医学影像诊断学重点知识
医学影像诊断学课件重点
医学影像诊断学课件重点一、引言医学影像诊断学是一门综合性的医学学科,主要研究如何利用各种影像学技术对人体各种疾病进行诊断。
随着科学技术的不断发展,医学影像学在临床诊断和治疗中发挥着越来越重要的作用。
本课件将重点介绍医学影像诊断学的基本原理、常用影像学技术和临床应用。
二、医学影像诊断学的基本原理1.影像学原理影像学原理是医学影像诊断学的基础,主要包括放射性原理、声学原理、光学原理和电磁学原理。
放射性原理主要应用于核医学影像,如PET和SPECT;声学原理主要应用于超声成像;光学原理主要应用于光学成像;电磁学原理主要应用于X射线成像、CT、MRI 和超声成像等。
2.影像学设备影像学设备是实现医学影像诊断的关键,主要包括X射线设备、CT设备、MRI设备、超声设备、核医学设备和光学成像设备等。
不同设备具有不同的成像原理和特点,适用于不同的临床诊断需求。
3.影像学数据处理与分析三、常用影像学技术及其临床应用1.X射线成像X射线成像是一种基于X射线穿透性的成像技术,广泛应用于骨骼、胸部、腹部等部位的疾病诊断。
X射线成像具有操作简便、成本低廉等优点,但辐射剂量较大,对部分软组织病变的诊断能力有限。
2.CT成像CT成像(计算机断层成像)是一种基于X射线和计算机技术的成像技术,具有高空间分辨率和密度分辨率。
CT成像广泛应用于颅脑、肺部、腹部、心血管等部位的疾病诊断,尤其在肿瘤、出血、炎症等病变的诊断中具有重要价值。
3.MRI成像MRI成像(磁共振成像)是一种基于生物组织内氢原子核的磁共振现象的成像技术,具有无辐射、多参数、多方位成像等优点。
MRI成像广泛应用于颅脑、脊柱、关节、软组织等部位的疾病诊断,尤其在神经系统和软组织病变的诊断中具有重要价值。
4.超声成像超声成像是一种基于超声波在生物组织中的传播和反射的成像技术,具有无辐射、实时成像、操作简便等优点。
超声成像广泛应用于腹部、妇科、心血管、甲状腺等部位的疾病诊断,尤其在胎儿、妇科和心血管病变的诊断中具有重要价值。
医学影像诊断学记忆考试复习重点知识总结
医学影像诊断学记忆考试复习重点知识总结中枢:1、X线、CT、MRI在诊断中枢神经系统疾病时选择的原则。
中枢神经系统包括脑和脊髓,一般物理学检查不易达到诊断目的,影像学检查具有重要意义。
X线平片能显示颅骨和脊椎的骨质改变,但对颅内和椎管内病变的显示能力极其有限。
血管造影虽能对颅内占位性疾病提供大致的定位和初步的定性诊断信息,然其创伤性限制了它的应用,目前主要用于血管性疾病的诊断和介入治疗。
脊髓造影显示椎管内疾病的作用已被MRI取代。
CT可解决大部分颅内疾病的诊断。
MRI可以较CT提供更多的信息,尤其对颅后窝和椎管内疾病的显示更具优势。
CT血管成像、MRI血管成像能显示脑血管的主干及其较大分支,对脑血管疾病起到筛选和初步诊断作用。
DWI、PWI、MRS及CTPI等功能成像技术,对中枢神经系统疾病的诊断和鉴别诊断已展示出更广阔的使用前景。
成像技术的优选和综合使用:一)外伤:1、颅脑外伤:首选CT,其次MRI。
2、脊柱外伤:首选X线,然后CT,严重者,考虑行MRI。
二)肿瘤:CT、MRI三)炎症和脱髓鞘疾病:CT、MRI四)血管性疾病出血急性期:CT敏感亚急性期和慢性期:MRI敏感脑梗死:先行CT检查,超急性期MRI检查血管畸形:CT、MRI,CTA、MRA,DSA五)先天畸形首选MRI2、正常脑及脊髓CT和MRI的密度和信号特征如何描述?在平扫CT图像上,脑灰质的密度较脑白质高,灰质的CT值为+32~+40Hu,白质的CT值为+28~+32Hu,明显高于脑脊液。
未钙化的硬脑膜、动脉、经脉和肌肉的密度与脑灰质相近。
颅骨内外板和其他致密骨的密度最高,钙化组织(如大脑镰、脉络丛和松果体钙化)的密度次之。
脑脊液(脑室系统和脑池)呈低密度,头皮等富脂肪组织的密度较脑脊液的密度为低,乳突气房和含气的副鼻窦腔的密度最低。
在增强后CT图像上,脑灰质、脑白质、硬脑膜(大脑镰和小脑天幕)和肌肉等组织均有不同程度的强化,脑内血管明显强化,呈高密度影。
影像诊断学重点知识汇总收藏
影像诊断学重点知识汇总收藏影像诊断学是医学领域中重要的一门学科,通过运用各种影像学技术,对人体内部进行非侵入性的观察和诊断。
影像诊断学在疾病的早期筛查、诊断和治疗过程中起着至关重要的作用。
本文将介绍一些影像诊断学的重点知识,希望能对学习和理解这门学科有所帮助。
一、典型影像学检查方法1. X线摄影X线摄影是最常用的影像学方法之一,它能够显示出人体内部的骨骼结构和某些软组织的情况。
根据不同的需求,X线摄影分为常规X线摄影和特殊X线摄影。
常规X线摄影主要用于检查骨折、关节病变、肺部疾病等,而特殊X线摄影则包括口腔X线摄影、静脉造影等。
2. CT扫描CT扫描是利用X射线通过人体,由计算机系统生成多层面断层图像的一种方法。
它可以提供关于软组织和骨骼的详细信息,常用于肿瘤诊断、头部损伤、脑血管病变等方面。
3. MRI检查MRI(磁共振成像)利用高频电磁场和无线电波对人体进行成像。
与CT扫描相比,MRI检查具有更高的分辨率和更详细的软组织成像能力,尤其适用于神经系统疾病的诊断,如脑部疾病、脊髓损伤等。
4. 超声检查超声波是一种声波,具有穿透和回声反射的特性。
超声检查通过对人体内部声波的反射信号进行分析和处理,产生图像。
它可以显示出人体内部器官的形态、结构和功能情况,广泛应用于妇产科、心脏病学、消化内科等领域。
5. 核医学检查核医学检查主要通过给患者注射一种带有放射性标记物的药物,以记录放射性物质在人体内的分布和代谢,从而观察器官功能和病变情况。
核医学检查包括正电子发射断层扫描(PET-CT)、甲状腺扫描等。
二、诊断常见病症的影像表现1. 脑卒中脑卒中是指因脑血管破裂或阻塞引起的突发性脑功能障碍。
在CT扫描中,脑卒中患者的影像表现为脑梗死区域的低密度区或脑出血的高密度区。
MRI扫描可以更详细地显示出脑梗死和脑出血的范围和病变情况。
2. 肺癌肺癌是最常见的恶性肿瘤之一,往往以胸部X线摄影或CT扫描为主要方法进行诊断。
