LINGO的使用方法说明大全
LINGO使用说明比较简单
LINGO使用说明比较简单
第九步,分析和优化结果。
优化模型求解完成后,你可以通过结果显
示区中的结果表格和图表来分析和优化结果。
LINGO还提供了一些分析工具,如灵敏度分析和场景分析,帮助你深入理解模型的行为和性能。
第十步,保存和导出结果。
在 LINGO 中,你可以保存整个优化模型
及其求解结果,以供将来使用。
通过点击菜单栏中的“文件”选项,选择“保存”或“导出”,就可以将模型和结果保存为不同的文件格式,如LINGO模型文件(.lng)、Excel 文件(.xls)或文本文件(.txt)。
通过上述十个步骤,你可以使用LINGO软件完成一个优化模型的建立、求解和分析。
当然,LINGO还具备其他高级功能和应用,如混合整数规划、随机规划和非线性规划等,可以根据你的具体需求进行进一步学习和应用。
LINGO使用手册和官方网站上有更多详细的说明和案例,可以帮助你更好
地使用和理解LINGO软件。
LINGO软件的使用方法
2
2
答案
model: max=98*x1+277*x2-x1^2 -0.3*x1*x2-2*x2^2; x1+x2<100; x1<2*x2; @gin(x1); @gin(x2); end ※@gin()是调用的整数函数
第三节 在LINGO中使用集合
• 例题:某公司要决定下四个季度帆船生 产量。下四个季度需求量分别是40条, 60条,75条,25条。每季度生产能力40 条,生产费用400美元/条,如果加班生产 费用450美元/条,每季度库存费20美元/ 条。假定生产提前期为0,初始库存10条, 问如何安排生产总费用最小?
显式列举法 元素列表 隐式列举法
第四节 运算符及其优先级
• 算术运算符:+,-,*,/,^ • 逻辑运算符: #AND#,#OR#.#NOT#,#EQ#,#NE#,#GT#,# GE#,#LT#,#LE#,TRUE,FALSE • 关系运算符:<(即<=),=,>(即>=)
优先级
优先级 表: 最高 运算符 #NOT#,-(负号) ^ *,/ +,-(减号) #EQ#,#NE#,#GT#,#GE#, #LT#,#LE# #AND#,#OR# <,=,>
集合循环函数
• 用法:@function(setname:expression_list); • 具体如下:@for @sum @max @min
变量界定函数
• • • • @BND(L,X,U)-限制L<=X<=U @BIN(X)-限制X为0或1 @FREE(X)-取消对X的符号限制 @GIN(X)-限制X为整数
• • • • • • • • • 以model:开始,以end结束。 不区分大小写。 目标函数为max=。 语句以;结束。 数与变量之间的乘号不能省。 约束S.t.省略不写。 <与<=,>与>=是等价的。 非负约束可以不输入。 说明语句以!开头。
Lingo 数学软件的使用方法
仓库 10 6 7 17 4 12 4 19 4 13 16
客 11 客 12 客 13 客 14 客 15 客 16 客 17 客 18 客 19 客 20
3 6 4 10 12 19 8 7 10 4
2 17 18 19 15 18 16 9 8 8
4 8 16 2 15 11 8 8 3 14
Lingo 数学软件的使用方法
一、Lingo 使用介绍
LINGO 是用来求解线性和非线性优化问题的简易工具。LINGO 内置了一种建立最优化模型 的语言,可以简便地表达大规模问题,利用 LINGO 高效的求解器可快速求解并分析结果。 功能:可以求解非线性规划。也可以做线性规划、整数规划。 特点:运算速度快,允许使用集合来描述大规模的优化问题;
(2) 某仓库供应某客户全部需求量时的运费(单位:万元) 仓库 1 客1 客2 客3 客4 客5 客6 客7 客8 客9 客 10 9 14 6 15 6 19 11 19 4 5 仓库 2 10 16 9 12 8 14 4 20 9 13 仓库 3 2 10 2 18 4 19 8 13 15 9 仓库 4 6 4 1 9 3 3 5 15 6 10 仓库 5 7 10 20 17 7 9 13 16 9 15 仓库 6 15 18 14 18 11 4 20 20 13 1 仓库 7 仓库 8 15 14 20 12 6 15 20 3 1 16 1 1 5 2 2 5 16 8 7 7 仓库 9 18 16 20 18 5 20 8 6 17 20
@SMAX(x1,x2,x3,…,xn)
@FLOOR(x) 最接近 x 的整数 5. 变量定界函数 @BND(L,x,U) @BIN(x) @FREE(x) @GIN(x) 限制 x 的范围 L<=x<=U x为0或1 取消对 x 的限制 x 为整数
lingo入门教程(共55张)
3 3
A2
8 67
A3 4
7
B2
8 9
5 C2 6
T
第18页,共55页。
分析
(fēnxī)
6 A1 5 6
B1 6 C1
S
3 3
A2
8 67
A3 4
7
B2
8 9
5 C2 6
T
假设从S到T的最优行驶路线 P 经过城市C1, 则P中从S到C1的子路也一定 是从S到C1的最优行驶路线; 假设 P 经过城市C2, 则P中从S到C2的子路也一定是从S到C2的最优行驶路线. 因此, 为得到从S到T的最优行驶路线, 只需要先求出从S到Ck(k=1,2)的最 优行驶路线, 就可以方便地得到从S到T的最优行驶路线.
第19页,共55页。
分析
(fēnxī)
6 A1 5 6
B1 6 C1
S
3 3
A2
8 67
A3 4
7
B2
8 9
5 C2 6
T
此例中可把从S到T的行驶过程分成4个阶段,即 S→Ai (i=1,2 或3), Ai → Bj(j=1或2), Bj → Ck(k=1或2), Ck → T. 记d(Y,X)为城 市Y与城市X之间的直接距离(若这两个城市之间没有道路直 接相连,则可以认为直接距离为∞),用L(X)表示城市S到城市
L B2 minL A1 5, L A2 6, L A3 4 7 L A3 4; L C1 minL B1 6, L B2 8 15 L B2 8;
略2去),最小运量136.2275(吨公里)。
1
3
5
0
0
1
2
3
4
5
6
lingo软件实用手册
Lingo软件实用手册大庆石油学院数学系2005.6用途:可用于求解线性(LP)或非线性规划(NLP)问题,主要用于解大规模数学规划问题。
一.LINGO入门设有数学模型如下:Max 2x+3ys.t. 4x+3y<=103x+5y<=12x>0y>01.首先启动LINGO8.0屏幕显示如下:标记LINGO的外窗口是主框架窗口,主框架窗口的上面包含所有的命令菜单和命令工具栏;标记LINGO MODEL-LINGO1的子窗口是一个新的、空白的模型窗口:2.输入模型在空白的模型窗口中输入:3.求解模型1) 选择主框架窗口上面的LINGO菜单下的Solve命令;或者按工具栏的Solve button();2) LINGO开始编译模型,如有语法错误将返回一个错误的消息并指明错误出现的位置;如果通过编译,LINGO将激活Solver运算器3) 首先出现solver status 窗口,其作用是监控solver的进展和显示模型的维数等信息;寻求模型的最优解;4)计算完成后出现Solution Report窗口显示模型解的详细信息;Objective value: 目标函数值Variable value :变量值Reduced Cost:在max模型中,相应变量的reduced cost值表示当该变量每增加一个单位时目标函数减少的量。
本例中此值均为0SLACK OR SURPLUS:给出约束条件的松驰变量或剩余变量的值;小于等于约束为松驰变量(SLACK );大于等于约束为剩余变量(SURPLUS )DUAL PRICES:给出对偶价格的值,表示约束条件右端的常数项每增加一个单位,目标函数相应获得的改变量。
4.注意事项:1) 每一个规划都以“MODEL:”开始, 又以“END”结束, 也可以省略此结构;2) 目标函数必须由“min =”或“max =”开头。
3) 可以用<表示<=或<;用>表示>=或>;Lingo无严格小于,欲使a<b,可以表示成a+ <b,适当选取小的正常数)4) LINGO的每一语句以分号结束;5) 注释以叹号(!)开始,以分号(;)结束;6) LINGO 不区分变量名的大小写,变量名由字母数字下划线组成,第一个字符必须是字母,变量名最长为32个字符;7) LINGO编辑器用蓝色显示LINGO关键字,绿色显示注释,其他文本用黑色;匹配的括号用红色高亮度显示。
lingo使用说明
LINGO 使用指南LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口: 外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
使用model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
lingo基本用法
lingo基本用法以下是 9 条关于“lingo 基本用法”的内容:1. 嘿,你知道吗,lingo 里的变量定义可简单啦!就像给东西起个名字一样自然。
比如说,咱要算一堆苹果的数量,那就可以设个变量叫apple_num 呀,这不就清楚明白啦!2. 哇塞,lingo 的约束条件就像是给问题加上规矩。
就好比说,规定一个房间最多能进 10 个人,这就是个约束呀。
比如限制某种资源不能超过多少,lingo 就能很好地处理呢!3. 哎呀呀,lingo 的目标函数那可重要了!这就好比是你要去追求的目标。
比如你想让利润最大化,那目标函数就是让利润相关的表达式达到最大呀!像算怎么卖东西能赚最多钱,lingo 就能帮你找到答案哟!4. 嘿,lingo 的表达式书写也不难呢!就像写个数学式子一样。
比如 2x +3y 这么简单明了。
要计算一些关系,用它来写表达式再合适不过了!5. 哇哦,lingo 里的集合定义多有意思啊!像是把一群相关的东西归到一起。
比如把不同类型的商品归成一个集合,然后对它们进行统一的处理呀,是不是很方便呀?6. 哎呀,lingo 的求解命令一敲,就等着答案出来啦!就像你按下按钮,机器就开始工作一样。
你看,多神奇啊,一下子就知道结果了呢!7. 嘿,lingo 还能处理复杂的数据呢!就像一个聪明的小助手,不管多乱的数据它都能理清楚。
比如算一大堆乱七八糟数字的关系,lingo 绝对能应付得来呀!8. 哇,lingo 的模型建立虽然要动点脑筋,但一旦建好了,那可太好用啦!就跟盖房子一样,辛苦一点,盖好了住着就舒服啦。
你想想,自己建的模型能用起来,多有成就感呀!9. 哎呀呀,掌握了 lingo 的基本用法,那真的是能解决好多问题呢!不管是算数量还是优化方案,都不在话下。
所以呀,还不赶紧去学学,让它为你服。
LINGO基本用法
LINGO基本用法1、概况 (1)2、LINGO的基本用法 (1)3、用LINGO编程语言建立模型 (2)4、建立LINGO/LINDO优化模型需要注意的几个基本问题 (3)5、对求解结果的分析 (3)LINGO基本用法LINGO是专门用来求解各种规划问题的软件包,其功能十分强大,是求解优化模型的最佳选择。
