第二章有限元方程的求解方法
有限元分析基础(推荐完整)
图1-5 驾驶室受侧向力应力云图
图1-6 接触问题结构件应力云图
10
第一章 概述
图1-7 液压管路速度场分布云图
图1-8 磨片热应力云图
图1-9 支架自由振动云图
11
第二章 结构几何构造分析
2.1 结构几何构造的必要性 2.2 结构计算基本知识 2.3 结构几何构造分析的自由度与约束 2.4 自由度计算公式
(1)结点: ① 铰结点;② 刚结点;③ 混合结点。 (2)支座: ① 活动铰支座;② 固定铰支座 ;
③ 固定支座 ;④ 定向支座
15
第二章 结构几何构造分析
2.2.2 结构的分类与基本特征
(1) 按结构在空间的位置分 结构可分为平面结构和空间结构两大类
(2) 按结构元件的几何特征分 ① 杆系结构: 梁、拱、桁架、刚架、桁构结构等 。 ② 板壳结构 ③ 实体结构实体结构的长、宽、高三个尺寸都很 大,具有同一量级。 ④ 混合结构
d. 超静定结构中的多余约束破坏后,结构仍然保持 几何不变性,因而仍有一定的承载能力, 不致整个结构 遭受破坏。
e. 超静定结构由于具有多余的约束,因而比相应的 静定结构具有较大的刚度和稳定性, 在载荷作用下,内 力分布也较均匀,且内力峰值也较静定结构为小。
18
第二章 结构几何构造分析
2.2.3 结构对称性的利用
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。 (1) 具有奇数跨的刚架
① 正对称载荷作用
(a) 对称刚架
(b) 变形状态分析
(c) 对称性利用
图2-22对称性利用示意图
19
有限元第2讲:加权余量法
x
u x 1 x a1
R1x x a1 2 x x2
有限单元法
崔向阳
18
例题解析
子域法(Sub-domain Method)
考虑两项近似解:
u x1 x a1 x2 1 x a2
将整个问题域分为两个子域,取: R2x x a1 2 x x2 a2 2 6x x2 x3
边界欲求解问题问题域在问题域内对于一个问题可以归结为在一定的边界条件或动力问题的初始条件下求解微分方程的解这些微分方程为问题的控制方程微分算子与未知函数u无关的已知函数域值待求的未知函数有限单元法崔向阳边界欲求解问题问题域在问题域内
湖南大学 机械与运载工程学院
Hunan University
College of Mechanical & Vehicle Engineering
考虑一项近似解:
取x=1/2作为配点,得到:
R
1 2
1 2
-
7 4
a1
0
解得: a1 2 / 7
可以得一项近似解为:
u1
2 7
x
1
x
u x 1 x a1
R1x x a1 2 x x2
考虑两项近似解:
取x=1/3, 2/3作为配点,得到:
R
1 3
1 3
- 16 9
a1
2 27
有限单元法
崔向阳
17
例题解析
子域法(Sub-domain Method)
考虑一项近似解:
取整个问题域作为子域,即:
W1 1, 0 x 1
余量加权的积分为零
1 0
R1
x
dx
1 0
x
a1
杆件结构的有限元法
第一篇 有限元法
第二章 杆件结构的有限元法
当结构长度尺寸比两个截面方向的尺 寸大得多时,这类结构称为杆件。工程中 常见得轴、支柱、螺栓、加强肋以及各类 型钢等都属于杆件。
杆件结构可分为珩杆和梁两种。
和其他结构采用铰连接的杆称为珩杆。珩杆的连接处可以自由转动, 因此这类结构只承受拉压作用,内部应力为拉压应力。影响应力的 几何因素主要是截面面积,与截面形状无关。 和其他结构采用固定连接的杆称为梁。链的连接处不能自由转动, 因此梁不仅能够承受拉压,而且能承受弯曲和扭转作用。这类杆件 的内部应力状态比较复杂,应力大小和分布不仅与截面大小有关, 而且与截面形状和方位有很大关系。 建立有限元模型时,这两类杆件结构可用相应的杆单元和梁单元离散。
Ke 1 kkaa
ka
ka
中的元素在总刚度矩阵中应在位置第1行、第2行的第1列,第2列
k k
1 11
1 21
k
1 12
k
1 22
0
0
0 0 0
