with the required purified water volume from Table 1.3-Way Figure 2.Single-Pass Filtrate Open mode (SPFO) ArrangementTable 1.Sanitization Solution and Flushing VolumeMethods2.4 Set the retentate Valve to fully open. Set the pump to supply 5 LMM (L/min/m 2) feed flow rate.2.5 Start the pump and monitor the feed pressure gauge. The pressure should stabilize to between 5-14 psig. If the pressure is outside this guideline, re-check the installation and torque wrench settings.2.6 Set the retentate pressure to 5 psig so as to ensure that the membrane is being fully flushed. Continue until the volume in the feed vessel is minimized, then stop the pump. Do not entrain air into the system.2.7 See Table 1 and add required volume of sanitization solution, to the feed vessel. Set the system in ‘Single Pass’ flow path. Start thepump to displace the water from the lines and the internal volume of the membrane to avoid dilution. When the sanitization solution level in the feed vessel had been minimized, stop the pump before air is entrained into the system.2.8 Set the system flowpath to the total recycle mode (Figure 3). Fill the vessel with required volume of sanitization solution,see Table 1.2.9 Recirculate at 5 LMM feed flowrate for 30-60 min. Set the retentate pressure to ~5 psig to ensure CIP (Clean-In-Place) of the full membrane area.2.10 Stop the pump after the CIP time interval. Return the system flowpath to the SPFO mode (Figure 2). Start the pump again andpump the feed vessel out to the receiver vessel. When CIP solution level in the feed vessel had been minimized, stop the pump before air is entrained into the system.2.11 Fill the feed vessel with purified water and start the pump. Flush the system to drain back to neutral pH. A microcassette basedsystem will require approximately 1 L of purified water. Monitor pH with a meter or pH paper that sensitive in the neutral range.Check both retentate and permeate lines separately to ensure the system is truly back to neutral pH. Stop the pump.Figure 3.Total Recycle Mode3.1 Add additional purified water to the feed vessel if necessary to ensure that the NWP measurement can be made without entraining air into the system.3.2 Set the system flowpath to the total recycle mode. Start the pump and manipulating the feedflow, set the system feed pressure to read 10 psig and the retentate pressure to read 5 psig.3.3 Allow the system to recirculate for a minute or two. Measure the temperature of the feed vessel contents. Set the system flowpath to the UFconcentration mode (Figure 4) and measure the change in mass over an elapsed time of 1 min, to find the permeate flowrate.3.4 Calculate the Normalized Water Permeability of the membrane using the following formulas:Equation 1J = Qp/AWhere: J= Volumetric Flux (L/M 2/Hr) Qp = permeate flow rate in L/hrA =Area of the membrane device(s)andEquation 2NWP = J * F /Transmembrane pressure (TMP)Where: NWP = Normalized Water Permeability (L/M 2/Hr/psid) J= Volumetric Flux (L/M 2/Hr) F = Temperature Correction FactorTMP = Transmembrane pressure (P feed + P ret )/2 – Pperm (pressure drop across the membrane in psid)3-Way Figure 4.Concentration ModeNormalized Water Permeability (NWP) MeasurementTemperatureF TemperatureFTemperatureF*Based on Water Fluidity Relative to 25°C (77°F) Fluidity Value F= (μT°C /μ25°C) or (μT°F/μ77°F)3.5 This is now the baseline permeability of the device. Record this value in the experimental notebook or runsheet.Table 2. Normalized Water Permeability Temperature Correction Factor (F)*4.1 Set the retentate valve to fully open. Adjust the feedflow to 5 LMM and reduce the volume in the feed vessel to just above the vessel discharge. Stop the system pump.4.2 Obtain a suitable container to capture the remaining volume in the system (50 mL tube for a microcassette based system). Record the tare weight of the container. Set the system feed rate to 2-3 LMM.4.3 Set the system flowpath to the recovery mode (Figure 5). Close the permeate isolation valve. Start the pump and collect all of the remainingliquid in the system into the sample container.4.4 Weigh the gross weight of the container and record the net weight of container and convert this to volume. Add 5 mL to the amount to calculate the total hold-up volume in the system for a micro-cassette based