1、概况LINGO是美国LINDO系统公司开发的求解数学规划系列软件中的一个,它的主要功能是求解大型线性、非线性和整数规划问题,LINGO分为Demo、Solve Suite、Super、Hyper、Industrial、Extended等六种不同版本。
只有Demo版是免费的。
LINGO的不同版本对模型的变量总数,非线性变量的数目,整形变量数目和约束条件的数量作出了不同的限制。
LINGO的主要功能:(1) 既能求解线性规划问题,也有较强的求解非线性规划问题的能力;(2) 输入模型简练直观(3) 运行速度快,计算能力强(4) 内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述较大规模的优化模型(5) 将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型(6) 能方便地与Excel,数据库等其他软件交换数据2、LINGO的基本用法通常一个优化模型由下列三部分所组成:(1) 目标函数:一般表示成求某个数学表达式的最大值或最小值。
(2) 决策变量:目标函数值取决于哪些变量(3) 约束条件:对变量附加一些条件限制(通常用等式或不等式表示)注:LINGO默认所有决策变量都非负,因而变量非负条件可以不必输入。
LINGO的语法规定:(1) 求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2) 每个语句必须以分号";"结束,每行可以有多个语句,语句可以跨行;(3) 变量名称必须以字母(A~Z)开头,由字母,数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4) 可以给语句加上标号,例如[OBJ] MAX= 20*X1+300*X2;(5) 以!开头,以;号结束的语句是注释语句;(6) 如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7) LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略。
LINGO使用说明(比较简单)
Lingo介绍Lingo是美国LINDO系统公司(Lindo Symtem Inc)开发的求解数学规划系列软件中的一个(其他软件为LINGDO,GINO,What’s Best等),它的主要功能是求解大型线性、非线性和整数规划问题,目前的版本是lingo11.0。
lingo分为Demo、solve suite、hyper、industrial、extended等六类不同版本,只有Demo版本是免费的,其他版本需要向LINDO系统公司(在中国的代理商)购买,Lingo的不同版本对模型的变量总数、非线性变量个数、整型变量个数和约束条件的数量做出不同的限制(其中extended版本无限制)。
Lingo的主要功能特色为:(1)既能求解线性规划,也有较强的求解非线性规划的能力;(2)输入模型简练直观;(3)运行速度快、计算能力强;(4)内置建模语言,提供几十种内部函数,从而能以较少语句,较直观的方式描述较大规模的优化模型;(5)将集合的概念引入编程语言,很容易将实际问题转换为Lingo语言;(6)能方便地与excel、数据库等其他软件交换数据。
学校图书馆40本《lingo和excel在数学建模中的应用》,袁新生、邵大宏、郁时炼主编,科学出版社Lingo程序设计简要说明在数学建模中会遇到如规划类的题型,在这种模型中总存在着一个目标,并希望这个目标的取值尽可能的大或小,同时与这个目标有关的一系列变量之间存在一些约束。
在构造出目标函数和约束条件的表达式后,我们需要对求出这个最值和各变量的取值。
一般我们用LINGO来对模型进行求解,本文将通过举一个简单的例子,围绕这个例子逐步学习LINGO 的使用。
LINGO只是一个求解工具,我们主要的任务还是模型的建立!当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model –LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。
第三章 LINGO软件使用入门及命令集
第三章 LINGO软件使用入门LINGO是美国LINDO系统公司开发的一套专门用于求解最优化问题的软件.它为求解最优化问题提供了一个平台,主要用于求解线性规划、非线性规划、整数规划、二次规划、线性及非线性方程组等问题.它是最优化问题的一种建模语言,包含有许多常用的函数供使用者编写程序时调用,并提供了与其他数据文件的接口,易于方便地输入,求解和分析大规模最优化问题,且执行速度快.由于它的功能较强,所以在教学、科研、工业、商业、服务等许多领域得到了广泛的应用.§3.1 LINGO操作界面简介在Windows操作系统下启动LINGO软件,屏幕上首先显示如图1.1所示的窗口.图1.1图1.1中最外层的窗口是LINGO软件的主窗口(LINGO软件的用户界面),所有其他窗口都在这个窗口之内.主窗口有:标题栏、菜单栏、工具栏和状态栏.目前,状态栏最左边显示的是“Ready”,表示准备就绪,右下角显示的是当前时间,时间前面是当前光标的位置“Ln 1,Col 1”(即1行1列).将来用户可以用选项命令(LINGO|Options|Interface菜单命令)决定是否需要显示工具栏和状态栏.LINGO有5个主菜单:●File(文件)●Edit(编辑)●LINGO(LINGO系统)●Windows(窗口)●Help(帮助)这些菜单的用法与Windows下其他应用程序的标准用法类似,下面只对主菜单中LINGO系统的主要命令进行简要介绍.LINGO系统(LINGO)的主菜单●LINGO|Solve(Ctrl-S)LINGO|Solve(Ctrl-S)(求解)命令对当前模型进行编译并求解.如果当前模型输入有错误,编译时将报告错误.求解时会显示一个求解器运行状态窗口.●LINGO|Solution(Ctrl-O)LINGO|Solution(Ctrl-O)(解答)命令显示当前解.●LINGO|Range(Ctrl-R)LINGO|Range(Ctrl-R)(灵敏度分析)命令显示当前解的灵敏度分析结果.(你必须在此之前求解过当前模型)●LINGO|Options(Ctrl-I)LINGO|Options(Ctrl-I)(选项)命令将打开一个含有7个选项卡的对话框窗口,你可以通过它修改LINGO系统的各种控制参数和选项.修改完以后,你如果单击“应用”按钮,则新的设置马上生效;如果单击“OK”按钮,则新的设置马上生效,并且同时关闭该窗口;如果单击“Save”按钮,则将当前设置变为默认设置,下次启动LINGO时这些设置仍然有效;如果单击“Default”按钮,则恢复LINGO系统定义的原始默认设置;如果单击“Cancel”按钮将废弃本次操作,退出对话框;单击“Help”按钮将显示本对话框的帮助信息.●LINGO|Generate和LINGO|PictureLINGO|Generate和LINGO|Picture命令都是在模型窗口下才能使用,他们的功能是按照LINGO模型的完整形式分别以代数表达式形式和矩阵图形形式显示目标函数和约束.●LINGO|Debug(Ctrl+D)LINGO|Debug(Ctrl+D)命令分析线性规划无解或无界的原因,建议如何修改●LINGO|Model Statistics(Ctrl+E)LINGO|Model Statistics(Ctrl+E)命令显示当前模型的统计信息.●LINGO|Look(Ctrl+L)LINGO|Look(Ctrl+L)命令显示当前模型的文本形式,显示时对所有行按顺序编号.图1.2给出了工具栏的简要功能说明.图1.2当前光标所在的窗口(窗口标题栏上标有“LINGO Model-LINGO1”),就是模型窗口(model windows),也就是用于输入LINGO优化模型(即LINGO程序)的窗口.§3.2 LINGO模型的基本特征LINGO模型(程序)从LINGO模型窗口输入,它以语句“MODEL:”开始,以语句“END”结束.它是由一系列语句组成,每个语句都是以分号“;”结束,语句是组成LINGO模型的基本单位.每行可以写多个语句,为了保持模型的可读性,最好一行只写一个语句,并且按照语句之间的嵌套关系对语句安排适当的缩进,增强层次感.以感叹号“!”开始的语句是注释语句(注释语句也需要以分号“;”结束).LINGO模型(程序)一般由5个部分(或称5段)组成:(1)集合段(SETS):这部分要以“SETS:”开始,以“ENDSETS”结束,作用在于定义必要的集合变量(SET)及其元素(member,含义类似于数组的下标)和属性(attribute,含义类似于数组).格式有基本集和派生集两种.基本集:Setname(集合变量名)[/member_list(元素列表)/][:attribute_list(属性列表)];元素列表可以全部一一列出,也可以用格式“/元素1..元素N/”列出,例如SETS:STUDENTS/1,2,3,4,5/:NAME,AGE;ENDSETSSETS:STUDENTS/1..5/:NAME,AGE;ENDSETS派生集:Setname(parent_set_list(源集列表))[/member_list/][:attribute_list];例如SETS:PRODUCT/A B/;MACHINE/M N/;WEEK/1..2/;ALLOWED( PRODUCT,MACHINE,WEEK);ENDSETS列表可以用逗号“,”分开,也可以用空格分开.(2)数据段(DATA):这部分要以“DATA:”开始,以“ENDDATA”结束,作用在于对集合的属性(数组)输入必要的常数数据.格式为:attribute_list(属性列表)=value_list(常数列表);例如SETS:SET1 /A, B, C/: X, Y;ENDSETSDATA:X = 1 2 3;Y = 4 5 6;ENDDATA(3)初始化段(INIT):这部分要以“INIT:”开始,以“ENDINIT”结束,作用在于对集合的属性(数组)给出初值.格式为:attribute_list(属性列表)=value_list(常数列表);与数据段的用法类似.(4)计算段(CALC):这部分要以“CALC:”开始,以“ENDCALC”结束,作用在于对一些原始数据进行计算处理.因为在实际问题中,输入的数据往往是原始数据,不一定能在模型中直接使用,可以在这个段对这些原始数据进行一定的“预处理”,得到模型中真正需要的数据.在计算段中语句是顺序执行的.(5)目标与约束段:这部分没有段的开始和结束标记,作用在于给定目标函数与约束条件.可见除这一段外,其他4个段都有明确的段标记.这一段是模型的主要部分,其他段是为这一段服务的.其他四段可以没有,这一段必须要有.否则不称其为模型.这一段一般要用到LINGO的运算符和各种函数.§3.3 LINGO的运算符和函数LINGO包含有大量的运算符和函数,供程序(建立优化模型)调用,其功能很强.充分利用这些函数,对解决问题将是非常方便的.下面给出部分函数及简要功能介绍,全部函数及详细功能说明可进一步参考LINGO的使用手册.一、运算符及其优先级LINGO的运算符有三类:算数运算符、逻辑运算符和关系运算符.1.算术运算符:LINGO中的算术运算符有以下5种:+(加法),-(减法或负号),*(乘法),/(除法),∧(求幂).