第2个单元的节点号为2和3,则单元刚度矩阵叠加到总刚度矩阵 的第2行、第3行的第2列、第3列元素上
0 0 0
0
k
2 22
k
2 23
0
k
2-3 杆件系统的有限元法
一、铰支杆系统的有限元计算格式 上面求解弹簧系统的有限元方法可以直接用力求解受轴向力的杆件系统。 均质等截面铰支杆,刚度值可由材料力学中力与变形的关系中获得
AE F1 L u1
k AE L
均质等截面铰支杆的力-位移方程可写为
F F12ALE11 11uu12
坐标变换
由杆件组成的机构体系称为杆系,如起重机、桥梁等。 由珩杆组成的杆系称为珩架,由梁组成的杆系称为刚架。
第二章 弹性力学问题有限元方法的一般原理和表达格式
第二章 弹性力学问题有限元方法的一般原理和表达格式 2.1 引言本章将讨论通过弹性力学变分原理建立弹性力学问题有限元法列式的基本步骤。
最小位能原理的未知场变量是位移,以结点位移为基本未知量,并以最小位能为基础建立的有限单元位移元。
它是有限元方法中应用最普遍的单元。
对于一个力学或物理问题,在建立其数学模型以后,用有限元方法对它进行分析的首要步骤是选择单元形式。
平面问题三结点三角形单元是有限元方法最早采用,而且至今仍经常采用的单元形式。
我们将以此作为典型,讨论如何应用广义坐标建立单元位移模式与位移插值函数,以及如何根据最小位能原理建立有限元求解方程的原理、方法与步骤,并进而导出弹性力学问题有限元方法的一般列式。
2.2 弹性力学平面问题的有限元列式2.2.1 单元位移模式及插值函数典型的三结点三角形单元结点编码为i,j,m 。
每个结点有两个位移分量,如图2.2所示。
每个结点的位移可用位移矢量i α表示,即⎥⎦⎤⎢⎣⎡=i i i v u α ),,(m j i每个单元有6个结点位移分量(称为6个自由度),于是单元结点的位移向量可表示为[]Tm m j j i im j i e v u v u v u =⎥⎥⎦⎤⎢⎢⎣⎡=ααααe α为单元结点位移列阵。
1.单元的位移模式和广义坐标在有限元方法中单元的位移模式,是指在单元内位移的插值函数,其一般形式采用多项式作为近似函数,因为多项式运算简单,并且随着项数的增多,可以逼近任何一段光滑的函数曲线。
假设3结点三角形单元位移模式选取一次多项式y x u 321βββ++=y x v 654βββ++= (2.2.1)它的矩阵形式是φβ=u (2.2.2)其中⎥⎦⎤⎢⎣⎡=v u u ,⎥⎦⎤⎢⎣⎡=ϕϕφ00 []y x 1=ϕ[]T 654321βββββββ=由于三个结点也在单元内,满足位移模式,于是得i i i y x u 321βββ++=j j j y x u 321βββ++= (2.2.3) m m m y x u 321βββ++=上式是关于321,,βββ的线性方程组。
有限元法(杆系)
Fjy
FFji Fj
s in cos s in
s in
0 0
0 0 0
0
cos s in
或 F(e) T F (e) (1)
Fiy
i
Fi i
Fix
拉压杆单元
0 Fi e
0 0 0
0 Fj 0
F jy
j
j
uiy ui
uix
u jy
y
Fj
F jx uj
u jx
2)
叠加形成总刚度矩阵,求位移
2sin2
0
sin2 EA sin cos
l
0
0
sin2
sin cos
0 2 cos2 1 sin cos
cos2 0 1
sin cos cos2
sin2 sin cos
sin2 sin cos
0 0 0 0
sin cos cos2 sin cos cos2
• 用单元节点位移表示单元内部位移
第 i 个单元中的位移用所包含的结点位移来表示:
u(x)
ui
ui1 ui Li
(x
xi )
(1- 1)
其中 u i 为第 i 结点的位移, xi 为第 i 结点的坐标。
第 i 个单元的应变为 i ,应力为 i ,内力为 N i :
i
du dx
ui1 ui Li
x
在局部坐标下,轴向力与轴向位移的关系:
(e)
Fi
1 0 1 0ui e
0
Fj
0
EA
0
0
l 1 0
0
0
0 1 0