system. Add 31 mL to the amount to calculate the total hold upvolume for a mini-cassette based system.3-Way Figure 5.Recovery Mode5.1 Arrange the system flowpath into the Single-Pass, Filtrate Open mode (Figure 2). Open the permeate isolation valve.5.2 Fill the feed vessel with the equilibration buffer volume (see recommended volumes in Table 1).5.3 Set the pump to supply 5 LMM feed flow rate. Set the retentate pressure to 5 psig by restricting retentate flow with the retentate valve.Collect ~ 3 working volumes into the receiver.5.4 Fully open retentate valve, then stop the pump and place the system into the total recycle mode. Start the pump, set retentate pressure to 5psi,and operate in total recycle for ~5 min.=20 psig,5.5 Stop the pump and reset the system in to the SPFO mode. Set the Transmembrane pressure of the system to ~15 psid (e.g., PfeedP=10 psig). Start the pump and reduce the volume in the feed vessel to just above the vessel discharge. Do not withdraw too much liquid retfrom the feed vessel and entrain air into the system. Stop the pump. Open the retentate valve to full open. The system now has just the hold-up volume of buffer in it and is ready to accept the protein feed.5.6 Add the feed to the feed vessel. The total system volume = amount of feed added + the hold-up volume. The total system volume isconsidered Vo and is used to calculate concentration factor, diafiltration number, etc.6.1 Set the system flowpath to the total recycle mode (Figure 3).6.2 Start the agitator. The agitator should spin fast enough to cause a slight depression in the surface of the liquid in the vessel. The agitator should be monitored during the process and never be allowed to vortex the liquid and entrain air or cause foaming.6.3 Set the feedflow to 5 LMM. Allow the system to operate in the total recycle mode for ~5 minutes with the retentate valve fully open. Record temperature, Feed pressure, Retentate pressure and elapsed time. 6.4 Measure the permeate flowrate by redirecting the permeate line to a receiver on a balance or by collecting in a graduate cylinder. Measure thevolume (mass) for 1 min. Record the volume and calculate flux.6.5 Manipulating the retentate valve, increase the Transmembrane pressure by 5 psid. The TMP should increase but the DP (P feed -P ret ) should remain constant (see the example in Table 3).6.6 Repeat this measurement until the membrane flux becomes insensitive with the change in TMP. Reduce the TMP to and re-measure 1-2 of the flux measurements. If they are different by greater than 10% the membrane may have become polarized or fouled. Generally, avoid operating too far into the flux insensitive region.6.6.1 If polarization has occurred a depolarization step is recommended. To achieve this, lower the flow rate to ~10% of the operating feed flow rate and let the system run in total recycle for a minimum of 5 minutes. After the time has elapse re-measure the flux and compare to the original value. If the re-measured flux continues to differ by more than 20% the membrane may be fouled. At this point it is likelythat the flux can only be restored by stopping the experiment and cleaning. (See section 9 for more on depolarization)6.7 The optimum TMP is found by selecting a pressure slightly below the “knee” of the flux vs. TMP curve. In the example the knee of the curve is23-24 psid (Figure 7). The optimum TMP at this concentration is 20 psid.6.8 The Optimum TMP experiment may be repeated at an intermediate concentration and at the final concentration or just the final concentrationto find an over-all process TMP optimum.V o l u m e t r i c F l u x (L M H )Transmembrane Pressure (Psid)302520151050Figure 6.Flux and TMP Excursion Example at 5 LMMTable 3.Flux Excursion Data7.1 Determine the required permeate volume needed to be collected to achieve the target concentration.Equation 3 Vp = Vsi - (Vs i x Conc i / Conc T )Where:= Initial System Volume (Feed Volume + Hold-up Volume)VsiConc= Initial Concentrationi= Target ConcentrationConcTVp = Target Permeate Volume7.2 Zero the balance and set the system flowpath to concentration mode and start the pump and the timer.7.3 Set the TMP to the previously determined optimum TMP. Record time, temperature, the pressures and the permeate weight.7.4 As the concentration step