医学影像诊断学重点知识总结
医学影像诊断学重点知识总结医学影像诊断学是临床医学中重要的分支学科,它通过应用不同的成像技术,如X射线、超声、CT、MRI等,对患者进行非侵入性的体内成像,帮助医生进行疾病的诊断与治疗决策。
本文将对医学影像诊断学的重点知识进行总结。
一、X射线成像X射线成像是最常见和最早应用的医学影像学技术。
它通过通过放射性物质(如铅)的屏蔽,将X射线透过人体后所产生的影像记录下来。
常见的X射线检查包括胸部X射线、骨骼X射线等。
在胸部X射线检查中,我们可以通过观察阴影的形状、大小和位置,来判断肺部是否有异常,如肺炎、肿瘤等。
而骨骼X射线检查可以用于诊断骨折、骨质疏松等骨骼疾病。
二、超声成像超声成像是利用超声波在人体组织中的传播和反射的原理,获取人体内部器官的结构和功能信息。
它具有成本低、无辐射、可重复性好等优点。
超声检查主要应用于妇产科、肝脏、胆囊、乳腺、心脏等器官的检查。
在妇产科中,超声可以用于孕产妇的孕期监测、胎儿的生长发育等检查。
在肝脏方面,超声可以帮助医生判断肝脏大小、结构、是否存在肿瘤等。
三、CT成像CT(计算机断层扫描)成像是利用旋转X射线源和探测器来获取多个切片图像,并通过计算机重建形成三维图像。
CT成像的优点是图像分辨率高,可以观察到细微的病变。
CT扫描在临床上被广泛应用于头颅、胸部、腹部等脏器的检查。
例如,头颅CT可以帮助医生判断颅骨骨折、脑出血等情况。
腹部CT可以用于检查肝脏、肾脏、胰腺等脏器是否存在肿瘤、囊肿等。
四、MRI成像MRI(磁共振成像)是利用人体组织中氢质子的信号差异,通过强大的磁场和梯度磁场的作用,获取人体内部的高分辨率图像。
MRI成像的优点是对软组织分辨率较高,可以显示脑、脊髓、心脏等器官的结构与功能。
例如,脑部MRI可以用于检查脑癌、脑血管病变等。
心脏MRI可以评估心室结构、心功能等。
五、放射性核素扫描放射性核素扫描是利用放射性核素的放射性衰变放出的γ射线进行体内显像与功能研究的一种方法。
医学影像诊断学重点知识
医学影像诊断学重点知识在医学领域,诊断是非常关键的步骤,而医学影像诊断学则是现代医学中不可或缺的一门学科。
它通过各种医学影像技术,如X线、CT 扫描、MRI等,来观察和分析人体内部的结构和功能,以辅助医生做出准确的诊断。
本文将重点介绍医学影像诊断学中的一些关键知识。
一、医学影像技术医学影像技术是医学影像诊断学的基础,它的发展给医学诊断带来了革命性的变化。
常见的医学影像技术包括X线摄影、CT扫描(计算机断层扫描)、MRI(磁共振成像)等。
X线摄影是最常用的医学影像技术,它通过射线穿过患者身体,形成对比度不同的影像,以显示内部结构。
CT扫描则是通过多个X线摄影的组合,得到更精确的断层影像,能够清晰地观察到各种组织和器官。
MRI则是通过利用患者体内水分子的旋转来生成图像,能够提供高分辨率的三维影像。
同时,随着计算机技术的发展,人工智能(AI)在医学影像诊断学中也扮演着越来越重要的角色,它能够通过对大量医学影像数据的分析和学习,辅助医生进行诊断。
二、医学影像异常与正常医学影像诊断学的核心任务是通过对影像异常和正常的判断,为患者提供正确的诊断结果。
在医学影像中,异常指的是与正常解剖学或生理学状态不符的结构或功能表现。
而正常则是指符合一定解剖学或生理学标准的结构或功能。
在诊断的过程中,医生需要通过对比来判断影像是否存在异常,并进一步分析异常的原因和性质。
对此,医生需要具备较强的解剖学和病理学基础知识,以及对常见疾病的了解,才能做出准确的诊断。
三、诊断学常见病症医学影像诊断学的应用范围广泛,涵盖了各个器官和系统的疾病。
下面我们将重点介绍一些常见病症及其在医学影像中的表现。
首先是肺部疾病,如肺炎、肺结核、肺气肿等,其中肺炎常见于胸部X线摄影中,表现为肺组织密度增加,肺纹理模糊。
肺结核则表现为肺部斑片状或结节状阴影,形态多样。
肺气肿则是肺组织弹性减低,肺容积增加,胸廓扩大。
其次是脑部疾病,如卒中、脑肿瘤、脑出血等。
医学影像诊断学重点
第一章总论人工对比:对于缺乏自然对比的组织或器官,可用人为的方法引入一定量的,在密度上高于或低于它的物质,使产生对比的方法,称为人工对比即造影检查。
CT值:系CT扫描中X线衰减系数的单位,用于表示CT图像中物质组织线性衰减系数(吸收系数)的相对值。
用亨氏单位(Hounsfield Unit)表示,简写为HU。
DWI:即磁共振弥散加权成像(diffusion weighted imaging, DWI) 。
是利用磁共振成像观察活体组织中水分子的微观扩散运动的一种成像方法。
水分子扩散快慢可用表观扩散系数(ADC) 和DWI两种方式表示。
MRA:即磁共振血管成像,是对血管和血流信号特征显示的一种技术。
MRA不但对血管解剖腔简单描绘,而且可以反映血流方式和速度的血管功能方面的信息,故又称磁共振血流成像。
动态增强扫描:是指注射对比剂后对某些感兴趣的层面作连续快速多次的扫描,它可以了解病变的强化程度随时间的变化情况,对病变的定性诊断有定的帮助。
流空效应:是指心脏、血管内的血液由于迅速流动,使发射MR信号的氢原子核居于接收范围之外,所以测不到MR 信号,在T1或T2加权像中均呈黑影,这就是流空效应。
窗宽:指显示图像时所选用某一定范围的CT值,使只有在规定范围内的不同CT值,才能有灰度的变化,而在此范围最低值和最高值以外的CT值,一律分别显示为黑或白色。
脑灌注成像:快速静脉团注有机碘对比剂后,在对比剂首次通过受检脑组织时进行快速动态扫描,并重组脑实质血流灌注参数图像。
它反映脑实质的微循环和血流灌注情况。
部分容积效应:在同一扫描层面内含有两种以上不同密度的物质时,其所测CT值是它们的平均值,因而不能如实反映其中任何一种物质的CT值,这种现象为部分容积效应或称部分容积现象。
放射性核素显像:是用有放射性的特殊药物对人体显像的一种成像技术。
所用的药物又称显像剂,是一类含有放射性核素的特殊制剂,它可以是放射性核素本身,也可以是放射性核素标记的化合物或多肽、蛋白质、激素、血液成分、抗体等。
影像诊断学重点知识汇总,收藏!