0 0 0
9第2章弹性力学平面问题及空间问题有限元
假定的位移函数是多项式,它是连续函数,可以肯定,在单元内部位移函数是单值连续的。由于单 元的位移函数 u 、 v 都是坐标 x 、 y 的线性函数,在单元边界上位移也是线性变化的,两个相邻单元在 公共节点上具有相同的节点位移,因而相邻单元在公共边界上位移连续,即协调条件得到满足。 由上面分析可以看出,三角形常应变单元的位移模式可以保证计算结果的收敛。
px
py
px
py ]
T
(2-1-7b)
(2 )若在 jm 边上受线性分布的水平方向的面力,它在 j 点的集度为 q ,在 m 点的集度为零 (如图 2-5) 。可预计由该面力求得的等效节点载荷只有 R xj 、
R xm ,其余节点载荷分量必为零。
将 jm 边上的分布面力写成 s 的函数,为
s { p} [ (1 ) q 0]T l 在 jm 边上的形函数也需用变量 s 表示,根据形函数的含义,
Ve
[k ii ] [k ij ] [ k im ] [k ji ] [k ij ] [k jm ] [k mi ] [ k mj ] [k mm ]
式中, t 为单元的厚度,当单元划分得足够小时,可以认为每个单元的厚度 t 为常值。子阵为
(2-1-5)
[k rs ] [ Br ]T [ D][B s ]tA
101
二、 单元刚度矩阵 1、单元几何矩阵 [ B ] 有了单元的位移模式,利用平面问题的几何方程求得应变分量
0 x x u e e 0 { } [ L][ N ]{} [B ]{} y y v xy y x
有限元法的基本原理
第二章有限单元法的基本原理作为一种比较成熟的数值计算方法,有限元的数学基础是变分原理。
经过半个过世纪的发展,它的数学基础已经比较完善。
从数学角度分析,有限元法是以变分原理和剖分插值为基础的数值计算方法。
它广泛的应用于解算各种类型的偏微分方程,特别对椭圆型方程,因为椭圆型方程的边值问题等价于适当的变分问题,即能量积分的级值问题。
通过变分,导出相应的泛涵,再把作用域从几何上剖分为足够小的单元,这样就能够用简单的图形去拟合复杂的边界,用简单的初等函数去模拟单元的性质。
在解算中先对每个单元进行分析,后在通过连接单元的节点对作用域的整体进行分析,就是对泛涵求极值,从而把一个复杂的偏微分方程求解问题,变成解线形代数方程组的问题。
尽管这样会出现大量的未知数,由于采用了矩阵分析的方法,总体上很有规律,适合编制程序用计算机完成。
通常的数学考虑包括这些:1)从古典变分方法原理去定义微分方程边值问题的广义解以及在古典变分方法的框架对有限元进行理论分析。
2)保证偏微分方程边值问题的提法正确,即要求解存在、唯一和稳定,即保证数值解法是可靠的。
3)有限元中重要的一点是采用了分块多项式插值函数,因此,有限元的误差估计转化为插值逼近的误差估计问题。
4)有限元的收敛性和误差估计。
由于本文是应用有限元的理论解决大地测量中的问题,因此,这里将不讨论上叙问题,而是从固体力学的基本方程出发,通过虚功原理建立起离散化的有限元方程。
另外,还以八节点六面体单元为例,简要叙述了实际中最常用的等参单元的概念及其数值变化的一些公式。
§2.1 弹性力学基本方程有限元法中经常要用到弹性力学的基本方程,这里写出这些方程的矩阵表达式。
2-1-1、平衡方程对任意一点的受力情况分析,沿坐标轴方向x, y ,z分解得到平衡方程0*00000000=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z y xxz yz xy z y x F F F z yzz x y z y x τττσσσ 记为: 0=+F A σ其中A 是微分算子,F 是体积力向量。
第二章 有限元分析基本理论
第二章 有限元分析基本理论有限元法的基本思路是将一个连续求解区域分割成有限个不重叠且按一定方式相互连接在一起的子域(单元),利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场函数。
单元内的场函数通常由未知场函数或其导数在单元各个节点的数值和其插值函数来近似表示。