算术运算是数与数之间的运算,运算结果仍是数.2.逻辑运算符:LINGO中的逻辑运算符有以下9种,可以分成两类:(1)#AND#(与),#OR#(或),#NOT#(非):这三个运算是逻辑值之间的运算,也就是它们操作的对象本身必须已经是逻辑值或逻辑表达式,计算结果也是逻辑值.(2)#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于):这6个操作实际上是“数与数之间”的比较,也就是它们操作的对象本身必须是两个数,而逻辑表达式计算的结果是逻辑值.3.关系运算符:LINGO中的关系运算符有以下3种:<(即<=,小于等于),=(等于),>(即>=,大于等于)这三个运算符虽然也是“数与数之间”的比较,但在LINGO中只用来表示优化模型的约束条件,所以不是真正意义上的运算.这些运算符的优先级如表3.1所示(同一优先级按左到右的顺序执行;如果有括号“()”,则括号内的表达式优先进行计算)表3.1二、基本的数学函数在LINGO中写程序时可以调用大量的内部函数,这些函数以“@”符号打头(类似调用命令).LINGO中数学函数的用法与其它语言中的数学函数的用法类似,主要有以下函数:@ABS(X):绝对值函数,返回X的绝对值.@COS(X):余弦函数,返回X的余弦值(X的单位是弧度).@EXP(X):指数函数,返回e x的值.@FLOOR(X):取整函数,返回X的整数部分(向最靠近0的方向取整).@LGM(X):返回X的伽马(Gamma)函数的自然对数值.@LOG(X):自然对数函数,返回X的自然对数值.@MOD(X,Y):模函数,返回X对Y取模的结果.@POW(X,Y):指数函数,返回X Y的值.@SIGN(X):符号函数,返回X的符号值(X<0时返回-1,X>=0返回1).@SIN(X):正弦函数,返回X的正弦值.@SMAX(list):最大值函数,返回列表(list)中的最大值.@SMIN(list):最小值函数,返回列表(list)中的最小值.@SQR(X):平方函数,返回X的平方值.@SQRT(X):平方根函数,返回X的正的平方根的值.@TAN(X):正切函数,返回X的正切值.三、集合循环函数集合循环函数是指对集合上的元素(下标)进行循环操作的函数,主要有@FOR,@MAX,@MIN,@SUM,@PROD五种,其用法如下:@function(setname[(set_index_list)[|conditional_qualifier]]:expression_list);其中:Function是集合函数名;Setname是集合名;set_index_list是集合索引列表(不需要使用索引时可以省略);|conditional_qualifier是用逻辑表达式给出的过滤条件(无条件时可以省略);:expression_list是一个表达式(对@FOR函数,可以是一组表达式).下面简要介绍其作用.@FOR(setname[(set_index_list)[|cond_qualifier]]:exp_list):对集合setname中的每个元素独立地生成由exp_list描述的表达式(通常是优化问题的约束).@MAX(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的最大值.@MIN(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的最小值.@SUM(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的和.@PROD(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的积.四、集合操作函数集合操作函数是指对集合进行操作的函数,主要有@INDEX,@IN,@WRAP,@SIZE四种,下面简要介绍其作用.@INDEX([set_name,]primitive_set_element):返回元素primitive_set_element在集合set_name中的索引值(即按定义集合时元素出现顺序的位置编号).如果省略集合名set_name,LINGO按程序定义的集合顺序找到第一个含有元素primitive_set_element的集合,并返回索引值.如果在所有集合中均没有找到该元素,会给出出错信息.@IN(set_name,primitive_index_1[,primitive_index_2 ...]):判断一个集合中是否含有索引值.集合set_name 中包含由索引primitive_index_1[,primitive_index_2...]所表示的对应元素,则返回1(逻辑值“真”),否则返回0(逻辑值“假”).@WRAP(INDEX,LIMIT):返回J=INDEX-K*LIMIT,其中J 位于区间[1,LIMIT],K 为整数.当INDEX 位于区间[1,LIMIT]内时直接返回INDEX .相当于数学上用INDEX 对LIMIT 取模函数的值+1,即@WRAP(INDEX,LIMIT)=@MOD(INDEX,LIMIT)+1.此函数对LIMIT <1无定义.可以想到,此函数的目得之一是防止集合的索引值越界.@SIZE(set_name):返回集合set_name 的模,即元素的个数.五、变量定界函数变量定界函数是对变量的取值范围加以限制的函数.主要有@BIN, @BND, @FREE, @GIN 四种,下面简要介绍其作用.@BIN(variable):限制变量variable 为0或1. @BND(lower_bound, variable, upper_bound):限制lower_bound <=variable <=upper_bound@FREE(variable):取消对变量variable 的符号限制(即可取负数、0或正数). @GIN(variable):限制变量variable 为整数.六、财务会计函数财务会计函数是用于计算净现值的函数.主要有@FPA, @FPL 两种,下面简要介绍其作用. @FPA(I,N):返回若干时段单位等额回收净现值.其中单位时段利率为I,时段N 个,即∑=+=Nn nI N I FPA 1)1(1),(@@FPL(I,N):返回一个时段单位回收净现值.其中单位时段利率为I,时段N ,即NI N I FPL )1(1),(@+=七、概率中的相关函数概率中的相关函数是涉及到概率论和随机过程中的一些函数.主要有以下函数: @PSN(X):返回标准正态分布的分布函数在X 点的取值.@PSL(X):标准正态的线性损失函数,即返回MAX(0,Z-X)的期望值,其中Z 为均值为A的Poisson随机变量.@PPS(A,X):返回均值为A的Poisson分布的分布函数在X点的取值.@PPL(A,X):Poisson分布的线性损失函数,即返回MAX(0,Z-X)的期望值,其中Z为标准正态随机变量.@PBN(P,N,X):返回参数为(N,P)的二项分布的分布函数在X点的取值.@PHG(POP,G,N,X):返回总共有POP个球,其中G个是白球,随机地从中取出N个球,白球不超过X的概率.@PFD(N,D,X):返回自由度为N和D的F分布的分布函数在X点的取值.@PCX(N,X):返回自由度为N的2分布的分布函数在X点的取值.@PTD(N,X):返回自由度为N的t分布的分布函数在X点的取值.@PEB(A,X):返回当到达负荷(强度)为A,服务系统有X个服务器且允许无穷排队时的Erlang繁忙概率.@PEL(A,X):返回当到达负荷(强度)为A,服务系统有X个服务器且不允许排队时的Erlang繁忙概率.@PFS(A,X,C):返回当负荷上限为A,顾客数为C,并行服务器数量为X时,有限源的Poisson服务系统得等待顾客数的期望值.@QRAND(SEED):返回0与1之间的多个拟均匀随机数,其中SEED为种子,默认时取当前计算机时间为种子.该函数只能用在数据段(DATA-ENDDATA).@RAND(SEED):返回0与1之间的一个伪均匀随机数,其中SEED为种子.八、文件输入输出函数文件输入输出函数是指通过文件输入数据和输出结果的函数.主要有以下函数:@FILE('filename'):这个函数提供LINGO与文本文件的接口,用于引用其它ASCII码或文本文件中的数据,其中filename为存放数据的文件名(包括路径,没有指定路径时表示当前目录),该文件中记录之间必须用符号“~”分开.主要用在集合段和数据段,通过文本文件输入数据.@TEXT(['filename']):用于数据段中将解答结果送到文本文件filename中.@ODBC(['data_source'[,'table_name'[,'col_1'[, 'col_2'...]]]]):这个函数提供LINGO与ODBC(open data base connection,开放式数据库连接)的接口,用于集合段和数据段中引用其它数据库数据或将解答结果送到数据库中.其中data_source是数据库名,table_name是数据表名,col_i是数据列名(数据域名).@OLE('spreadsheet_file'[,range_name_list]):这个函数提供LINGO与OLE(object linking and embedding,对象链接与嵌入)的借口,用于集合段、数据段和初始段中输入和输出数据库.其中spreadsheet_file是文件名,range_name_list是文件中包含数据的单元范围.@POINTER(N):在Windows 下使用LINGO 的动态链接库(dynamic link library ,DLL ),直接从共享的内存中传送数据.§3.4 LINGO 软件求解案例一、生产管理问题1.问题实例某厂有5种设备A 1,A 2,…,A 5,用来加工7种零部件B 1,B 2,…,B 7,每种设备的数量、每种零部件的单位成本及所需各设备的加工工时(以小时计)见表1表1在其后的半年中,工厂有设备检修计划(停工检修时间一个月)见表2 表2工厂在半年中有订单(必须按时交货)见表3 表3 每种零部件库存最多可到100件,现每种零部件有库存80件,库存费用每件每月为0.5元,,要求到六月底每种零部件有存货50件,每种零部件生产至少50件.工厂每周工作5天,每天2班,每班8小时.试回答如下问题:(1) 工厂如何安排各月份各种零部件的加工数量? (2) 单位成本有10%的变化,对计划有什么影响? (3) 设备各增加1台对计划有什么的影响. 2.模型建立设: ij a 为第j 种零部件在第i 种设备上的单位加工工时)7,,2,1,5,,2,1( ==j i ;ik b 为第i 种设备在第k 月的数量)6,,2,1,5,,2,1( ==k i ; kj d 为第k 月第j 种零部件的顶单数量)7,,2,1,6,,2,1( ==j k ; j c 为第j 种零部件的单位收益)7,,2,1( =j ;kj x 为第k 月第j 种零部件的生产数量)7,,2,1,6,,2,1( ==j k ; kj s 为第k 月末第j 种零部件的库存数量)7,,2,1,6,,2,1( ==j k ; 800=j s 为初始库存)7,,2,1( =j假设每月以20天计,有以下模型:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥≥==≥=≤====-+===≤+-=====∑∑∑∑∑)(7,,2,1,6,,2,1,0,07,,2,1,6,,2,1,50)(7,,2,1,100)(7,,2,1,50)(7,,2,1,6,,2,1,)(6,,2,1,5,,2,13205.0min6(617161617171非负约束生产要求个月末的库存第种零部件的库存月第第种设备的有效工时月第第费用目标))(,库存约束 j k s x j k x j s j s j k d x s s k i b x a sx ckj kj kj kjjkj kj j k kj ik j kj ij k k j kjj kj jj k i k3.