影像诊断学重点知识汇总,收藏!1.X线成像的基本原理:答:当X线透过人体不同组织结构时,被吸收的程度不同,所以到达荧光屏或胶片上的X线量即有差异。
这样,在荧光屏或X线胶片上就形成明暗或黑白对比不同的影像。
2.大叶性肺炎的CT表现答:①病变呈大叶性或肺段性分布②病变中可见空气支气管征③病变密度均匀,边缘平直④实变的肺叶体积通常与正常时相等⑤消散期病变呈散在的大小不一的模糊影。
3.中心型肺癌的X线表现答:①肺门肿块;②支气管阻塞征象:阻塞性肺气肿、阻塞性肺炎、肺不张横“S”征。
4. 中心型肺癌的CT表现答:①肺门区肿块②支气管内肿块③支气管壁增厚④支气管腔狭窄与阻断⑤阻塞性肺炎或肺不张5.周围型肺癌的X线表现答:①肺内球形肿块;②边缘分叶状或脐样征;③边缘细短毛刺;④癌性空洞:肿块内透亮影,偏心、厚壁。
6.周围型肺癌的CT表现答: 主要表现为肺内球形肿块。
肿块常可见分叶征、毛刺征胸膜凹陷征和不规则的厚壁空洞。
7.支气管肺炎的X线表现答:①小叶分布,多在两肺下野内、中带;②为多数大小不等的点片状阴影,模糊不清分布不均,可融合成大片。
8.原发综合征的X线表现答:①肺内原发病灶,肺内模糊片状影;②淋巴管炎,条索状影;③肺门淋巴结结核,肺门淋巴结肿大。
9. 急性粟粒型肺结核的X线表现答:①早期仅见肺野呈毛玻璃样密度增高;②典型者病灶大小、密度、分布均匀,称“三均匀”;③可融合成较大病灶;④治疗后可吸收11.原发性支气管肺癌按肿瘤的原发部位可分为几种类型?答:①中心型:发生于主支气管、叶支气管及段支气管的肺癌;②周围型:发生于肺段以下支气管到细支气管以上的肺癌;③弥漫型:发生于细支气管或肺泡上皮的肺癌12.肺转移癌的X线表现答:①多发球形病灶,密度均匀,大小不一,轮廓清楚,似棉球状;②多发粟粒状病灶;③单发球形病灶应和原发性肺癌鉴别13.阻塞性肺不张的常见原因及其基本X线表现答: 常见原因:支气管异物,血块,痰栓,支气管肺癌,炎性肉芽肿,支气管结核基本X线表现:肺叶体积缩小,密度增高,肺血管、肺门及纵膈不同程度的向患侧移位,邻近肺叶可出现代偿性肺气肿。
医学影像诊断学课件重点
2023-10-30contents •放射学基础及技术•医学影像诊断学总论•各系统疾病的影像学表现及诊断•医学影像诊断学实践技能培养目录01放射学基础及技术X线成像基础X线成像原理X线穿过人体组织后,被吸收和散射,在胶片或数字成像设备上形成图像。
X线设备的种类与结构包括普通X线机、透视机、乳腺X线机等,结构主要由X线发生器、控制器、影像接收器等组成。
X线的发现与特性X线是一种电磁波,具有波粒二象性,可用于穿透人体组织并产生电离作用。
1CT与MRI技术23利用X线旋转扫描人体并采集数据,经过计算机重建得到人体组织的二维图像。
CT(计算机断层扫描)技术利用磁场和射频脉冲,使人体组织中的氢原子发生共振,根据共振信号重建图像。
MRI(核磁共振成像)技术CT主要用于骨骼、肺部、腹部等结构较厚的部位,而MRI则对软组织分辨率更高,适用于脑部、关节、肌肉等部位。
CT与MRI技术的比较核医学技术利用放射性核素标记生物分子,注入人体后追踪其在体内的分布,用于诊断肿瘤、炎症等疾病。
超声医学技术利用高频声波在人体组织中的反射和传播,将信号转化为图像,适用于观察胎儿、心脏、肌肉等部位。
核医学与超声医学技术02医学影像诊断学总论医学影像诊断学定义医学影像诊断学是利用各种医学影像技术(如X线、CT、MRI等)来获取人体内部结构和器官的形态、功能及病变信息,并进行诊断和评估的一门学科。
医学影像诊断学的作用医学影像诊断学在临床医学中具有重要地位,它为医生提供疾病诊断和治疗的重要依据,帮助医生更好地了解患者病情并制定合适的治疗方案。
医学影像诊断学概念医学影像诊断学应用范围医学影像诊断学的应用领域医学影像诊断学广泛应用于临床医学的各个领域,如内科、外科、妇产科、儿科等。
医学影像诊断学在临床实践中的应用在临床实践中,医生通常会根据患者的症状和体征,选择合适的医学影像技术进行检查,以获取更准确的诊断信息。
学习医学影像诊断学需要有一个系统性的学习方法,从基础理论到临床实践,逐步深入,全面掌握。
医学影像诊断学重点知识
医学影像诊断学重点知识医学影像诊断学是现代医学领域中至关重要的一门学科,它通过运用各种医学影像技术,如X线、CT、MRI等,对患者进行全面的体内检查,从而帮助医生准确诊断疾病并制定相应的治疗方案。
本文将介绍医学影像诊断学的一些重点知识,以便读者对该领域有更深入的了解。
一、X线摄影技术X线摄影技术是医学影像诊断学最常用的技术之一。
医生通过将人体部位暴露于X射线下,并将其投影在感光胶片或电子探测器上,从而获得人体内部器官的影像。
这些影像可以帮助医生发现骨折、肿瘤、肺部感染等问题,并作出正确的诊断。
二、计算机断层扫描(CT)计算机断层扫描,简称CT,是一种具有高分辨率和高灵敏度的医学影像技术。
它通过将人体切成薄层,并通过多个不同角度的X射线扫描来获取详细的断层图像。
CT可以用于检测肿瘤、血管病变、脑损伤等,并在手术前规划和引导手术。
三、磁共振成像(MRI)磁共振成像,简称MRI,是一种利用磁场和无害的无线电波来生成高质量人体内部图像的技术。
相比于其他影像技术,MRI不需要暴露于X射线,因此被认为是一种较安全的诊断工具。
MRI可用于检测脑部疾病、骨髓炎、肌肉骨骼系统问题等。
四、超声诊断超声诊断是一种基于回声原理的医学影像技术。
通过将超声波传入人体组织并记录其回声,医生可以获得人体内部器官的影像。
超声诊断被广泛应用于妇产科、心血管、肝脏、腹部等领域,可以帮助医生检测胎儿发育情况、评估心脏功能、检测肝脏疾病等。
五、核医学核医学是一种利用放射性同位素来进行诊断和治疗的影像学分支。
核医学技术主要包括正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)。
这些技术通过观察放射性同位素在体内的分布,来评估器官功能和代谢活动,可以用于检测肿瘤、心血管疾病等。
总结:医学影像诊断学是一门综合性较强的学科,准确的影像诊断对于医生制定治疗方案至关重要。