progresses, the feed pressure (and TMP) may rise due to viscosity increase as a function of concentration. Adjust theretentate valve to hold TMP constant. The retentate valve may be fully open before the concentration step is finished. Adjust the pump to hold TMP constant. At higher concentrations the viscosity may become so high, it is not possible to control TMP with the pump. This is aconcentration end point for the fluid & membrane pair. If a higher concentration is still desired, it may be necessary to select a more open screen type.7.5 Once the concentration target is reached, open the retentate valve to full open. Stop the pump and close off the permeate isolation valve.8.1 Arrange the system flowpath to the Vacuum Diafiltration mode (Figure 8).8.1.1 If creating a vacuum is not possible with the equipment being used a second pump can be used to draw the DF buffer into the retentate vessel. The flowrate on the DF buffer pump must be set to match the flowrate of the permeate line. Adjustments to the flowrate of the DF buffer pump might be necessary throughout the process. This will ensure that the concentration within the system remains constantthroughout the diafiltration step.8.2 The amount of diavolumes used for purification of a target impurity is usually selected as the minimum amount of diavolumes required to achieve the purity target, plus a 2 diavolume safety factor. For example, if 6 diavolumes are required to achieve the purity target, then 8 diavolumes are used in the DF step. 1 diavolume is equivalent to the amount of fluid in the system (Vf+Vh-Vp). The number of diavolumes, N required for purification can be calculated by the following equation. Alternatively the figure in Appendix 1 can be used.Equation 4Cf = Ci e-S*NWhere: Cf = Final concentration of solute being diafiltered out Ci = Initial concentration of solute being diafiltered out S = sieving/passage coefficient = C permeate/C retentate)N = Number of diavolumesThe target permeate volume required to achieve the number of calculated diavolumes can be determined using equation 5.Equation 5N*Vs = VpWhere: N = Number of diavolumesVs = Volume in the system post concentrationVp = Target permeate volumeFigure 7.Vacuum Diafiltration ModeDiafiltration8.3 Mark the level in the vessel with a marker or piece of lab tape to be sure that the volume remains constant during diafiltration. Obtaina container with the required amount of DF buffer. Attach the DF line to the feed vessel. Cap off the vessel and pull a vacuum on thevessel headspace with a syringe to prime the diafiltration line.8.4 Start the pump. Adjust the TMP to match the TMP at the end of the concentration step. Record temperature, Feed pressure,Retentate pressure temperature, elapsed time and permeate weight (volume).8.5 When the diafiltration target volume has been reached, open the retentate valve, stop the pump, stop the agitator and close thepermeate isolation valve.9.1 The first step in the recovery operation is depolarization of the membrane. Polarization is a concentration gradient that occurs due to convective transport of protein towards the membrane wall. The depolarization step is recirculation under low feedflow and TMP conditions with the permeate isolation valve shut. Running with the permeate isolation valve closed can give rise to reverse pressure within the device. Limit the ΔP to </=20 psid for Pellicon® 3 devices and </=10 psid for Pellicon® 2 devices.9.2 Arrange the system flowpath to the Depolarization mode (Figure 8) by closing the permeate isolation valve, setting the retentate valve fullyopen and starting the pump. Operate the pump at low feedflow rates – low enough to avoid the ΔP limits outline in step 9.1.9.3 Recirculate the system in the depolarization mode for 5-10 min. Stop the pump after the recirculation time limit.9.4 Set the system flowpath to the blowdown/recovery mode as shown in Figure 9. Pump the protein product out at low ΔP into an appropriate sized container. When air bubbles appear stop the pump. Do not allow the protein product to foam.9.5 Add to the feed vessel 1 minimum working volume of buffer. Start the pump and recover this pool separately in container. As before, when air bubbles appear stop the pump. Do not allow the protein product to foam. Add this buffer chase pool to