模型求解利用LINGO 软件计算,输入model: sets:cp/1..7/:c; yf/1..6/:; sb/1..5/:;sl1(yf,cp):x,d,s; sl2(sb,cp):a;sl3(sb,yf):b; endsets data:a=0.5 0.7 0.0 0.0 0.3 0.2 0.5 0.1 0.2 0.0 0.3 0.0 0.6 0.0 0.2 0.0 0.8 0.0 0.0 0.0 0.6 0.05 0.03 0 0.07 0.1 0 0.08 0 0 0.01 0 0.05 0 0.05; b=3 4 4 4 3 4 2 2 1 1 1 2 3 1 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1;d=250 500 150 150 400 100 100 300 250 100 0 200 150 100 150 300 0 0 250 200 100 100 150 200 250 100 0 100 0 100 250 100 500 150 0 250 250 100 300 550 250 100; c=100 60 80 40 110 90 30; enddatamin=@sum(sl1(k,j):c(j)*x(k,j)+0.5*s(k,j));@for(yf(k):@for(sb(i):@sum(cp(j):a(i,j)*x(k,j))<=320*b(i,k))); @for(yf(k)|k#gt#1:@for(cp(j):s(k,j)=s(k-1,j)+x(k,j)-d(k,j))); @for(cp(j):s(1,j)=80+x(1,j)-d(1,j)); @for(cp(j):s(6,j)=50);@for(sl1(k,j):s(k,j)<=100); @for(sl1(k,j):x(k,j)>=50); end(1)计算结果有:目标函数:590580 z(2)目标的灵敏度分析:Objective Coefficient Ranges(目标系数的灵敏度分析)Current Allowable Allowable Variable Coefficient Increase Decrease 变量目前系数允许增加范围允许减少范围X( 1, 1) 100.0000 INFINITY 0.5000000 X( 1, 2) 60.00000 INFINITY 0.5000000X( 1, 3) 80.00000 INFINITY 0.5000000X( 1, 4) 40.00000 INFINITY 1.500000X( 1, 5) 110.0000 INFINITY 0.5000000X( 1, 6) 90.00000 INFINITY 0.5000000X( 1, 7) 30.00000 INFINITY 0.5000000X( 2, 1) 100.0000 0.5000000 0.5000000X( 2, 2) 60.00000 0.5000000 0.5000000X( 2, 3) 80.00000 0.5000000 1.000000X( 2, 4) 40.00000 INFINITY 1.000000X( 2, 5) 110.0000 0.5000000 0.5000000X( 2, 6) 90.00000 0.5000000 0.5000000X( 2, 7) 30.00000 0.5000000 0.5000000X( 3, 1) 100.0000 0.5000000 0.5000000X( 3, 2) 60.00000 0.5000000 0.5000000X( 3, 3) 80.00000 INFINITY 0.5000000X( 3, 4) 40.00000 INFINITY 0.5000000X( 3, 5) 110.0000 0.5000000 0.5000000X( 3, 6) 90.00000 0.5000000 1.000000X( 3, 7) 30.00000 0.5000000 0.5000000X( 4, 1) 100.0000 0.5000000 1.000000X( 4, 2) 60.00000 0.5000000 0.5000000X( 4, 3) 80.00000 0.5000000 0.5000000X( 4, 4) 40.00000 0.5000000 0.5000000X( 4, 5) 110.0000 0.5000000 0.5000000X( 4, 6) 90.00000 INFINITY 0.5000000X( 4, 7) 30.00000 0.5000000 1.000000X( 5, 1) 100.0000 INFINITY 0.5000000X( 5, 2) 60.00000 0.5000000 0.5000000X( 5, 3) 80.00000 0.5000000 0.5000000X( 5, 4) 40.00000 0.5000000 0.5000000X( 5, 5) 110.0000 0.5000000 0.5000000X( 5, 6) 90.00000 0.5000000 0.5000000X( 5, 7) 30.00000 INFINITY 0.5000000X( 6, 1) 100.0000 0.5000000 INFINITYX( 6, 2) 60.00000 0.5000000 INFINITYX( 6, 3) 80.00000 0.5000000 INFINITYX( 6, 4) 40.00000 0.5000000 INFINITYX( 6, 5) 110.0000 0.5000000 INFINITYX( 6, 6) 90.00000 0.5000000 INFINITYX( 6, 7) 30.00000 0.5000000 INFINITY 其中INFINITY是无穷.从以上灵敏度分析可见,提高10%,有超出允许范围的,所以对计划有影响.(3)约束条件的灵敏度分析:Righthand Side Ranges(右边常数项的灵敏度分析)Row Current Allowable AllowableRHS Increase Decrease行目前常数项允许增加范围允许减少范围2 960.0000 INFINITY 450.00003 640.0000 INFINITY 488.00004 960.0000 INFINITY 840.00005 320.0000 INFINITY 258.00006 320.0000 INFINITY 300.80007 1280.000 INFINITY 836.00008 640.0000 INFINITY 473.00009 320.0000 INFINITY 138.000010 320.0000 INFINITY 268.400011 320.0000 INFINITY 305.500012 1280.000 INFINITY 830.000013 320.0000 INFINITY 110.000014 960.0000 INFINITY 830.000015 320.0000 INFINITY 267.000016 320.0000 INFINITY 302.000017 1280.000 INFINITY 1035.00018 320.0000 INFINITY 205.000019 960.0000 INFINITY 760.000020 320.0000 INFINITY 282.000021 320.0000 INFINITY 308.500022 960.0000 INFINITY 670.000023 640.0000 INFINITY 525.000024 960.0000 INFINITY 720.000025 320.0000 INFINITY 253.500026 320.0000 INFINITY 290.000027 1280.000 INFINITY 655.000028 640.0000 INFINITY 270.000029 640.0000 INFINITY 410.000030 320.0000 INFINITY 206.000031 320.0000 INFINITY 283.5000 从以上灵敏度分析可见,提高1台,没有超出允许范围的,所以对计划没有影响.也可以将数据与模型分离,先准备数据文件exam01.ldt:!单耗;0.5 0.7 0.0 0.0 0.3 0.2 0.50.1 0.2 0.0 0.3 0.0 0.6 0.00.2 0.0 0.8 0.0 0.0 0.0 0.60.05 0.03 0 0.07 0.1 0 0.080 0 0.01 0 0.05 0 0.05~!设备数量;3 4 4 4 3 42 2 1 1 1 23 1 3 3 3 21 1 1 1 1 11 1 1 1 1 1~!需求;250 500 150 150 400 100 100300 250 100 0 200 150 100150 300 0 0 250 200 100100 150 200 250 100 0 1000 100 250 100 500 150 0250 250 100 300 550 250 100~!单位成本;100 60 80 40 110 90 30~再写程序如下:model:sets:cp/1..7/:c;yf/1..6/:;sb/1..5/:;sl1(yf,cp):x,d,s;sl2(sb,cp):a;sl3(sb,yf):b;endsetsdata:a=@file('exam01.ldt');b=@file('exam01.ldt');d=@file('exam01.ldt');c=@file('exam01.ldt');enddatamin=@sum(sl1(k,j):c(j)*x(k,j)+0.5*s(k,j));@for(yf(k):@for(sb(i):@sum(cp(j):a(i,j)*x(k,j))<=320*b(i,k)));@for (yf(k)|k#gt#1:@for (cp(j):s(k,j)=s(k-1,j)+x(k,j)-d(k,j))); @for (cp(j):s(1,j)=80+x(1,j)-d(1,j)); @for (cp(j):s(6,j)=50);@for (sl1(k,j):s(k,j)<=100); @for (sl1(k,j):x(k,j)>=50); end二、下料问题1.问题实例有某种材料一根长19米.现需用其切割4米长毛坯50根、5米长毛坯10根、6米长毛坯20根、8米长毛坯15根.如何切割使其用料最省?要求切割模式不能超过3种. 2.