通过掌握X线摄影技术、计算机断层扫描、磁共振成像、超声诊断和核医学等重点知识,我们可以更好地理解和运用医学影像技术,为患者的健康提供更好的服务。
影像诊断学重点
影像诊断学重点影像诊断学是医学领域中非常重要的一门学科,通过利用不同的影像技术,帮助医生进行疾病的诊断、治疗方案的确定以及术后效果的评估。
本文将重点介绍影像诊断学中的几个重要内容。
一、X射线摄影术X射线摄影术是应用最为广泛的影像诊断技术之一。
它利用X射线的穿透能力,通过在患者身体部位进行照射,再接收和记录射线透过身体部位的程度和位置,从而形成图像。
常见的X射线检查包括胸部X射线、骨骼X射线和腹部X射线等。
在临床上,医生可以通过X射线图像来判断骨折、肺部病变、肿瘤等疾病。
二、计算机断层扫描技术计算机断层扫描技术(CT)是一种非常重要的成像技术,在临床影像学中得到了广泛应用。
它利用X射线的原理,通过旋转式的X射线源和探测器,快速扫描患者身体各个部位,然后通过计算机对扫描数据进行重建,生成高质量的断层图像。
CT可以提供更为详细的解剖结构信息,对于检测肿瘤、血管病变以及脑部疾病等方面具有很高的准确性。
三、磁共振成像技术磁共振成像技术(MRI)利用磁场和无线电波来生成人体内部图像。
相比于其他成像技术,MRI没有使用X射线辐射,更加安全。
它可以提供具有高对比度和分辨率的图像,有利于鉴别疾病和正常结构。
MRI在脑部、脊柱、关节等部位的检查中,能够非常清晰地显示软组织结构,对肿瘤、炎症、神经系统疾病等的诊断起到了关键作用。
四、超声诊断技术超声诊断技术是一种利用高频声波进行成像的非侵入性检查方法。
它通过超声波在人体内部的传播和反射,实时生成图像。
超声检查可以在腹部、胸部、妇科、泌尿系统等各个部位应用,可用于检测肿瘤、囊肿、结石等病变。
五、核医学成像技术核医学成像技术是一种利用放射性同位素进行成像的方法。
患者通过摄入或注射放射性同位素,然后通过探测器进行放射性计数,最后生成图像。
这种成像技术对于肿瘤、心脑血管疾病、骨质疏松症等疾病的诊断和治疗效果评估具有重要意义。
总之,影像诊断学是现代医学领域中不可或缺的一部分。
通过不同的影像技术,医生能够更加准确地判断疾病的类型、位置和严重程度,为患者提供更好的诊疗服务。
影像诊断学重点知识
影像诊断学重点知识影像诊断学是医学领域中非常重要的一个学科,它通过利用各种影像技术,如X射线、CT、MRI等,对疾病进行准确诊断和评估。
影像诊断学的掌握是每个医学生和从事医疗工作的人的必备知识。
本文将介绍一些影像诊断学的重要知识点。
一、X射线影像学X射线影像学是最早应用于医学诊断的一种影像技术。
它利用X射线通过人体组织的不同程度吸收,形成影像,从而观察人体内部结构。
在X射线影像学中,常见的疾病表现包括骨折、肺炎、胸腔积液等。
医生通过观察X射线影像,可以判断疾病的类型和程度,并制定相应的治疗方案。
二、CT(计算机断层扫描)CT是一种通过感应和测量X射线通过人体组织的吸收与散射,然后由计算机进行图像重建的技术。
相对于常规X射线影像学,CT具有更高的分辨率和对软组织更好的显示效果。
在CT影像学中,常见的应用包括头部CT、腹部CT、胸部CT等。
通过CT扫描,医生可以更清晰地观察到各个器官的结构和病变,有助于更准确地诊断和治疗疾病。
三、MRI(磁共振成像)MRI是利用核磁共振现象进行图像构建的一种影像技术。
它通过对人体进行强磁场和射频脉冲的作用,得到具有不同脉冲序列的图像。
相比于X射线,MRI不会产生辐射,对人体无害。
MRI在神经系统、骨骼系统和软组织等方面的应用非常广泛。
医生可以通过观察MRI图像,判断疾病的类型、范围和严重程度,为患者提供更有针对性的治疗。
四、超声影像学超声影像学利用超声波对人体进行扫描,生成图像。
它不仅可以观察内脏器官的形态和结构,还可以实时观察血流动力学变化。
超声影像学在孕妇产检、心血管疾病和肝脏病变等方面有着广泛的应用。
医生通过超声影像,可以对疾病进行初步的诊断,并辅助术中操作、引导穿刺等。
五、核医学影像学核医学影像学是利用放射性核素通过体内外部探测器记录的放射线信号,构建图像,从而观察人体代谢和功能状态的一种影像学方法。
核医学影像学在肿瘤学、心血管病、神经病学等领域具有重要的应用。
医学影像诊断学重点
目 录
• 医学影像诊断学概述 • 医学影像技术基础 • 常见疾病影像表现与诊断 • 医学影像诊断学新技术与新进展 • 医学影像诊断学实践案例分析 • 总结与展望
01
医学影像诊断学概述
定义与发展历程
定义
医学影像诊断学是利用各种医学影像技术,对人体内部结构 和功能进行非侵入性的观察和评估,以辅助临床诊断和治疗 的一门医学科学。
医学影像技术与医疗实践融合不足
当前医学影像技术主要应用于疾病的诊断和治疗,与医疗实践的融合程度有待提高,未 能充分发挥其在医疗过程中的作用。
未来发展趋势预测
医学影像数据共享与标准 化
未来医学影像数据将在更大范 围内实现共享,同时数据的标 准化和规范化将成为重要趋势 ,以提高数据的可比性和利用 效率。
其他影像技术简介
超声成像
利用超声波在人体组织中的反射 、折射等物理特性进行成像,具
有实时、无创、便携等优点。
核医学成像
利用放射性核素标记的化合物在人 体内的代谢和分布情况进行成像, 可反映人体生理、生化及代谢等信 息。
光学成像
利用光学原理和技术对人体组织进 行成像,如内窥镜、光学显微镜等 。
03
脑肿瘤
通过MRI检查,可以清晰显示肿瘤的位置、大小 、形态及与周围组织的关系,为手术和治疗方案 提供依据。
案例二:呼吸系统疾病影像诊断分析
肺炎
X线或CT检查可显示肺部实变影,结合临床表现和实验室检查, 可以对肺炎做出准确诊断。
肺结核
通过X线或CT检查,可以观察到肺结核的特征性表现,如钙化、空 洞形成等,有助于诊断和鉴别诊断。
多模态医学影像融合技术
将不同模态的医学影像进行融合,提供全面的诊断信息,提高诊断 准确性。
医学影像诊断学重点
医学影像诊断学重点医学影像诊断学是现代医学中非常重要的一个学科领域,通过利用各种影像技术来提供医学诊断和治疗方案的辅助信息。
在医学影像诊断学中,有一些重点内容需要我们深入了解和掌握。