the recovery pool to increase recovery if the pool can tolerate dilution.9.6 Set the system into the total recycle mode (Figure 3). Add to the feed vessel 1-2 diavolumes of buffer to the system. Set the retentate valve to fully open. Set the feed flowrate to 2-3 LMM and recirculate for 5-10 min.9.7 Set the system flowpath to the blowdown/recovery mode as shown in Figure 9 (next page). Pump the recirculated buffer out at low ΔP intoan appropriate sized container. When air bubbles appear stop the pump.3-Way Figure 8.Depolarization ModeRecovery Operations3-WayFigure 9.Recovery Mode10.1 Add 200-300 mL of recommended CIP / Sanitization (Table 1) solution to the feed vessel. Set the system flowpath to the total recyclemode (Figure 3).10.2 Recirculate at 5 LMM feed flowrate for 30-60 min. Set TMP to approximately 15psid.10.3 Stop the pump after the CIP time interval. Return the system flowpath to the SPFO mode (Figure 2). Start the pump again and pump the feedvessel out to the receiver vessel.10.4 Add purified water to the feed vessel and start the pump. Flush the system to drain back to neutral pH. A microcassette based systemwill require approximately 1 L of purified water. Monitor pH with a meter or pH paper that sensitive in the neutral range. Check both retentate and permeate lines separately to ensure the system is truly back to neutral pH. Stop the pump.11.1 Add additional purified water to the feed vessel if necessary to ensure that the NWP measurement can be made without entraining airinto the system.11.2 Set the system flowpath to the total recycle mode. Start the pump and manipulating the feedflow, set the system feed pressure to read 10 psigand the retentate pressure to read 5 psig.11.3 Allow the system to recirculate for a minute or two. Measure the temperature of the feed vessel contents. Set the system flowpath to theUF concentration mode (Figure 4) and measure the change in mass over an elapsed time of 1 min, to find the permeate flowrate.11.4 Calculate the post CIP Normalized Water Permeability as we did in Section 3 using equations 1 and 2.11.5 Compare the Base-line NWP to the post CIP NWP. The Post CIP NWP should be >/= 80% of the Base-line NWP. (Post Post NWP/Base-lineNWP * 100%). If the comparison is less than 80%, then the membrane can be re-cleaned. CIP at an elevated temperature may be more effective at restoring NWP. NWP is a single indicator of membrane cleaning success. Data such as batch to batch process time, product quality and carryover studies should be used to determine criteria for successful membrane CIP processes.12.1 Arrange the system flowpath into the Single-Pass, Filtrate Open mode (Figure 2). Open the permeate isolation valve.12.2 Fill the feed vessel with 4 diavolumes of 0.1N NaOH solution.12.3 Set the pump to supply 5 LMM feed flow rate. Set the retentate pressure to 5 psig by restricting retentate flow with the retentate valve.Collect ~ 2 diavolumes into the receiver.12.4 Fully open retentate valve, then stop the pump and place the system into the total recycle mode (Figure 3).12.5 Start the pump, recirculate the remaining 2 diavolumes at 5 LMM for 5-10 min. Set TMP to approximately 15 psid.12.6 Remove membrane and store in 0.1N NaOH in a 2-8º C refrigerator.% S o l u t e R e m a i n i n g# of Diafiltration VolumesSolute Remaining vs. # of Diafiltration Volumes% Solute Passed = 100 - % Solute1001010.1Figure 10.Solute remaining versus number of diafiltration volumes To Place an Order or Receive Technical AssistanceIn Europe, please call Customer Service: France: 0825 045 645Germany: 01805 045 645Italy: 848 845 645Spain: 901 516 645 Option 1 Switzerland: 0848 645 645United Kingdom:***********For other countries across Europe, please call: +44 (0) 115 943 0840Or visit: /offices For Technical Service visit:/techserviceMerck Millipore, the M logo, Ultracel, Biomax, Labscale and Pellicon are registered trademarks of Merck KGaA, Darmstadt, Germany.Masterflex and StableTemp are registered trademarks of Cole-Palmer Instrument Company. Luer-Lok is a trademark of Becton Dickinson.MICROMETER is a registered trademark of RMFPT, Inc.Nalgene is a registered trademark of Nalge Nunc International Corporation.Lit No. RF1159EN00 Ver. 3.0 4/2016© 2016 EMD Millipore Corporation, Billerica, MA USA. All rights reserved.。