模型建立设:4,3,2,1=i 分别表示4米长,5米长,6米长,8米长的毛坯;i a 为第i 种毛坯的长度)4,3,2,1(=i ; i b 为第i 种毛坯的需要量)4,3,2,1(=i ;j x 为第j 种切割模式所用的材料数量)3,2,1(=j ;ij r 为第j 种切割模式切割第i 种毛坯的数量)3,2,1,4,3,2,1(==j i .一种合理的切割模式应满足:其余料长度不应该大于或等于需要切割毛坯的最小长度.于是有模型如下⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥≥=≥=≤=≥=∑∑∑∑====3,2,1,4,3,2,1,0,0(3,2,1,16(3,2,1,19(4,3,2,1,(min 41413131j i r x j r a j r a i b x r xz ij ji ij i i ij i i j j ij j j且整数合理的下料模式所下毛坯的总长所下毛坯的需要量用料目标))))3.模型求解为了便于运算,我们先来缩小可行域.由于3种切割模式的排列顺序是无关紧要的,所以不妨增加以下约束:321x x x ≥≥又注意到用料的总量有明显的上界和下界.首先,无论如何,用料总量不可能少于2619158206105504=⎥⎥⎤⎢⎢⎡⨯+⨯+⨯+⨯其次,考虑一种特殊的下料计划:模式1:切割成4根4米钢管,需13根;模式2:切割成1根5米和2根6米钢管,需10根;模式3:切割成2根8米钢管,需8根.这样需要13+10+8=31于是可得到解的一个上界.所以又可增加约束:3126321≤++≤x x x利用LINGO 软件计算,输入 model: sets:needs/1..4/:a,b; cuts/1..3/:x;patterns(needs,cuts):r; endsets data: a=4 5 6 8; b=50 10 20 15; enddatamin=@sum(cuts(j):x(j));!用料目标;@for(needs(i):@sum(cuts(j):x(j)*r(i,j))>b(i));!需要量要求; @for(cuts(j):@sum(needs(i):a(i)*r(i,j))<19);!材料总长; @for(cuts(j):@sum(needs(i):a(i)*r(i,j))>16);!合理模式; @sum(cuts(j):x(j))>26;!用料下限; @sum(cuts(j):x(j))<31;!用料上限;@for(cuts(j)|j#lt#@size(cuts):x(j)>x(j+1));!人为约束; @for(cuts(j):@gin(x(j)));!整数约束;@for(patterns(i,j):@gin(r(i,j)));!整数约束; end经过LINGO 求解,得到输出如下:Objective value: 28.00000 Variable Value Reduced Cost X( 1 ) 10.00000 0.000000X( 2 ) 10.00000 2.000000X( 3 ) 8.000000 1.000000R( 1, 1) 3.000000 0.000000R( 1, 2) 2.000000 0.000000R( 1, 3) 0.000000 0.000000R( 2, 1) 0.000000 0.000000R( 2, 2) 1.000000 0.000000R( 2, 3) 0.000000 0.000000R( 3, 1) 1.000000 0.000000R( 3, 2) 1.000000 0.000000R( 3, 3) 0.000000 0.000000R( 4, 1) 0.000000 0.000000R( 4, 2) 0.000000 0.000000R( 4, 3) 2.000000 0.000000即按照模式1、2、3分别切割10、10、8根材料,使用材料总根数为28根.第一种切割模式下1根材料切割3根4米的和1根6米的;第二种切割模式下1根材料切割2根4米的、1根5米的和1根6米的;第三种切割模式下1根材料切割2根8米的.三、投资组合问题1.问题实例有三种股票A,B,C,其前12年的价值每年的增长情况如表所示表中还给出了相应年份的500种股票的价格指数的增长情况.假设目前你有一笔资金准备投资这三种股票,并期望年收益率达到15%,那么你应如何投资? 2.模型建立设:3,2,1=i 分别表示表示A,B,C 三种股票;i R 为第i 种股票的价值)3,2,1(=i ;ij R 为第i 种股票第j 年的价值)12,,2,1,3,2,1( ==j i ; M 为指数;j M 为第j 年的指数)12,,2,1( =j ;i x 为投资第i 种股票比例)3,2,1(=i .股票指数反映的是股票市场的大势信息,对每只股票的涨跌是有影响的.假设每只股票的收益与股票指数成线性关系.即i i i i e M b a R ++=或12,,2,1,3,2,1, ==++=j i e Mb a R ij jij ij ij其中ij ij b a ,是待定系数,ij e 是一个随机误差,其均值为0)(=ij e E ,方差为)(2ij ij e D s =,此外假设随机误差ij e 与其他股票和股票指数都是独立的,所以0)()(==j ij kj ij M e E e e E .先根据所给数据回归计算ij ij b a ,,即使误差的平方和最小:3,2,1,||min12121212=-+=∑∑==i R Mb aej ij jij ijj ij可用Matlab 软件做该回归计算,也可用LINGO 软件分别来做每只股票的回归计算,输入 model: sets:year/1..12/:M,R,a,b,e; endsets data:R=1.300 1.103 1.216 0.954 0.929 1.056 1.038 1.089 1.090 1.083 1.035 1.176;M=1.258997 1.197526 1.364361 0.919287 1.057080 1.055012 1.187925 1.317130 1.240164 1.183675 0.990108 1.526236; enddatacalc:mean0=@sum(year(j):M(j))/@size(year);s20=@sum(year(j):@sqr(M(j)-mean0))/(@size(year)-1); s0=@sqrt(s20); endcalc min=s2;s2=@sum(year(j):@sqr(e(j)))/(@size(year)-2); s=@sqrt(s2);@for(year(j):e(j)=R(j)-a-b*M(j)); @for(year(j):@free(e(j))); @free(a);@free(b);End对上面的程序,注意以下几点: (1)只给了一种股票的价值R ;(2)在CALC 段直接计算了M 的均值mean0和方差s20以及标准差s0(为了使这个估计是无偏估计,分母是11而不是12);(3)程序中用到平方函数@sqr 和平方根函数@sqrt ;(4)除了计算回归系数外,同时估计了回归误差s2和标准差s ,为了使这个估计是无偏估计,分母是10而不是11和12,这是因为此时已经假设保持误差的均值为0,所以自由度又少了一个;(5)@free(a),@free(b),@free(e)三个语句不能少,因为它们不一定是非负的; 运行这个LINGO 模型,结果为:Objective value: 0.5748320E-02Variable Value Reduced Cost MEAN0 1.191458 0.000000 S20 0.2873661E-01 0.000000 S0 0.1695188 0.000000 S2 0.5748320E-02 0.000000 S 0.7581767E-01 0.000000 A 0.5639761 0.000000 B 0.4407264 0.000000也就是说:M 的均值191458.10=m ,方差02873661.020=s ,标准差1695188.00=s ,对股票A ,回归系数5639761.01=a ,4407264.01=b ,误差的方差005748320.021=s ,误差的标准差07581767.01=s .同理,可以得到:对股票B ,回归系数239802.1,2635059.022=-=b a ,误差的方差01564263.022=s ,误差的标准差1250705.02=s .对股票C ,回归系数523798.1,5809590.033=-=b a ,误差的方差03025165.023=s ,误差的标准差1739300.03=s .于是,年投资收益为∑∑==++==3131)(i i i i ii i ie M b a xR xR收益的期望为∑∑==+=++=31031)()(i i i ii i i i im b a xe M b a E xER收益的方差为∑∑==+=++=3122202312])[()(i i i iii i i i is x s bx e M b a D xDR 进一步,令∑=iibx y ,则模型应该为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥+==+=∑∑∑∑====015.1)(1 ..)(min 31031313122202ii i i i i ii ii i i i x m b a x x b x y t s s x s y z 3.模型求解利用LINGO 软件计算,输入 model: sets:stocks/1..3/:u,b,s2,x; endsets data:mean0=1.191458;s20=0.02873661;s2=0.005748320,0.01564263,0.03025165; u=0.5639761,-0.2635059,-0.5809590; b=0.4407264,1.239802,1.523798; enddatamin=s20*@sqr(y)+@sum(stocks(i):s2(i)*@sqr(x(i))); @sum(stocks(i):b(i)*x(i))=y; @sum(stocks(i):x(i))=1;@sum(stocks(i):(u(i)+b(i)*mean0)*x(i))>1.15; end运算这个LINGO 模型,输出结果如下Objective value: 0.2465621E-01 Y 0.8453449 0.000000 X( 1) 0.5266052 0.000000 X( 2) 0.3806461 0.000000 X( 3) 0.9274874E-01 0.000000根据运算结果可知:A 大约占初始时刻总资产的53%,B 占38%,C 占9%.四、最小费用最大流问题1.问题实例需要将某地s 的天然气通过管道输送到另一地t ,中间有4个中转站4321,,,v v v v .由于输气管道的长短粗细不一或地质等原因,使得每条管道上的运输量及费用不同.下图给出了这两地与中转站的连接以及管道的容量、费用:图中括号里第一个数字是管道容量,第二个数字是管道单位运费.考虑s 地到t 地如何输送天然气,使得费用最小流量最大. 2.模型建立设:V 为网络顶点集,A 为网络的弧集;ij f 为弧),(j i 上的流量;ij b 为弧),(j i 上的单位运费; ij c 为弧),(j i 上的容量;)(f v 为发点处的净流量.