本文将介绍医学影像诊断学中的一些重点知识,帮助读者更好地理解此领域的重要性与关键内容。
一、医学影像学的分类医学影像学按照不同的影像技术可以分为放射学影像学、超声影像学、核医学影像学和磁共振影像学等。
放射学影像学是应用最广泛的一种影像学技术,包括X射线、CT和数字化放射成像等;超声影像学则是通过超声波来产生影像,非常安全和无创伤;核医学影像学则是通过放射性的同位素追踪技术来观察人体内部的活动;而磁共振影像学则是利用核磁共振原理来生成影像。
二、常见的医学影像检查医学影像学的常见检查包括X射线检查、CT检查、MRI检查和超声检查等。
X射线检查可以用于骨折、肺部疾病等的诊断,非常方便快捷;CT检查则可以提供更详细的三维图像,适用于脑部、腹部等器官的检查;MRI检查则适用于韧带损伤、肿瘤等更加复杂的情况;超声检查则是常用于妇科、产科等领域的检查方法。
三、医学影像诊断常见病症医学影像诊断学的应用非常广泛,可以用于肿瘤、心血管疾病、神经系统疾病等多个领域。
例如,在肿瘤诊断中,医学影像技术可以帮助确定肿瘤的位置、大小和是否有转移;在心血管疾病中,医学影像技术可以帮助检测冠状动脉是否有堵塞、心肌梗塞情况等;在神经系统疾病中,医学影像技术可以帮助检测脑部肿瘤、中风等情况。
四、医学影像诊断的发展趋势医学影像诊断技术的不断发展,给医学诊断带来了更多的可能性。
随着技术的进步,医学影像的分辨率越来越高,对细微结构的诊断和观察更加准确。
同时,医学影像的数据量也越来越庞大,人工智能的应用在医学影像诊断中将发挥越来越重要的作用,使得医生可以更快速、准确地进行诊断。
综上所述,医学影像诊断学是现代医学中不可或缺的一部分。
通过掌握医学影像学的分类、常见的医学影像检查和常见病症的诊断,以及对医学影像诊断的发展趋势的了解,我们可以更好地理解医学影像诊断的意义和应用。
医学影像诊断学重点知识
一、名词解释1.螺旋CT(SCT): 螺旋CT扫描是在旋转式扫描基础上, 通过滑环技术与扫描床连续平直移动而实现的, 管球旋转和连续动床同时进行, 使X线扫描的轨迹呈螺旋状, 因而称为螺旋扫描。
2.CTA: 是静脉内注射对比剂, 当含对比剂的血流通过靶器官时, 行螺旋CT容积扫描并三维重建该器官的血管图像。
3.MRA: 磁共振血管造影, 是指利用血液流动的磁共振成像特点, 对血管和血流信号特征显示的一种无创造影技术。
常用方法有时间飞跃、质子相位对比、黑血法。
4.MRS:磁共振波谱, 是利用MR中的化学位移现象来确定分子组成及空间分布的一种检查方法, 是一种无创性的研究活体器官组织代谢、生物变化及化合物定量分析的新技术。
5.MRCP: 是磁共振胆胰管造影的简称, 采用重T2WI水成像原理, 无须注射对比剂, 无创性地显示胆道和胰管的成像技术, 用以诊断梗阻性黄疽的部位和病因。
6.PTC: 经皮肝穿胆管造影;在透视引导下经体表直接穿刺肝内胆管, 并注入对比剂以显示胆管系统。
适应症: 胆道梗阻;肝内胆管扩张。
7.ERCP: 经内镜逆行胆胰管造影;在透视下插入内镜到达十二指肠降部, 再通过内镜把导管插入十二指肠乳头, 注入对比剂以显示胆胰管;适应症: 胆道梗阻性疾病;胰腺疾病。
8.数字减影血管造影(DSA): 用计算机处理数字影像信息, 消除骨骼和软组织影像, 使血管成像清晰的成像技术。
9.造影检查: 对于缺乏自然对比的结构或器官, 可将高于或低于该结构或器官的物质引入器官内或其周围间隙, 使之产生对比显影。
10.血管造影:是将水溶性碘对比剂注入血管内, 使血管显影的X线检查方法。
11.HRCT: 高分辨CT, 为薄层(1~2mm)扫描及高分辨力算法重建图像的检查技术12.CR: 以影像板(IP)代替X线胶片作为成像介质, IP上的影像信息需要经过读取、图像处理从而显示图像的检查技术。
13.T1: 即纵向弛豫时间常数, 指纵向磁化矢量从最小值恢复至平衡状态的63%所经历的弛豫时间。
影像诊断学重点整理
影像诊断学重点整理影像诊断学是一门基础医学科目,它主要通过用现代医学影像学技术来观察、分析和诊断人体内的疾病。
通过对影像结果的解读和分析,医生可以准确地判断病情和指导治疗。
本文将对影像诊断学的重点内容进行整理。
一、X射线摄影X射线摄影是一种常用的影像诊断技术,它通过向人体投射X射线,并通过摄影机将X射线图像转化为可见图像。
在X射线摄影中,常用的技术包括胸部摄影、骨骼摄影和腹部摄影等。
医生通过对X射线图像的细致观察,可以判断出骨折、肿瘤等疾病。
二、计算机断层扫描(CT扫描)CT扫描是一种通过旋转的X射线源和探测器来获取横断面图像的技术。
它可以提供比常规X射线摄影更详细的图像,并且能够以不同方向和层面显示内部结构。
CT扫描在肺部疾病、肝脏病变和脑部疾病的诊断中有着重要的应用。
三、磁共振成像(MRI)MRI是一种利用原子核磁共振现象生成图像的技术。
它通过在强磁场中对人体产生不同的磁场强度,然后利用射频脉冲来激发原子核共振,从而获取图像。
MRI能够提供高分辨率的图像,并且对软组织有较好的显示效果。
它在脑部疾病、脊柱疾病和关节病变的诊断中发挥着重要作用。
四、超声波检查超声波检查是一种利用超声波来观察和诊断人体内部疾病的技术。
它通过将超声波传入人体,然后根据超声波在不同组织中的传播和反射情况生成图像。
超声波检查无辐射、非侵入性、易于操作,并且对于产妇和婴儿也比较安全。
它在妇科、泌尿系统和心脏疾病的诊断中得到广泛应用。
五、核医学检查核医学检查是一种利用放射性同位素或示踪剂来分析和诊断疾病的技术。
它通过将放射性同位素或示踪剂注入人体,然后利用探测器测量放射性同位素或示踪剂在人体内的分布情况。
核医学检查在骨骼疾病、肿瘤诊断和心血管疾病中有重要的应用。
总结起来,影像诊断学是一门重要的医学科目,它通过不同的技术手段来观察和诊断人体内的疾病。
X射线摄影、CT扫描、MRI、超声波检查和核医学检查是影像诊断学中的重要内容。
医学影像诊断学考试重点
医学影像诊断学考试重点在医学领域中,影像诊断学是一个非常重要的分支,它通过采集和解读影像资料来辅助医学诊断。
对于学习影像诊断学的学生来说,掌握考试重点是至关重要的。
本文将介绍医学影像诊断学考试的重点内容,帮助学生们有针对性地进行复习。