美国稠化仪常见故障的分析与解决办法

美国稠化仪常见故障的分析与解决办法

校 正 风 机 同轴 度 , 其 达 使 到 标 准 要 求 紧 固风 机 地 脚 螺 栓
震 动 ( 别 是高 温 风机 、 环 风机 ) 必 须 停 机 处理 。 特 循 , 在 风机 叶轮 磨损 后 , 因为现 场堆 焊 后校 正动 平衡 困 难, 以往 大 都返 厂维 修或 购 买备 件更 换 , 但都 存在 检 修 时 间长 、 资 大 的 问题 , 生产 造 成严 重影 响 。 投 对 风机 叶轮 磨 损 的现 场 快速 修 复 ,是指 不用 拆 除
先可 反一 面使 用 , 如还 有故 障 则只 能 更换 新 的 O 型
48- SI H A C M N CUN EET

No. 2O11 1.
中 图 分 类 号 : Q1 2 6 T 7 .
文 献 标 识 码 : B
文章 编 号 : 0 7 3 4( 0 1) -0 4 —0 1 0 -6 4 2 1 01 0 9 2
0 前 言 青松 建 化 水 泥 厂 为 了满 足 塔 里木 油 田对 油 井
水泥 的需 求 ,公 司先后 从美 国千德 乐 公司 购买 了 2
圈, 很快 可 以消除漏 油漏 压现象 。
2 回油 慢 时 间长 原 因分析 : 井水 泥样 品检 测 完稠 化 性 能后 , 油 稠
化 仪 釜 内的油在 一定 的压 力下通 过油 路滤蕊 器压 回 油罐 内, 由于油使 用 时间长 或使浆 杯 内 的水 泥浆 泄 漏 , 致 釜 内的稠 化 仪 油过 脏 , 塞 了滤 蕊 器 , 成 导 堵 造
构复 杂 , 技术 难度 大 , 自动 化程 度 高 , 工 作环 境 有 对