这样,未知场函数或其导数在各个节点上的数值即成为未知量(自由度)。
根据单元在边界处相互之间的连续性,将各单元的关系式集合成方程组,求出这些未知量,并通过插值函数计算出各个单元内场函数的近似值,从而得到全求解域上的近似解。
有限元将一个连续的无限自由度问题变成离散的有限自由度问题进行求解。
如果将区域划分成很细的网格,也即单元的尺寸变得越来越小,或随着单元自由度的增加及插值函数精度的提高,解的近似程度将不断被改进。
如果单元是满足收敛要求的,近似解最后可收敛于精确解。
2.1 有限元分析的基本概念和计算步骤首先以求解连续梁为例,引出结构有限元分析的一些基本概念和计算步骤。
如图2-1,连续梁承受集中力矩作用。
将结构离散为三个节点,两个单元。
结构中的节点编号为1、2、32.1.1单元分析在有限元分析过程中,第一步是进行结构离散,并对离散单元进行分析,分析的目的是得到单元节点的力与位移的关系。
单元分析的方法有直接法和能量法,本节采用直接法。
从连续梁中取出一个典型单元e ,左边为节点i ,右边为节点j 。
将节点选择在支承点处,单元两端只产生转角位移e i θ、ej θ,顺时针转动为正。
独立的单元杆端内力为弯矩i m 、j m ,顺时针为正。
记:{}e j i eu ⎭⎬⎫⎩⎨⎧=θθ为单元e 的节点位移向量;{}ej i em m f ⎭⎬⎫⎩⎨⎧=为单元e 的杆端力向量。
根据结构力学位移法可得如下平衡方程:⎪⎭⎪⎬⎫+=+=e j e e i e e j ej e e i e e i k k m k k m θθθθ22211211 (2-1)式中:ee e e ee i k k i k k 2412212211====,lEIi e =,EI 、l 分别为单元e 的抗弯刚度和长度。
第二章-杆和梁结构的有限元法案例
第二章
杆和梁结构的有限元法
§2.1.2 弹簧系统分析
注意: 上述弹簧系统的分析求解原理和过程就是有限元 法求解连续体力学问题时对离散后系统的分析求 解原理和过程。
第二章
杆和梁结构的有限元法
§2.1.2 弹簧系统分析
例题1:弹簧系统
已知条件:
求:(a) 系统总刚度矩阵 (b) 节点2,3的位移
单元特性
系统平衡方程
第二章 杆和梁结构的有限元法
KD F
2)单元方程扩大相加法 单元特性
F1 f11
相加
F2 f 21 f12 F3 f 22
系统节点 平衡条件
引入系统节点平衡条件
KD F
系统节点平衡方程
第二章 杆和梁结构的有限元法
2.2 杆单元和平面桁架
杆单元
2.2.1 一维等截面 杆单元
fi k f j k
第二章
k ui k u j
f kd
杆和梁结构的有限元法
2、弹簧系统的集成 1)列节点平衡方程法
F1 f11 F2 f 21 f12 F3 f 22
系统节点 平衡条件
F1 k1u1 k1u2 F2 k1u1 ( k1 k2 )u2 k2u3 F3 k2u2 k2u3
第二章 杆和梁结构的有限元法
k k k
k k
fi k f j k
k ui k u j
kii k k ji
kij k jj
§2.1.2 弹簧系统分析
求解一个弹簧系统:
1)各单元的特性分别为:
第二章 杆和梁结构的有限元法
第2章 弹性力学平面问题有限单元法(1-3节)
第二章 弹性力学平面问题有限单元法§2-1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。
一、结点位移和结点力列阵设右图为从某一结构中取出的一典型三角形单元。
在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1)二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。
即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。
构造位移函数的方法是:以结点(i,j,m)为定点。
以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。