根据最大流的定义,我们有模型如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧∈≤≤⎪⎩⎪⎨⎧≠=-==-∑∑∑∈∈∈∈∈A j i c f t s i ti f v s i f v f f t s f v t s f bij ij A i j V j ji A j i V j ij Aj i ijij),(,0, 0 )( ),(..)(max ..min),(),(),( 3.模型求解先考虑最大流模型,LINGO 软件输入如下 model: sets:nodes/s,1,2,3,4,t/;arcs(nodes,nodes)/s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:c,f; endsets data:c=8 7 5 9 9 2 5 6 10; enddata max=flow;@for(nodes(i)|i#ne#1 #and# i#ne#@size(nodes):@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);@sum(arcs(i,j)|i#eq#1:f(i,j))=flow; @for(arcs(i,j):@bnd(0,f(i,j),c(i,j))); end计算结果如下:Objective value: 14.00000Variable Value Reduced Cost FLOW 14.00000 0.000000F( S, 1) 7.000000 0.000000F( S, 2) 7.000000 0.000000F( 1, 3) 5.000000 0.000000F( 2, 4) 9.000000 -1.000000F( 3, 2) 0.000000 0.000000F( 3, T) 5.000000 -1.000000F( 4, 3) 0.000000 1.000000F( 4, T) 9.000000 0.000000 其次考虑最小费用最大流模型,LINGO软件输入如下model:sets:nodes/s,1,2,3,4,t/;arcs(nodes,nodes)/s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:b,c,f;endsetsdata:b=2 8 5 2 3 1 6 4 7;c=8 7 5 9 9 2 5 6 10;flow=14;enddatamin=@sum(arcs(i,j):b(i,j)*f(i,j));@for(nodes(i)|i#ne#1 #and# i#ne#@size(nodes):@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);@sum(arcs(i,j)|i#eq#1:f(i,j))=flow;@for(arcs(i,j):@bnd(0,f(i,j),c(i,j)));end计算结果如下:Objective value: 205.0000Variable Value Reduced CostF( S, 1) 8.000000 -1.000000F( S, 2) 6.000000 0.000000F( 1, 2) 1.000000 0.000000F( 1, 3) 7.000000 0.000000F( 2, 4) 9.000000 0.000000F( 3, 2) 2.000000 -3.000000F( 3, T) 5.000000 -8.000000F( 4, 3) 0.000000 11.00000附录 LINGO出错信息在LINGO程序求解时,系统首先会对程序进行编译.系统在编译或执行其他命令时,会因程序中的错误或运行错误,弹出一个出错报告窗口,显示其错误代码,并简要指出错误的原因.这些错误报告信息能够提示用户发现程序中的错误,以便能尽快修改.下面我们给出出错信息的一个简要说明,仅供参考.LINGO错误编号及原因对照表习题1.用LINGO 软件求解线性规划问题并作灵敏度分析(1) ⎪⎩⎪⎨⎧≥≤++≤++-++-=0,,9010412203..1355max 321221321321x x x x x x x x x t s x x x(2)⎪⎩⎪⎨⎧≥≤≤+--≤+---+-=0,,,1035.0125.009825.0..65.02075.0max 3213432143214321x x x x x x x x x x x x t s x x x x z2.用LINGO 软件求解0-1规划问题⎪⎪⎩⎪⎪⎨⎧=≥+-+≥+++-≥+++-+++=10,,,11424204..4352min 43214321432143214321或x x x x x x x x x x x x x x x x t s x x x x 3.用LINGO 软件求解整数规划问题⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤≤≤≤=+=-+=-+=-++++++=且整数0,,,,,,20,45,40,3025352515..2.02.02.05.54.51.50.5min 3214321432134323212113214321y y y x x x x x x x x y x y y x y y x y x t s y y y x x x x4.用LINGO 软件求解非线性规划问题⎪⎪⎩⎪⎪⎨⎧=≤≤--=+-+=++-+-+-+-+-=5,4,3,2,1,55222223..)()()()()1(min 4232332215544433322211i x x x x x x x t s x x x x x x x x x z i5.用LINGO 软件求解⎪⎩⎪⎨⎧-∈≤+++≤-≤+≤-+=}1,1{,,,2311..21max 432143214321TTx x x x x x x x x x x x t s z Qxx x c其中T )2,4,8,6(-=c ,Q 是三对角线矩阵,主对角线上元素全为-1,两条次对角线上元素全为2.。
LINGO简易用法
LINGO 是用来求解线性和非线性运筹学优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LING 高效的求解器可快速求解并分析结果。
1、LINGO快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1 的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例 1.1 如何在LINGO 中求解如下的LP 问题:在模型窗口中输入如下代码:然后点击工具条上的按钮a134 即可。
例 1.2使用LINGO软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
使用LINGO 软件,编制程序如下:然后点击工具条上的按钮a134 即可。
2、LINGO中的集对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等。
LINGO 允许把这些相联系的对象聚合成集(sets)。
一旦把对象聚合成集,就可以利用集来最大限度的发挥LINGO建模语言的优势。
现在我们将深入介绍如何创建集,并用数据初始化集的属性。
学完本节后,你对基于建模技术的集如何引入模型会有一个基本的理解。
2.1 为什么使用集集是LINGO建模语言的基础,是程序设计最强有力的基本构件。
借助于集,能够用一个单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型。
2.2 什么是集集是一群相联系的对象,这些对象也称为集的成员。
一个集可能是一系列产品、卡车或雇员。
每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。
属性值可以预先给定,也可以是未知的,有待于LINGO求解。
LINGO 有两种类型的集:原始集(primitive set)和派生集(derived set)。
lingo用法总结(精品文档)
ji例程1、model:sets:quarters/1..4/:dem,rp,op,inv;endsetsmin=@sum(quarters:400*rp+450*op+20*inv);@for(quarters(i):rp<=40);@for(quarters(i)|i#gt#1:inv(i)=inv(i-1)+rp(i)+op(i)-dem(i););inv(1)=10+rp(1)+op(1)-dem(1);data:dem=40 60 75 25;enddataend例程2、model:sets:quarters/1..4/:dem,rp,op,inv;endsetsmin=@sum(quarters:400*rp+450*op+20*inv);@for(quarters(i):rp<=40);@for(quarters(i)|i#gt#1:inv(i)=inv(i-1)+rp(i)+op(i)-dem(i););inv(1)=a+rp(1)+op(1)-dem(1);data:dem=40 60 75 25;a=?enddataend•LINGO总是根据“MAX=”或“MIN=”寻找目标函数,而除注释语句和TITLE语句外的其他语句都是约束条件,因此语句的顺序并不重要。
•LINGO中函数一律需要以“@”开头•Lingo中的每个语句都以分号结尾•用LINGO解优化模型时已假定所有变量非负(除非用限定变量取值范围的函数@free或@sub或@slb另行说明)。
•以感叹号开始的是说明语句(说明语句也需要以分号结束))•理解LINGO建模语言最重要的是理解集合(Set)及其属性(Attribute)的概念。
•一般来说,LINGO中建立的优化模型可以由5个部分组成,或称为5“段”(SECTION):(1)集合段(SETS):以“ SETS:” 开始,“ENDSETS”结束,定义必要的集合变量(SET)及其元素(MEMBER,含义类似于数组的下标)和属性(ATTRIBUTE,含义类似于数组)。
LINGO使用说明
LINGO使用说明一、LINGO的基本特性1.建模语言:LINGO使用一种直观的建模语言,被称为LINGO语言,它使用简洁的语法和自然语言类似的表达方式,使用户能够轻松地描述问题。
2.线性优化:LINGO支持线性规划(LP)和整数线性规划(ILP),它的线性优化功能包括线性约束、线性目标函数和变量定义,可以解决诸如生产优化、资源分配等问题。
3.非线性优化:LINGO还支持非线性规划(NLP)和全局优化(GLO),可以解决包括非线性约束和非线性目标函数的问题。
它提供了多种求解方法和算法,如牛顿法、逐次线性规划等。
4.约束和限制:LINGO能够处理各种类型的约束和限制,包括等式约束、不等式约束、逻辑约束等。
用户可以根据具体问题定义约束,LINGO会自动处理约束的完整性和一致性。
5.求解器:LINGO内置了一系列高效的求解器,如线性规划求解器、非线性规划求解器、整数规划求解器等。
用户可以根据问题的复杂程度选择最适合的求解器。