作 。由于我 厂生产 任务 重 , 都达到 了班班 开机 检验 ,

HTD7720便携式高温高压稠化仪和便携式高温高压稠化仪价格

HTD7720便携式高温高压稠化仪和便携式高温高压稠化仪价格
HTD7720便携式高温高压稠化仪和便携式高温高压稠化仪价格
HTD7720便携式高温高压稠化仪
标题:HTD7720便携式高温高压稠化仪
7720型设计紧凑,加热,增压迅速。高温高压稠化仪釜体内的圆柱形泥浆杯和固定的搅拌器组装为一体,装入压力釜内,最高工作压力137Mpa (20,000psi),最高温度204&deg;C(400&deg;F)。气动的液压泵给釜体供压,液压系统的构成有油箱,管道系统,阀和滤清器。通过3000W的内置管式加热器,给釜体加热。可编程温度控制器自动控制温度上升速率(也就是温度梯度)。当泥浆达到预期温度时,控制器将保持设定温度,釜体内压力将由气动液压泵产生。压力设置通过控制压力释放阀和气动液压泵来维持。泥浆杯由磁力驱动以150&plusmn;15rpm的恒定速度旋转,驱动扭矩从外面的一组驱动磁铁,通过机架,传递到装在釜体内部的旋转轴上的永久性磁铁。永久的稀土磁铁用来保证高扭矩和长时间的磁场。水泥浆的粘性(也就...
厂家:南北化仪
标题仪是严格按照美国石油学会(API)规范10的要求制造,是专用于测量水泥浆稠化时间的仪器。水泥浆稠化时间是进行一次或二次固井前必须测量的一项重要指标,相应的技术要求和操作程序在美国(API)规范10推荐测试方法RP-10B中有详细说明。HTD8040型高温高压稠化仪具有较宽的压力和温度范围。该仪器结构紧凑,体积较小,可放置在一般实验室的工作台上。釜体采用高强度合金材料制作,其主要控制及执行单元采用进口部件(德、日、美等国),能够完成绝大多数美国石油协会所要求的高温高压实验方案。该产品操作非常简便,所有控制阀门和开关均布置于前面板上,温度和稠度可方便地由装在面板上的显示仪表和记录仪表读出,压力可由压力表指示。温度控制器自动地控制...

高温缓凝剂

高温缓凝剂

天津科力奥尔工程材料技术有限公司企业标准Q/T—KL0301—2003CH系列油井水泥缓凝剂1 范围本标准规定了CH系列油井水泥缓凝剂的技术要求、试验方法、判定规则、评价报告、包装、标志、运输和储存等内容。

本标准适用于CH系列油井水泥缓凝剂系列产品,包括:CH210L中温型、CH310L高温型、CH510S高温型。

2 引用标准下列文件中的条款通过本标准的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 510 石油产品凝点测定法GB/T 4472 化工产品密度、相对密度测定通则GB/T 8077—2000 混凝土外加剂匀质性能试验方法GB 10238—1998 油井水泥GB/T 19139—2003 油井水泥试验方法3术语和定义3.1 淡水水泥浆指使用蒸馏水或生活饮用水配置的水泥浆。

3.2 18%盐水水泥浆使用浓度为18%(质量分数)的氯化钠溶液配置的水泥浆。

3.3 40Bc~100Bc的时间指水泥浆稠化实验过程中,稠度首次到达40Bc开始记时,直到升到100Bc所经历的时间。

3.4代表性温度对缓凝剂进行质量检验时采用的试验温度。

3.5适宜稠化时间范围满足常规注水泥作业要求的合适的水泥稠化时间区域。

3.7基准配方在进行游离液、失水及抗压强度试验时所采用的水泥浆配方。

3.8参比样在质量稳定性试验时所用的缓凝剂基准材料。

已通过合格检验、保存完好且尚处于保质期内的缓凝剂样品均可用作参比样。

3.9质量稳定性不同生产批次之间产品质量的一致性程度。

4 技术要求缓凝剂分为液体和粉状固体。

缓凝剂按使用温度范围可分为中温和高温两种基本类型,CH210中温缓凝剂适用于井底循环温度为38~115℃的注水泥作业,CH310高温缓凝剂适用于井底循环温度为90~150℃的注水泥作业。

检测油田采出液中铝含量的新方法

检测油田采出液中铝含量的新方法

检测油田采出液中铝含量的新方法
胡博;范铁成;孔艳
【期刊名称】《油气田地面工程》
【年(卷),期】2011(030)005
【摘要】检测采出液中铝离子的手段主要有重量法、分光光度法和原子吸收光谱法。

重量法测定手续繁杂;分光光度法由于采出液浊度等原因,检测误差大;原子吸收法需要使用N2O-C2H2焰,价格高、安全性差。

采用新方法测定三元采出液中铝离子浓度加标回收率分别在91.9%~99.2之间,方法的准确度较好;试验方法铝相对标准偏差为O.58%,试验样品铝相对标准偏差为2.79%,精密度好,能满足测定要求。