一、放射学基础知识1. 放射学的定义和分类放射学是利用放射线在人体组织中的吸收和散射规律,通过影像设备将其转化为可视化的图像。
根据不同的成像方式,放射学可以分为X射线摄影学、超声波诊断学、核医学和磁共振影像学等。
2. 影像学基本特点和临床应用影像学的基本特点包括可视性、非侵入性、直观性和多重性等。
临床应用方面,影像学在疾病诊断、病情评估和治疗监测等方面具有广泛的应用。
3. 放射线的基本概念和作用放射线包括X射线和γ射线,它们具有穿透力强、不可见、电离辐射等特点。
放射线在人体组织中的吸收和散射过程对于影像的形成和诊断具有重要影响。
二、常用的影像学技术1. X射线摄影学X射线摄影学是最常见的影像学技术,它主要通过X射线的吸收程度来显示人体内部的结构。
常见的X射线检查包括胸部X射线、骨骼X射线和腹部平片等。
2. 超声波诊断学超声波诊断学利用超声波在人体组织中的传播和反射规律来形成影像。
它具有无辐射、实时性和便携性等特点,在妇产科、心脏病学和肾脏病学等领域得到广泛应用。
3. 核医学核医学是利用放射性核素在人体内的分布和代谢来进行影像诊断。
通过核素的注射或口服,结合相关的影像设备,可以观察到特定的生理或病理过程。
4. 磁共振影像学磁共振影像学是通过应用磁场和无线电波来生成人体组织的影像。
它可以提供高分辨率的图像,并对软组织有较好的显示效果。
在神经科学和肌骨疾病诊断方面具有重要作用。
三、病理学与影像学的关系1. 影像学的诊断方法和准确性影像学在疾病诊断中起到辅助作用,但并不是所有疾病都能通过影像学来明确诊断。
影像学的准确性受多种因素的影响,包括操作者的经验、设备的质量和疾病的特点等。
医学影像诊断学考试重点(Word最新版)
医学影像诊断学考试重点通过整理的医学影像诊断学考试重点相关文档,渴望对大家有所扶植,感谢观看!诊断第一章总论1.X线的特性(1)X线具有穿透性(2)X线具有荧光作用(3)X线具有感光效应:(5)X线在匀整、各向同向的介质中,直线传播(6)X线不带电,它不受外界磁场或电场的影响2.CT值X线穿透人体时,不同的组织密度值代表不同的线性衰减系数μ,一般用它的相对值表示,称为CT值。
单位为HU 其次章呼吸系统前后肋骨相差4个肋间,如第6前肋相当于第10后肋的高度※1.肺野充溢气体的两肺在胸片上表现为匀整一样较透亮的区域。
划分:为了便于标明病变位置,人为地将一侧肺野纵行分之为三等分,称为内、中、外三带,又分别在第2、4肋骨前端下缘划一水平线,将肺野分为上、中、下三野。
※2.肺门:是由肺动、静脉、伴行支气管等构成。
构成肺门的影像主要是血管影,在正位片上肺门位于两肺中野内带2-4前肋间处,左侧比右侧高1-2cm。
3.肺纹理(1)定义:肺纹理是自肺门向外呈放射分布的树枝状影。
(2)组成:由肺动静脉、支气管、淋巴管等组成、构成肺纹理的主要影像是肺动脉的分支影。
4.纵隔以第4、8胸椎椎体下缘划两条水平线,分成上、中、下纵隔。
以气管心脏升主动脉前缘之前为前纵隔,食管前缘之后为后纵隔,两者之间为中纵隔。
5.膈右膈顶较左膈顶高1~2厘米。
肋膈角:指膈肌与侧胸壁之间的夹角。
6.堵塞性肺气肿:X线表现:(局限性和充溢性)肺体积增大,肺野透亮度增加,肺纹理稀疏7.堵塞性肺不张:X线表现:堵塞远端的肺组织体积缩小,密度增高,四周结构呈向心性移位。
8.肺实变:(炎性实变)X线表现:密度略高,较匀整的云絮状影,边缘模糊,可扩散至整个肺叶。
“空气支气管征” 9.空洞与空腔:(1)空洞:肺内病变组织发生坏死并经引流支气管后所形成。
(肺癌、肺结核)分为厚壁空洞(≥3mm)和薄壁空洞(<3mm)(2)空腔:肺内生理性腔隙的病理性扩大。
影像诊断学知识重点
第一章影像诊断学绪论X 成像特性:穿透性,荧光效应,感光效应,电离效应.X线影像的形成基于三个基本条件(1)穿透性:穿透人体组织(2)人体组织存在密度和厚度的差异,吸收量不同,穿透身体的X线量有差别(3)有差别的剩余X线是不可见的,经过显像,在荧屏或胶片上就形成了具有黑白对比、层次差异的X线影像。
人体正常组织结构的密度不同:高密度骨和钙化X线吸收多白影低密度脂肪和含气体的脏器(肺、鼻窦)X线吸收少黑影中等密度软骨、肌肉、体液实质脏器等 X 线吸收中等灰影病变组织密度与邻近组织密度不同,存在自然对比,可产生不同的病理影像。
X 线图像特点1、由黑到白不同灰度的影像组成,是灰阶图像。
2、图像的白影、黑影与人体组织的厚度及组织结构密度的高低有关3、是穿透不同组织结构相互叠加的影像.CT 值--系CT 扫描中X 线衰减系数的单位,用于表示CT 图像中物质组织结构的线性衰减系数(吸收系数)的相对值。
用亨氏单位表示,简写HU。
磁共振成像:是利用人体中的氢原子核(质子)在磁场中受到射频脉冲的激励而发生核磁共振现象,产生磁共振信号,经过采集和计算机处理而获得重建断层图像的成像技术。
1>MR 水成像是指人体静态或缓慢流动液体的MR 成像技术1. MRCP MR 胆胰管水成像2.MRU MR 泌尿系水成像3.MRM MR 脊髓成像2>MRA MR 血管成像:利用血液的流动效应,是血管内腔成像的技术3>MRC MR 电影成像技术—磁共振电影:运用快速成像序列,使运动器官能快速成像,藉以评价器官的运动功能第二章骨骼与肌肉系统※小儿长骨特点:有骺软骨,且未完全骨化。
分为骺、骺板、干骺端及骨干几部分组成骨龄:在骨的发育过程中,骨的原始骨化中心和继发骨化中心的出现时间,骨骺与干骺端完全愈合的时间都有一定的规律性,这种规律以时间来表示即是骨龄。
脊柱四个生理弯曲:颈椎段前突;胸椎段后突;腰椎段前突;骶、尾骨后突;※骨基本病变表现(一)骨质疏松(六)骨内与软骨内钙化(二)骨质软化(七)骨质坏死(三)骨质破坏(八)矿物质沉积(四)骨质增生硬化(九)骨骼变形(五)骨膜异常(十)周围软组织病变骨质疏松:单位体积内正常钙化的骨组织的减少,即骨组织的有机成分和钙盐都减少,但两者的比例仍正常。
医学影像诊断学重点知识总结
医学影像诊断学重点知识总结医学影像诊断学是一门研究医学影像学的诊断方法和技术的学科。
随着医学影像技术的发展和应用的广泛,医学影像诊断学越来越受到临床医生和患者的关注和重视。