6.结果分析:LINGO可以生成详细的结果报告,包括优化解、约束条件、目标函数值等。
用户可以通过结果报告来分析问题的解决方案,做出决策。
二、LINGO的使用方法2.创建模型:在LINGO中,用户需要先创建一个模型文件,来描述问题。
可以通过鼠标点击“新建模型”按钮或选择文件菜单中的“新建”选项来创建一个新的模型文件。
3.定义变量:在模型文件中,用户可以定义变量。
变量可以是整数、二进制或连续的,并为每个变量分配一个名称、类型和取值范围。
4.定义目标函数:在模型文件中,用户可以定义一个目标函数。
目标函数可以是线性的或非线性的,并定义在变量上。
5.定义约束:在模型文件中,用户可以定义约束。
约束可以是线性的或非线性的,并定义在变量上。
用户需要通过约束来限制变量的取值范围。
6.设置求解器:在模型文件中,用户可以选择合适的求解器来解决问题。
LINGO提供了多种求解器,用户可以根据问题的复杂程度选择最适合的求解器。
LINGO的使用方法说明大全
LINGO的使用方法说明大全LINGO的使用简介LINGO软件是美国的LINGO系统公司开发的一套专门用于求解最优化问题的软件包.LINGO除了能够用于求解线性规划和二次规划外,还可以用于非线性规划求解、以及一些线性和非线性方程(组)的求解等.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,即可以求解整数规划,而且执行速度快.LINGO是用来求解线性和非线性优化问题的简易工具.LINGO置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.在这里仅简单介绍LINGO的使用方法.LINGO(Linear INteractive and General Optimizer )的基本含义是交互式的线性和通过优化求解器.它是美国芝加哥大学的Linus Schrage 教授于1980年开发了一套用于求解最优化问题的工具包,后来经过完善成何扩充,并成立了LINDO系统公司.这套软件主要产品有:LINDO,LINGO,LINDO API和What’sBest.它们在求解最优化问题上,与同类软件相比有着绝对的优势.软件有演示版和正式版.正式版包括:求解包(solver suite)、高级版(super)、超级版(hyper)、工业版(industrial)、扩展版(extended).不同版本的LINGO对求解问题的规模有限制,如附表3-1所示.附表3-1 不同版本LINGO对求解规模的限制版本类型总变量数整数变量数非线性变量数约束数演示版 300 30 30 150求解包 500 50 50 250高级版 2000 200 200 1000超级版 8000 800 800 4000工业版 32000 3200 32000 16000扩展版无限无限无限无限3.1 LINGO程序框架LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络最优化问题和最大最小求解问题,以及排队论模型中最优化等问题.一个LINGO程序一般会包括以下几个部分:(1) 集合段:集部分是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(2) 数据段:在处理模型的数据时,需要为集部分定义的某些元素在LINGO求解模型之前为其指定值.数据部分以关键字“data:”开始,以关键字“enddata”结束.(3) 目标和约束段:这部分用来定义目标函数和约束条件等.该部分没有开始和结束的标记.主要是要用到LINGO的部函数,尤其是与集合有关的求和与循环函数等.(4)初始段:这个部分要以关键字“INIT:”开始,以关键字“ENDINIT”结束,它的作用是对集合的属性定义一个初值.在一般的迭代算法中,如果可以给一个接近最优解的初始值,会大大减少程序运行的时间.(5) 数据预处理段:这一部分是以关键字“CALC:”开始,以关键字“ENDCALC”结束.它的作用是把原始数据处理成程序模型需要的数据,它的处理是在数据段输入完以后、开始正式求解模型之前进行的,程序语句是按顺序执行的.3.2 LINGO中集合的概念在对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等.LINGO允许把这些相联系的对象聚合成集(sets).一旦把对象聚合成集,就可以利用集来最大限度地发挥LINGO建模语言的优势.现在将深入介绍如何创建集,并用数据初始化集的属性.3.2.1集的构成集是LINGO建模语言的基础,是程序设计最强有力的基本构件.借助于集能够用一个单一的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型.集是一群相联系的对象,这些对象也称为集的元素.一个集可能是一系列产品、卡车或雇员.每个集的元素可能有一个或多个与之有关联的特征,把这些特征称为属性.属性值可以预先给定,也可以是未知的,有待于LINGO求解的.LINGO有两种类型的集:原始集(primitive set)和派生集(derived set).一个原始集是由一些最基本的对象组成的.一个派生集是用一个或多个其它集来定义的,也就是说,它的元素来自于其它已存在的集.3.2.2模型的集部分集部分在程序中又称为集合段,它是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(1)原始集的定义为了定义一个原始集,必须详细说明集的名字,而集的元素和相应的属性是可选的.定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分容是可选的(下同).Setname是用来标记集的名字,最好具有较强的可读性.集名字必须严格符合标准命名规则:以拉丁字母或下划线为首字符,其后由拉丁字母、下划线、阿拉伯数字组成的总长度不超过32个字符的字符串,且不区分大小写.注意:该命名规则同样适用于集元素名和属性名等的命名.Member_list是集元素的列表.如果集元素放在集定义中,那么对它们可采取显式和隐式罗列两种方式.如果集元素不放在集定义中,那么可以在随后的数据部分定义.①当显式罗列元素时,必须为每个元素输入一个不同的名字,中间用空格或逗号隔开,允许混合使用.例3.1 定义一个名为friends的原始集,它具有元素John,Jill,Rose和Mike,其属性有sex和age:sets:friends/John Jill, Rose Mike/: sex, age;endsets②当隐式罗列元素时,不必罗列出每个集元素.可采用如下语法:setname/member1..member N/[: attribute_list];这里的member1是集的第一个元素名,member N是集的最后一个元素名.LINGO将自动产生中间的所有元素名.LINGO也接受一些特定的首元素名和末元素名,用于创建一些特殊的集.③集元素不放在集定义中,而在随后的数据部分来定义.例3.2!集部分;sets:friends:sex,age;endsets!数据部分;data:friends,sex,age=John,1,16 Jill,0,14 Rose,0,17 Mike,1,13;enddata注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行.在集部分只定义了一个集friends,并未指定元素.在数据部分罗列了集元素John,Jill,Rose和Mike,并对属性sex和age分别给出了值.集元素无论用何种字符标记,它的索引都是从1开始连续计数.在attribute_ list可以指定一个或多个集元素的属性,属性之间必须用逗号隔开.LINGO置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后再借助于LINGO 求解器求解.因此,集属性的值一旦在模型中被确定,就不可能再更改.只有在初始部分中给出的集属性值在以后的求解中可更改.这与前面并不矛盾,初始部分是LINGO求解器的需要,并不是描述问题所必须的.(2) 定义派生集为了定义一个派生集,必须详细说明集的名字和父集的名字,而集元素和属性是可选的.可用下面的语法定义一个派生集:setname(parent_set_list)[/member_list/][:attribute_list];setname是集的名字.parent_set_list是已定义的集的列表,多个时要用逗号隔开.如果没有指定成员列表,那么LINGO会自动创建父集元素的所有组合作为派生集的元素.派生集的父集既可以是原始集,也可以是其它的派生集.例3.3sets:product/A,B/;machine/M,N/;week/1..2/;allowed(product,machine,week):x;endsetsLINGO生成了三个父集的所有组合共八组作为allowed集的元素,列表如下:编号元素1 (A,M,1)2 (A,M,2)3 (A,N,1)4 (A,N,2)5 (B,M,1)6 (B,M,2)7 (B,N,1)8 (B,N,2)元素列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集.如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集.同原始集一样,派生集元素的说明也可以放在数据部分.一个派生集的元素列表有两种方式生成:①显式罗列;②设置元素选择的过滤器.当采用方式①时,必须显式罗列出所有要包含在派生集中的元素,并且罗列的每个元素要属于稠密集.使用前面的例子,显式罗列派生集的元素,如:allowed(product,machine,week)/A M 1,A N 2,B N 1/;如果需要生成一个大的、稀疏的集,那么显式罗列就十分麻烦.但是许多稀疏集的元素都满足一些条件,可以把这些逻辑条件看作过滤器,在LINGO生成派生集的元素时把使逻辑条件为假的元素从稠密集中过滤掉.例3.4sets:!学生集:性别属性sex,1表示男性,0表示女性;年龄属性age;students/John,Jill,Rose,Mike/:sex,age;!男学生和女学生的联系集:友好程度属性friend![0,1]之间的数;linkmf(students,students)|sex(&1)#eq#1#and#sex(&2)#eq# 0: friend;!男学生和女学生的友好程度大于0.5的集;linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x;endsetsdata:sex,age =1 16,0 14,0 17,0 13;friend =0.3,0.5,0.6;enddata用竖线(|)来标记一个元素过滤器的开始.#eq#是逻辑运算符,用来判断是否“相等”. &1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有元素;&2可看作派生集的第2 个原始父集的索引,它取遍该原始父集的所有元素;&3,&4,…,依此类推.注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效.