【总页数】2页(P105-106)
【作者】胡博;范铁成;孔艳
【作者单位】东北石油大学电气信息工程学院;大庆油田勘探开发研究院;大庆油田勘探开发研究院
【正文语种】中文
【相关文献】
1.火焰原子吸收检测油田采出液的干扰因素分析
2.火焰原子吸收检测油田采出液的干扰因素分析
3.油田深部调驱采出液中柔性可动凝胶微球的检测
4.海上油田采出液含聚浓度检测新方法
5.油田采出液中黏弹性颗粒驱油剂PPG的检测新方法
因版权原因,仅展示原文概要,查看原文内容请购买。

乌式粘度仪

乌式粘度仪

乌式粘度仪
通常用以测定液体黏度的方法主要分为三类:一是液体在毛细管里的留出时间;二是圆球在液体中落下的时间;三是液体在同轴圆柱体间对转动的阻碍。

其相应的仪器分别称为毛细管粘度计、落球式粘度计和旋转式粘度计。

在用黏度法测定高分子的分子量时,以毛细管粘度计最为方便。

常用毛细管粘度计有两种,一种是两管的,称为ostwald型,即奥氏粘度计,另一种是三管的,称为ubbelohde型,即乌氏粘度计。

两种粘度计都有一根内径为r、长为l的毛细管,毛细管上端有一个体积为v的小球,小球的上下有刻线a、b。

测定溶液粘度时,是将溶液或溶剂吸至a以上,然后任其自然流下,记录液面流经a、b线的时间t。

奥克立林粘度

奥克立林粘度

奥克立林粘度粘度是描述流体内部阻力的物理量,它反映了流体的黏性特性。

在涉及到流体的各种工程问题中,粘度是一个重要的参数。

奥克立林粘度是一种常见的粘度测量方法,被广泛应用于工业生产和科学研究中。

奥克立林粘度测试是通过使用奥克立林粘度计进行的。

奥克立林粘度计是一种旋转式粘度计,其工作原理基于牛顿的粘度定律。

它由一个旋转的圆柱体和一个固定的外壳组成,测试时将待测流体注入圆柱体内,然后以一定的速度旋转圆柱体。

根据牛顿的粘度定律,流体内部的阻力与圆柱体旋转的角速度成正比。

通过测量旋转圆柱体所需的扭矩,可以计算出流体的粘度。

奥克立林粘度与流体的黏性密切相关。

黏性是流体内部分子间相互作用力的结果,黏度越高,流体的黏性越强。

因此,奥克立林粘度可以用来衡量流体的黏性大小。

在工业生产中,奥克立林粘度常用于润滑油、涂料、胶黏剂等物质的质量控制和流变性能测试。

在科学研究中,奥克立林粘度可以用来研究流体的流变性质,了解流体在不同条件下的流动行为。

奥克立林粘度测试方法简便易行,且测试结果准确可靠。

通过奥克立林粘度测试,可以得到流体的粘度值,并可以与标准值进行比较,以判断流体的质量是否符合要求。

同时,奥克立林粘度测试还可以用来研究流体的温度敏感性和剪切变稀性等流变性质,为工程设计和产品开发提供重要参考数据。

在进行奥克立林粘度测试时,需要注意一些影响测试结果的因素。

首先是温度的影响,温度的变化会导致流体黏度的变化,因此在测试时应控制好温度条件。

其次是样品的准备,样品应充分搅拌均匀,并排除其中的气泡,以确保测试结果的准确性。

另外,奥克立林粘度测试时还要注意选择合适的转速和测量时间,以保证测试结果的可靠性。

奥克立林粘度是一种重要的粘度测量方法,广泛应用于工业生产和科学研究中。

通过奥克立林粘度测试,可以获得流体的粘度值,并可以研究流体的流变性质。

在实际应用中,正确使用奥克立林粘度计,并注意测试条件的控制,可以得到准确可靠的测试结果,为工程设计和产品开发提供重要参考数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津科力奥尔工程材料技术有限公司
第二节 常压稠化仪
1 常压稠化仪的用途
(1)在游离水、流变、失水试验进行之前,制备好的水泥浆必须用常压稠化仪进行搅拌20分钟(除气等作用)。