下面就医学影像诊断学的重点知识做一个总结。
一、医学影像学的分类根据影像学的来源和性质,医学影像学可以分为X线影像学、CT影像学、MRI影像学、超声影像学、核医学影像学等多个学科分支。
不同的医学影像学具有不同的成像原理、适应症、禁忌症、优缺点等特点。
二、医学影像学的影像学表现医学影像学的影像学表现是指不同疾病在不同影像学检查中所呈现出的特征性影像表现。
临床医生可以通过对影像学表现的分析和判断来做出正确的诊断和治疗决策。
常见的影像学表现有密度增高、密度减低、分界不清、形态改变、局部异常扩散等。
三、医学影像学的诊断原则医学影像学的诊断原则是指在医学影像学检查时应注意的基本原则。
包括影像学检查的适应症、禁忌症、检查前的准备工作、检查方法的选择和操作技巧、影像学表现的分析和判断、诊断的准确性和可靠性等。
医学影像学的诊断原则对于正确诊断和治疗疾病具有重要意义。
四、医学影像学的常见疾病医学影像学的常见疾病包括肿瘤、心血管疾病、神经系统疾病、骨科疾病、消化系统疾病、呼吸系统疾病等多个方面。
医学影像学在这些疾病的诊断和治疗中具有不可替代的作用。
五、医学影像学的新技术随着医学影像学技术的不断发展,新技术的应用也不断涌现。
其中包括数字化医学影像、三维重建、影像导航、虚拟内窥镜、分子影像等多种技术,这些新技术的应用使得医学影像学的诊断和治疗水平得到了进一步提高。
医学影像诊断学是一门重要的学科,对于现代医学的发展和进步具有重要的意义。
了解医学影像诊断学的重点知识,可以帮助临床医生更好地应用医学影像学技术,提高疾病的诊断准确性和治疗效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、名词解释1.螺旋CT(SCT): 螺旋CT扫描是在旋转式扫描基础上,通过滑环技术与扫描床连续平直移动而实现的,管球旋转和连续动床同时进行,使X线扫描的轨迹呈螺旋状,因而称为螺旋扫描。
2.CTA:是静脉内注射对比剂,当含对比剂的血流通过靶器官时,行螺旋CT容积扫描并三维重建该器官的血管图像。
3.MRA:磁共振血管造影,是指利用血液流动的磁共振成像特点,对血管和血流信号特征显示的一种无创造影技术。
常用方法有时间飞跃、质子相位对比、黑血法。
4.MRS:磁共振波谱,是利用MR中的化学位移现象来确定分子组成及空间分布的一种检查方法,是一种无创性的研究活体器官组织代谢、生物变化及化合物定量分析的新技术。
5.MRCP:是磁共振胆胰管造影的简称,采用重T2WI水成像原理,无须注射对比剂,无创性地显示胆道和胰管的成像技术,用以诊断梗阻性黄疽的部位和病因。
6.PTC:经皮肝穿胆管造影;在透视引导下经体表直接穿刺肝内胆管,并注入对比剂以显示胆管系统。
适应症:胆道梗阻;肝内胆管扩张。
7.ERCP:经内镜逆行胆胰管造影;在透视下插入内镜到达十二指肠降部,再通过内镜把导管插入十二指肠乳头,注入对比剂以显示胆胰管;适应症:胆道梗阻性疾病;胰腺疾病。
8.数字减影血管造影(DSA):用计算机处理数字影像信息,消除骨骼和软组织影像,使血管成像清晰的成像技术。
9.造影检查:对于缺乏自然对比的结构或器官,可将高于或低于该结构或器官的物质引入器官内或其周围间隙,使之产生对比显影。
10.血管造影:是将水溶性碘对比剂注入血管内,使血管显影的X线检查方法。
11.HRCT:高分辨CT,为薄层(1~2mm)扫描及高分辨力算法重建图像的检查技术12.CR:以影像板(IP)代替X线胶片作为成像介质,IP上的影像信息需要经过读取、图像处理从而显示图像的检查技术。
13.T1:即纵向弛豫时间常数,指纵向磁化矢量从最小值恢复至平衡状态的63%所经历的弛豫时间。
14.T2:即横向弛豫时间常数,指横向磁化矢量由最大值衰减至37%所经历的时间,是衡量组织横向磁化衰减快慢的尺度。
15.MRI水成像:又称液体成像是采用长TE技术,获取突出水信号的重T2WI,合用脂肪抑制技术,使含水管道显影。
16.功能性MRI成像:是在病变尚未出现形态变化之前,利用功能变化来形成图像,以达到早期诊断为目的成像技术。
包括弥散成像,灌注成像,皮层激发功能定位成像。
17.流空现象:是MR成像的一个特点,在SE序列,对一个层面施加90度脉冲时,该层面内的质子,如流动血液或脑脊液的质子,均受至脉冲的激发。
中止脉冲后,接受该层面的信号时,血管内血液被激发的质子流动离开受检层面,接收不到信号,这一现象称之为流空现象。
18.部分容积效应:层面成像,一个全系内有两个成份,那么这个体系就是两成份的平均值,重建图像不能完全真实反应组织称为部分容积效应。
19.TE:又称回波时间,射频脉冲到采样之间的回波时间。
20.TR:又称重复时间,MRI信号很弱,为提高MRI的信噪比,要求重复使用脉冲,两个90度脉冲周期的重复时间。
21.T1WI:即T1加权成像,指MRI图像主要反应组织间T1特征参数的成像,反映组织间T1的差别,有利于观察解剖结构。
22.T2WI:即T2加权成像,指MRI图像主要反应组织间T2特征参数的成像,反映组织间T2的差别,有利于观察病变组织。
23.像素:矩阵中的每个数字经数模转换器转换为由黑到白不等灰度的小方块,称之为像素。
24.体素:图像形成的处理有如将选定层面分成若干个体积相同的长方体,称之为体素。
25.数字X线成像:是将普通X线摄影装置或透视装置同电子计算机结合,使X线信息由模拟信息转换为数字信息,而得到数字图像的成像技术。
26.TIPS:经颈静脉肝内门体静脉分流术,用介入的方法来治疗门脉高压症,在肝内形成一个门静脉与肝静脉分流,降低门脉压力。
主要用于不能手术的门脉高病人,如布加氏综合症。
27.肺野:充满气体的两肺在胸片上表现为均匀一致较为透明的区域称肺野。
28.肺门影:主要由肺动脉、肺叶动脉、肺段动脉、伴行支气管及肺静脉构成。
正位胸片上,肺门于两肺中野内带第2~5前肋间处,左侧比右侧高1—2cm。
29.肺纹理:为自肺门向肺野呈放射状分布的树枝状影,由肺动脉、肺静脉及支气管形成,其主成分是肺动脉及其分支。
30.空气支气管征:又称支气管气象,在X线胸片及CT片上,实变的肺组织中见到含气的支气管分支影。