在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)123u u x y x y ααα==++546(,)v v x y x y ααα==++ (2-1-2)a{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。
将3个结点坐标(x i,y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程:123i i i u x y ααα=++123j j j u x y ααα=++ (a)123m m m u x y ααα=++和546i i i v x y ααα=++546j j j v x y ααα=++ (b)546m m m v x y ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :11A Aα=22A Aα=33A Aα=式中行列式:1i i i j j j m m m u x y A u x y u x y =2111i i j j m mu y A u y u y =3111i i j jm mx u A x u x u =2111i i j j m mAx y A x y x y ==A 为△ijm 的面积,只要A 不为0,则可由上式解出:11()2m m i ij j a u a u a u A α=++ 21()2m m i ij j bu b u b u A α=++ (C )31()2m mi i j j c u c u c u A α=++式中:m m i j j a x y x y =- m m j i i a x y x y =- m i j j i a x y x y =-m i j b y y =- m j i b y y =- m i j b y y =- (d )m i j c x x =- m j i c x x =- m j i c x x =-为了书写方便,可将上式记为:m m i j i a x y x y =-m ij by y =- (,,)i j mm i jc x x =-(,,)i j m表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。
第2章_有限元法的直接刚度法_平面刚架
0 0 1 0 0
0 0 0 cos 0
0 0 0 sin cos 0
0 sin
0 ui 0 vi 0 i u 0 j 0 v j 1 j
i 0 i 分块形式为 0 j j
{
单元:6个 节点:4个
结构自由度
{ 4 3 12
的矩阵。
每个节点3个自由度
个自由度
结构的整体刚度矩阵是一个
12 12
二、单元刚度矩阵 1、单元的节点力、节点位移 任取一个单元,设单元号为 e,两个节点分别为i、j。 局部坐标:局部坐标只对 该单元有效,每一个单元 有一个局部坐标。以下对 该单元所进行的分析都在 这个局部坐标系下进行。 在局部坐标系下,两个 节点的节点位移为:
6 EI l 2 f 2 EI i l i 6 EI f j 2 l j 4 EI l
(3)刚架单元的节点力和节点位移之间的关系——单元刚度矩阵 刚架单元的所有节点力和节点位移之间的关系为:
EA 0 l 12EI Ti 0 q l3 i 6 EI 0 2 mi l EA T j 0 qj l 12EI 0 m j l3 6 EI 0 l2 0 6 EI l2 4 EI l 0 6 EI l2 2 EI l EA l 0 0 EA l 0 0 0 12EI l3 6 EI 2 l 0 12EI l3 6 EI 2 l 6 EI i 2 l f 2 EI i i l j 0 f j 6 EI 2 l j 4 EI l 0
计算材料学-第二章
j
i
m
y
j
j
i
m
x
m
i
单元内的局部编码
当区域划分完毕,结点编码定义后在随后的分析计算中 就要保持不变。这部分工作可以通过计算机编程来自动完成。