(2)可作为现场固井时可粗略核对稠化时间的轻便实用仪器。

(3)用常压稠化仪进行常压实验比用加压稠化仪快捷方便。

如果水泥性能不好或水泥与外加剂不相容,水泥浆产生“瞬凝”现象,从常压稠化仪浆杯中取出样品要比加压稠化仪浆杯中取出样品快得多,这样就可减少加压稠化仪和电子仪器指针的损坏。

在常压稠化仪试验过程中,如果水泥浆出现瞬凝,那么在产生瞬凝之前,稠度指针会迅速偏转,试验人员观察到这一现象,可以将样品迅速取出并调整。

2 常压稠化仪的结构组成
常压稠化仪是由一个装有水泥浆杯、容积为15升的不锈钢水槽组成。

温控仪表用来设定、控制和显示温度,温度范围为室温至93℃,由热电偶及温控表控制一个功率为1.5KW 的加热器加热升温。

用减速电机带动传送带从而带动浆杯旋转,水泥浆杯的转速为150转/分,此外还带动叶片搅动水槽内的稠化油,使水槽内的温度呈均匀分布。

注入的稠化油刚好达到旋转转动机构的下部,其高度与水槽后面的溢流阀等高即可,溢流阀作为最终水平校验。

3 常压稠化仪的类型
(1)简易型稠化仪
不带有稠度测定记录仪,不能测定水泥浆稠度和粗略核对稠化时间,也不能看出水泥浆体系的好坏,仅仅起到了搅拌水泥浆的作用。

(2)数显记录型稠化仪
带有测定稠度变化和显示实际温度的记录仪,设定好搅拌时间,在搅拌过程中可以读出水泥浆的稠度,粗略估算稠化时间,用此仪器能简单检验出水泥浆体系的好坏,比增压稠化仪简便,更能减少对增压稠化仪的损坏。

(3)智能型稠化仪
是由常压稠化仪、微机和打印机组成一体化的仪器,在微机上设定好常压稠化仪的温
天津科力奥尔工程材料技术有限公司
度和搅拌时间,搅拌过程中可以显示出水泥浆稠度随时间变化的曲线图,并可以根据需要打印出来。

4 常压稠化仪的使用
常压稠化仪在试验前,打开电源和加热器,预先加热到试验设定的温度,将制备好的水泥浆迅速倒入浆杯至刻度线处,插入浆叶,其叶轴顶尖放置在浆杯底部凹槽内,并将盖子用销子连接的办法放置进位,销子和带有开槽的浆叶轴位于扭矩轴内,而后将浆杯嵌入到旋转器的凹槽内,然后开启电机,完成制浆和到开启电机之间的时间不应超过1分钟。

在制浆前,应先检查浆杯壁和底部是否刷洗干净,特别注意浆叶顶尖磨损是否严重、盖子内销钉是否有折断现象、浆叶轴顶尖是否放置在底部的凹槽内,同时用手旋转浆叶,感觉有无摩擦现象,无任何上述情况即可以倒入水泥浆体系,如有任一情况,则须更换销钉、浆叶或重新清洗干净浆杯等。

5 常压稠化仪的维护
每天:每当试验完毕,彻底清洗干净浆杯(特别是底部周围),刷净浆叶。

每月:检查浆叶是否有弯曲、轴尖是否磨损严重(将浆叶放置到位,用手轻轻转动浆叶,感觉浆叶和浆杯底部、四周摩擦是否严重),如有则须更换新浆叶。

经常用水银温度计,校正温度显示仪。

相关文档
最新文档