可见于大叶性肺炎和小肺癌中。
31.卫星灶:是指在结核球病灶的周围肺野见到的散在的增殖性或纤维性病灶。
32.肺上沟瘤:又称Pancoast瘤是指发生在肺尖部的周围型肺癌,并与脏层胸膜接触,易破坏第1 3胸椎及相邻的肋骨。
可侵犯臂丛神经、迷走神经、颈上交感神经并出现相应的症状,其中侵犯交感神经可出现Horner综合征,表现为同侧眼睑下垂、瞳孔缩小、眼球下陷及额部无汗。
33.胸膜凹陷征:是指肿瘤与胸膜之间的线形或幕状阴影,也可为星状阴影,系肿瘤瘤体内的瘢痕组织牵拉邻近的脏层胸膜所致。
以腺癌和细支气管肺泡癌多见。
有时良性病变如结核球等也可以出现此征。
34.肺门舞蹈征:肺血增多时,在透视下可见到肺动脉段及两侧肺门动脉博动增强,称肺门舞蹈征。
35.反“S”征象:发生在右上叶支气管的肺癌,其肺门部肿块与右上叶不张连在一起而成,他们的下缘呈反S状。
36.空洞:为肺内病变组织发生坏死后经引流支气管排出后而形成的,空洞壁可由坏死组织,肉芽组织,纤维组织,肿瘤组织等形成。
37.空腔:是肺内生理的腔隙的病理性扩大,肺大泡、含气肺囊肿及肺气囊等都属于空腔。
38.Kerley B线:是间质性肺水肿间隔线的其中一种,多位于两下肺野的外带,以肋膈角区多见,短而直,一般不超过2cm,与胸膜相连并与其垂直。
病理基础是小叶间隔水肿、增厚的结果。
39.中心型肺癌:指发生于肺段或肺段以上支气管的肺癌。
40.肺隔离征:又称支气管肺隔离征,为胚胎时期一部分肺组织和正常肺分离而单独发育,与正常支气管树不相通,而且其血供来自体循环的异常分支,引流静脉可经肺静脉,下腔静脉或奇静脉回流。
41.分叶征:肿块的轮廓可呈弧形凸起,弧形相间则为凹入而形成分叶状肿块,称分叶征,多见与肺癌。
42.空泡征:瘤体内有时可见直径1mm~3mm的低密度影,称空泡征。
43.毛刺征:瘤体边缘可见不同程度的棘状突起,称毛刺征44.轨道征:柱状型支气管扩张时,当支气管水平走行而与CT层面平行时表现为扩张增厚的支气管壁呈平行排列的轨道状称轨道征。
45.戒指征:柱状型支气管扩张时,当支气管和CT层面呈垂直走行时可表现为管壁圆形透亮影,呈戒指征。
46.空气半月征:是指在肺曲菌球与空洞或空腔之间形似月牙的空气透明区,该新月形空隙总是位于空洞或空腔的最高位置,而曲菌球在洞(腔)内是移动的,总是处于近地位。
47.干酪性肺炎:是指大量结核杆菌经支气管侵入肺组织而迅速引起的干酪样坏死肺炎,可表现为肺叶和肺段样的实变影,其内可见大小不等不规则透亮区(虫蚀空洞),还可见经支气管播散的病灶。
48.手套征:是指发生在阻塞性支气管扩张时,引起一个肺叶或肺段范围内的带状及条状高密度阴影,从肺门向肺野方向分布,近端相互靠近,形态似手套状而称为“手套征”。
49.艾森曼格综合征:开始为左向右分流的先心病,如室间隔缺损、动脉导管未闭等,当肺动脉高压严重,形成右向左分流或双向分流,临床上出现发绀者,称艾森曼格综合征。
50.法洛四联征:为一种先天性心脏病,病理畸形为:肺动脉狭窄,室间隔缺损,主动脉骑跨,右心室肥厚,其中以肺动脉狭窄和室间隔缺损为主要畸形。
51.Monteggie骨折:尺骨上1/3骨折伴桡骨小头脱位,合并有前臂旋转功能障碍,称为Monteggie骨折。
分为屈曲型和伸直型。
52.骨质破坏:局部骨质为病理组织所代替而造成的骨组织消失。
X线表现为骨质局限性密度减低,骨小梁稀疏、消失而形成骨质缺损。
53.骨质坏死:骨组织局部代谢停止,坏死的骨质称为死骨。
X线表现为骨质局限性密度增高。
54.骨膜反应:是因骨膜受刺激,骨膜内层成骨细胞活动增加所引起的骨质增生。
X线表现为与骨皮质平行排列的线状、层状或花边状致密影。
55.骨膜三角:肿瘤浸润性生长侵犯骨膜,引起骨膜成骨,继而破坏骨膜成骨,使两端残存的部分在影像学上成三角形改变,称为骨膜三角,恶性骨肿瘤征象。
56.骨质软化:指一定单位体积内骨组织的有机成分正常,而矿物质含量减少。
X线表现为骨密度减低,骨小梁和骨皮质边缘模糊。
57.骨质疏松:指一定单位体积内正常钙化的骨组织减少,即骨组织的有机成分和钙盐都减少,但骨内的有机成分和钙盐含量比例正常。
X线表现主要是骨密度减低,骨小梁变细、减少,骨皮质变薄。
58.Schmorl 结节:表现为椎体上下缘边缘清楚的隐窝状压迹,多位于椎体上下缘中后1/3交界部。
59.肿瘤骨:出现于病变骨和(或)软组织肿块内的由肿瘤细胞形成的骨质。
60.硬化性骨髓炎:又称Garre骨髓炎,特点为骨质增生硬化,骨外膜与骨内膜都明显增生。
骨皮质增厚,骨髓腔变窄,骨干增粗。
61.关节破坏:是关节软骨及其下方的骨性关节面骨质为病理组织所侵犯、代替所致。
62.棕色瘤:甲状旁腺功能亢进,在骨内形成破骨细胞瘤,病理解剖上呈棕色,影像学上呈一个低密度影。
63.交通性脑积水:蛛网膜下腔阻塞或脑脊液分泌或吸收障碍引起的脑室系统和蛛网膜下腔同时积水,称为交通性脑积水。
64.梗阻性脑积水:第四脑室出口以上阻塞所引起的脑积水限于脑室系统,称阻塞性脑积水或脑内积水。
65.脑膜尾征:脑膜瘤增强扫描时,除了肿瘤本身明显强化外,还可以见到与肿瘤相邻的硬脑膜也线样强化,如同肿瘤的尾巴,称为“脑膜尾征”。
66.腔隙性梗塞:脑穿支小动脉闭塞引起的深部脑组织较小面积的缺血性坏死。
主要病因是高血压和脑动脉硬化,好发生于基底节区和丘脑区。
67.模糊效应:脑梗死2~3周,CT平扫显示病灶呈等密度,与正常实质难以辨别,称为“模糊效应”。
这是因为此时期脑水肿消失而吞噬细胞浸润,组织密度增大所致。
68.基底节回避现象:大脑中动脉闭塞在豆纹动脉的远端,病灶多位于基底节以外的颞叶,不累及基底节区,呈矩形低密度区,称为基底节回避现象。
69.岛带征:大脑中动脉闭塞早期CT平扫,出现患侧脑岛、最外囊和屏状核密度减低,与邻近脑白质密度相仿的现象。
70.跳跃征(线样征):溃疡性肠结核时,回肠末端和盲、升结肠因为炎症刺激痉挛,排空加速,钡剂呈线样充盈或者完全不充盈,其上、下端肠管充盈正常,称为跳跃征(线样征)。
71.龛影:由于胃肠道壁产生溃疡,达到一定深度,造影时被钡剂充填,当X线呈切线位投影时,形成一相对高密度区或突向腔外的高密度团。
为溃疡性病变的造影表现。