单元分析和单元刚度矩阵的建立
单元分析是有限元计算的主要部分。单元分 析是建立结点力和位移之间的关系,即建立单元 刚度矩阵。
单元位移函数的选择和形函数
单元位移函数就是把单元中任意一点的位移近似的表 示为该点坐标x和y的某种函数,该位移表达式就被称为 单元的位移函数,可表示为:
有限元法进行结构分析时,可以分为单 元分析和整体结构分析。
单元分析的任务是探讨单个单元的特性,并为求 解单个单元的特性建立方程;
整体结构分析是把所有的单元集合起来成为整体 结构,并建立结构方程。
有限元法得到是一种近似的数值解,随着网格的 加密,等效集合体逼近于真值,并收敛于精确解。
有限元法的计算步骤
根据力的独立作用原理,当存在其他应力分量如sy和txy 时,外力所做的功的储存在微元体内的应变能为:
dU
1s
2
xe xdxdy
1 2
s
ye
y dxdy
1t
2
xy
xydxdy
1 2
(s
xe x
s
ye y
t xy
xy )dxdy
令
U
1 2
(s xe x
s
ye y
t xy
xy )
可写成矩阵形式:
U
1
上式就是用于弹性体分析时的虚位移原理的数学表达 式,应该指出上式是在原有的外力、应力、温度及速度均 保持不变,也就是没有热能或动能损失时适用的。其含义 是虚应变能的增加等于外力内能的减小,即等于外力所作 的虚功。
第二章 有限元法的直接刚度法-1梁单元
2l
2
l 3 12 6l 12 6l
6l
2l 2
6l
4l
2
2.1直梁的有限元分析
从式(2-22)可以看出,单元刚度矩阵 K e是一个对称矩阵,
即 aij a ji 。
将单元刚度矩阵K e的公式,即式(2-22),应用于三个实际的梁
单元,如图2.5所示,得到每个单元的节点力和节点位移的关系分别
。 见式(2-23)、(2-24)和(2-25)
图2.5 三个单元的受力图
2.1直梁的有限元分析
q11
12 6l 12 6l f1
mq2111
m21
2EI l3
6l
12
6l
4l 2 6l 2l 2
6l 12 6l
2l 2 6l 4l 2
f122
mqq322222 m32
知识点: 直梁和平面刚架的直接刚度法
重点: 梁单元杆和刚架单元的自由度 单元的坐标变换
难点:直接刚度法的计算过程与物理意义
Ⅰ. 关于梁和弯曲的概念
受力特点: 杆件在包含其轴线的纵向平面内,承受垂直于轴线的 横向外力或外力偶作用。 变形特点: 直杆的轴线在变形后变为曲线。 梁——以弯曲为主要变形的杆件称为梁。
f ii
f
' i
f
" i
1
' i
" i
0
(2-13)
其中,f i'
移, fi 、
i、 为图i' 为2.3图(2b.3)(所b)示所m示i单独qi作单用独所作产用生所的产位生移的。位
图2.3 (b) 节点i的节点力
2.1直梁的有限元分析
教材有误
有限元法的基本步骤
有限元法的基本步骤有限元法是一种用于求解较为复杂的实际工程问题的数值分析方法。
它将一个连续的物体或系统划分为许多小的单元,然后通过建立在这些单元上的数学方程来模拟和求解实际问题。
在这篇文章中,我们将探讨有限元法的基本步骤,并深入讨论其原理和应用。
1. 确定问题的边界和几何形状在使用有限元法求解实际问题之前,需要先确定问题的边界和几何形状。
通常情况下,问题的边界需要定义为固定边界或自由边界,以便在数学模型中进行处理。
问题的几何形状也需要被建模和描述,这样才能得到准确的计算结果。
2. 划分网格划分网格是有限元法中非常重要的一步。
网格划分是将问题的几何形状划分为一系列小的单元。
这些小单元称为有限元,它们可以是三角形、四边形或其他形状。
网格的划分需要根据问题的几何形状和求解精度来确定,并且需要保证各个有限元之间具有充分的连续性和相互联系,以确保模拟结果的准确性和可靠性。
3. 建立数学模型和方程在确定问题的边界和划分网格之后,下一步是建立与物理现象相关的数学模型和方程。
根据问题的具体情况,可以使用不同类型的方程,如静力学方程、热传导方程、流体力学方程等。
这些方程将物理现象转化为数学表达式,并可以通过有限元法进行求解。
4. 应用边界条件在建立数学模型和方程之后,需要应用边界条件。
边界条件可以是物体的固定边界条件,如固定端或自由端;也可以是物体的外部边界条件,如外力、温度等。
边界条件的正确应用对于求解实际问题非常重要,它们将影响模拟结果的准确性和可靠性。
5. 求解数学方程一旦建立了数学模型、划分网格并应用了边界条件,下一步就是使用数值方法求解数学方程。
有限元法将整个问题转化为一个求解代数方程组的问题,并通过迭代方法求解。
求解过程中需要根据初始条件和边界条件进行迭代计算,直到得到收敛的解。
通过以上的基本步骤,我们可以使用有限元法对复杂的实际工程问题进行数值求解。
有限元法的优点在于可以模拟各种不同的物理现象,并且可以对复杂的几何形状进行建模和求解。
有限元法基础2理论基础
有限元法基础
2.5 Ritz法
Ritz法应用中的难点 求解域比较复杂时,选取满足边界的试函数往往产生 难以克服的困难; 为了提高计算精度,需增加待定参数,这增加了求解 的复杂性;
有限元法同样建立在变分原理的基础上的,可以有效地 避免上述困难
有限元法基础
令
w1 v S
q
T W kv T d W W v Q d W Sq vq d ST kv n d 0
若使v 0 在Sq上,积分方程更简捷
有限元法基础
2.3 加权余量法
由于实际问题的复杂性精确解难于找到,往往求近似解 假设未知场函数u可用近似解表示
象的集合称为T的值域。 算子方程 设算子T的定义域为D,u D ,值域为T(D), f T ( D) , 等式 Tu f 称为算子方程。
有限元法基础
2.1 微分方程的等效积分形式 将算子方程及边界条件在各自的定义域中积分,有
对任意函数 v 有 对任意函数 v 有
W
v ( Au f )d W 0
W
v ( Bu ) d 0
有限元法基础
2.1 微分方程的等效积分形式
进一步改写为
W
v ( Au f )d W v ( Bu ) d 0
W
可以证明在积分方程对任意的v 都成立的话,则积分项 在域内每一点都满足算子方程和边界条件。 称为算子方程的等效形式 特点 v 和 v 是单值函数并且在定义域上可积 u的选择取决于算子A和B
2.4 变分原理
微分方程为
Au f B u W 0
在W内
利用线性自伴随算子的性质
(完整版)有限元法的基本原理
第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。
有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。
2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。
在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。
2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。
同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。
A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。
微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。
所以在以上两式中采用了矩阵形式。
以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。
北科大有限元资料2(判断题-课后思考题-知识点总结)
1、弹性力学和材料力学在研究对象上的区别?6答:材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件。
弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等,弹性力学的研究对象要广泛得多。
2、理想弹性体的五点假设?答:连续性假定、完全弹性假定、均匀性假定、各向同性假定、小位移和小变形的假定。
3、什么叫轴对称问题,采用什么坐标系分析?为什么?答:如果弹性体的几何形状、约束状态以及外载荷都对称于某一根轴,那么弹性体所有的位移、应变和应力也都对称于这根轴,这类问题称为轴对称问题。
对于轴对称问题,采用圆柱坐标。
当以弹性体的对称轴为Z轴时,则所有的应力分量,应变分量和位移分量都只与坐标r、z有关,而与θ无关。
4、梁单元和杆单元的区别?答:主要区别是受力不同,梁单元主要承受弯矩,杆单元主要承受轴向力。
杆单元通常用于网架、桁架的分析;而梁单元则基本上可以适用于各种情况。
5、薄板弯曲问题与平面应力问题的区别?答:平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷,变形发生在板面内;后者受力特点是当承受垂直于板面的载荷时,板在弯曲应力和扭转应力作用下将变成曲面板。
6、有限单元法结构刚度矩阵的特点?答:主对称元素总是正的;对称性;稀疏性;奇异性;非零元素呈带状分布。
7、有限单元法的收敛性准则?答:完备性要求,协调性要求。
完备性要求。
如果出现在泛函中场函数的最高阶导数是m阶,则有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式。
或者说试探函数中必须包括本身和直至m 阶导数为常数的项。
单元的插值函数满足上述要求时,我们称单元是完备的。
协调性要求。
如果出现在泛函中的最高阶导数是m阶,则试探函数在单元交界面上必须具有Cm-1连续性,即在相邻单元的交界面上应有函数直至m-1阶的连续导数。
当单元的插值函数满足上述要求时,我们称单元是协调的。
8、简述圣维南原理在工程实际中的应用?答:物体小部分边界上的面力是平衡力系,则近处产生显著应力,远处应力小到忽略不计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章有限元方程的求解方法
有限元方法是一种用于求解微分方程的数值近似方法,它将求解域(问题的区域)分割成许多小的子域,通过在每个子域上建立适当的数学模型,将微分方程转化为代数问题进行求解。
在有限元方法中,关键的一步是建立数学模型,即选择合适的试验函数空间和相应的权函数。
常用的有限元方法有有限元法和有限差分法,这两种方法都是在数学模型的基础上进行离散化处理,然后用有限元方程求解方法求解代数问题。
有限元法是一种建立在小区域上近似表示的方法,它将整个求解域分割成许多小的子域,每个子域内选取适当的试验函数来近似表示原问题的解。
这样,原问题就可以表示为求解子域上的代数问题。
有限元法的关键是选择适当的试验函数和权函数。
试验函数是用来近似表示原问题的解,而权函数则是用来衡量试验函数与原问题解之间的误差。
通常,试验函数和权函数都是在每个子域上选取的多项式函数。
有限差分法是一种将原问题的微分方程转化为代数方程的方法。
在有限差分法中,求解域被分割成格点,并在这些格点上定义函数的值。
通过使用各个格点上的函数值及其邻域的函数值,可以近似表示微分方程中的导数项。
然后,将微分方程转化为代数方程进行求解。
有限差分法的关键是选择合适的差分格式,这决定了在每个格点上求解代数方程时所使用的邻域函数值。
无论是有限元法还是有限差分法,最后都需要用数值算法求解得到的代数方程。
常用的数值算法有直接法和迭代法。
直接法是一种直接求解代数方程的方法,例如高斯消元法和LU分解法等。
迭代法是一种通过迭代求解逼近原问题解的方法,常用的迭代法有雅可比迭代法和高斯-赛德尔迭代法等。
在使用有限元方法求解微分方程时,步骤通常包括:建立数学模型,
选择合适的试验函数和权函数;将微分方程离散化处理,得到代数方程;
选择适当的数值算法求解代数方程;对得到的数值解进行后处理,例如计
算导数或积分等。
在实际应用中,有限元方法广泛应用于结构力学、流体力学、热传导
等领域的求解。
它具有灵活性和适用性强的特点,能够处理复杂的求解域
和边界条件。
同时,有限元方法也存在一些问题,如网格依赖性、数值稳
定性等。
因此,在具体应用中需要综合考虑问题的特点和求解方法的特点,选择合适的有限元方程求解方法。