因此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作限制的总和.3.3 LINGO数据部分和初始部分在处理模型的数据时,需要为集指定一些元素并且在LINGO求解模型之前为集的某些属性指定数值.为此,LINGO为用户提供了两个可选部分:输入集元素数值的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section).3.3.1数据部分(1) 数据部分入门数据部分以关键字“data:”开始,“enddata”结束.在这里,可以指定集元素和集的属性.其语法如下:object_list = value_list;对象列(object_list)包含要指定值的属性名、要设置集元素的集名,用逗号或空格隔开.一个对象列中只能有一个集名,而属性名可以有任意多个.如果对象列中有多个属性名,那么它们的类型必须一致.数值列(value_list)包含要分配给对象列中对象的值,用逗号或空格隔开.注意属性值的个数必须等于集元素的个数.例3.5sets:SET0/A,B,C/: X,Y;endsetsdata:X=1,2,3;Y=4,5,6;enddata在集SET0中定义了两个属性X和Y.X的三个值是1,2,3,Y 的三个值是4,5,6.也可采用如下例子中的复合数据说明(data statement)实现同样的功能.例3.6sets:SET0/A,B,C/: X,Y;endsetsdata:X,Y=1 4 2,5 3 6;enddata如果对象列中有n个对象,LINGO在为对象指定值时,首先在n 个对象的第1个索引处依次分配数值列中的前n个对象,然后在n个对象的第2个索引处依次分配数值列中紧接着的n个对象,…,依此类推.(2) 参数输入在数据部分也可以指定一些标量变量(scalar variables).当一个标量变量在数据部分确定时,称之为参数.例如,假设模型中用利率9%作为一个参数,就可以输入一个利率作为参数.例3.7 data:interest_rate = .09;enddata实际中也可以同时指定多个参数.如:data:interest_rate,inflation_rate = .09, .025;enddata(3) 实时数据处理在某些情况下,模型中的某些数据并不是定值.譬如模型中有一个参数在2%至6%围,对不同的值求解模型,观察模型的结果对参数依赖的程度,那么把这种情况称为实时数据处理.处理方法是在该语句的数值后面输入一个问号(?).。
LINGO软件的基本使用方法
模(即编程)语言,系统推荐的是采用LINGO。安装后
可通过“LINGO|Options|File Format”命令修改缺省
的建模(即编程)语言。
第一次运行时提示输入授权密码,如图:
LINGO软件的主要特色
两种命令模式 Windows模式: 通过下拉式菜单命令驱动LINGO运
行(多数菜单命令有快捷键,常用的菜单命令有快捷
输出结果备注: LINGO是将它作为PINLP(纯整数非线性规划)来求解, 因此找到的是局部最优解。
通过菜单 “WINDOW| Status Window”看到状态窗 口,可看到最佳目标值 “Best Obj”与问题的上界 “Obj Bound”已经是一样的, 当前解的最大利润与这两个 值非常接近,是计算误差引 起的。如果采用全局最优求 解程序(后面介绍),可以验 证它就是全局最优解。
1 2 3 4
输入窗口如下:
程序语句输入的备注:
•LINGO总是根据“MAX=”或“MIN=”寻找目标函数, 而除注释语句和TITLE语句外的其他语句都是约束条 件,因此语句的顺序并不重要 。 •限定变量取整数值的语句为“@GIN(X1)”和 “@GIN(X2)”,不可以写成“@GIN(2)”,否则 LINGO将把这个模型看成没有整数变量。
按钮),图形界面,使用方便;
(这里主要介绍这种模式)
命令行 模式:仅在命令窗口(Command Window)下操 作,通过输入行命令驱动LINGO运行 。
LINGO的文件类型 •.LG4:LINGO格式的模型文件,保存了模型窗口中所 能够看到的所有文本和其他对象及其格式信息;
•.LNG:文本格式的模型文件,不保存模型中的格式信 息(如字体、颜色、嵌入对象等); •.LDT:LINGO数据文件;
LINGO使用指南(经典)
LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
Lingo基本用法总结
Lingo基本用法总结(除集函数部分)LINGO是用来求解线性和非线性优化问题的简易工具。
Lingo免费版可以支持30个未知数,lingo破解版可以支持几万个未知数、几万个约束条件。
当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO中求解如下的LP问题:在模型窗口中输入如下代码:min=2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;然后点击工具条上的按钮即可。
得到如下结果:所以当x1为250,x2为100时目标函数得到最大值。
算术运算符Lingo 中变量不区分大小写,以字母开头不超过32个字符算术运算符是针对数值进行操作的。
LINGO 提供了5种二元运算符: ^ 乘方 ﹡ 乘 / 除 ﹢ 加 ﹣ 减 LINGO 唯一的一元算术运算符是取反函数“﹣”。
这些运算符的优先级由高到底为:高 ﹣(取反) ^ ﹡/ 低 ﹢﹣运算符的运算次序为从左到右按优先级高低来执行。
运算的次序可以用圆括号“()”来改变。
例:在x1+x2>=350,x1>=100,2*x1+x2<=600的条件下求2*x1+3*x2的最小值 在代码窗口中编写 min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后单击上面菜单lingo 菜单下solve 键即可。
数学函数标准数学函数:@abs(x) 返回x 的绝对值@sin(x) 返回x 的正弦值,x 采用弧度制 @cos(x) 返回x 的余弦值 @tan(x) 返回x 的正切值 @exp(x) 返回常数e 的x 次方 @log(x) 返回x 的自然对数@lgm(x) 返回x 的gamma 函数的自然对数 @sign(x) 如果x<0返回-1;否则,返回1@floor(x) 返回x 的整数部分。
Lingo基本用法总结(除集函数部分)
Lingo基本用法总结(除集函数部分)LINGO是用来求解线性和非线性优化问题的简易工具。
Lingo免费版可以支持30个未知数,lingo破解版可以支持几万个未知数、几万个约束条件。
当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO中求解如下的LP问题:在模型窗口中输入如下代码:min=2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;然后点击工具条上的按钮即可。
得到如下结果:所以当x1为250,x2为100时目标函数得到最大值。
算术运算符Lingo 中变量不区分大小写,以字母开头不超过32个字符算术运算符是针对数值进行操作的。
LINGO 提供了5种二元运算符: ^ 乘方 ﹡ 乘 / 除 ﹢ 加 ﹣ 减 LINGO 唯一的一元算术运算符是取反函数“﹣”。
这些运算符的优先级由高到底为:高 ﹣(取反) ^ ﹡/ 低 ﹢﹣运算符的运算次序为从左到右按优先级高低来执行。
运算的次序可以用圆括号“()”来改变。
例:在x1+x2>=350,x1>=100,2*x1+x2<=600的条件下求2*x1+3*x2的最小值 在代码窗口中编写 min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后单击上面菜单lingo 菜单下solve 键即可。
数学函数标准数学函数:@abs(x) 返回x 的绝对值@sin(x) 返回x 的正弦值,x 采用弧度制 @cos(x) 返回x 的余弦值 @tan(x) 返回x 的正切值 @exp(x) 返回常数e 的x 次方 @log(x) 返回x 的自然对数@lgm(x) 返回x 的gamma 函数的自然对数 @sign(x) 如果x<0返回-1;否则,返回1@floor(x) 返回x 的整数部分。
LINGO的基本用法
LINGO的不同版本对模型的变量和约束条 件的数量作出不同的限制,如下表所示:
版 本 Demo
Solve Suite
变量总数 非线性变量 整数变量 约束条件数量
300 500 2000
30 50 200
30 50 200
150 250 1000
Super
Hyper Industrial
8000 32000
该报告说明 , 2步找到全局最优解 ,目标函数值为 29000,变量值分别为X1=100,X2=30,“Row”指的是 输入模型中的行号,“Slack or Surplus”的意思为 松弛或剩余,“Dual Price”的意思是影子价格,如报 告中Row 2的剩余为0,意思是说第二行的约束条件, 即第一条生产线最大生产能力没有剩余,影子价格为50, 含义是:如果该生产线最大生产能力增加1,能使目标函 数值,即利润增加50,由29000增加到29050.报告中 Row 4的剩余为0,意思是说第四行的约束条件,即劳 动日资源已经全部用完,影子价格为150,含义是:如果 增加1个劳动日资源,能使目标函数值,即利润增加150, 达到29150元. 以上结果可以保存到文件中(扩展名为.lgr),也可以 通过打印机打印出来.
例3 基金的优化使用 (参见2001年竞赛C题)
(1) 问题的提出 假设某校基金会得到了一笔 数额为M万元的基金,打算将其存入银行,校基金 会计划在n年内每年用部分本息奖励优秀师生,要 求每年的奖金额相同,且在n年末仍保留原基金数 额.银行存款税后年利率见下表: 存期 1年 2年 3年 5年
税后利率(%)
1.09715968
5年 1.144
收益比ai 1.018
(3) 建立模型 把总基金M分成5+1份,分别用x1,„,x5,x6 表示, 其中x1,„,x5 分别表示计划用于第i年发放奖金的 一部分初始基金(单位:万元),x6表示用来使5年 末本息合计等于原基金总数的那部分初始基 金.用S表示每年用于奖励优秀师生的奖金额,用 ai表示第i年的最优收益比. 目标函数为 max S 约束条件有3个:①各年度的奖金数额相等;② 初始基金总数为M;③n年末保留原基金总额M.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LINGO的使用简介LINGO软件是美国的LINGO系统公司开发的一套专门用于求解最优化问题的软件包.LINGO除了能够用于求解线性规划和二次规划外,还可以用于非线性规划求解、以及一些线性和非线性方程(组)的求解等.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,即可以求解整数规划,而且执行速度快.LINGO是用来求解线性和非线性优化问题的简易工具.LINGO置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.在这里仅简单介绍LINGO的使用方法.LINGO(Linear INteractive and General Optimizer )的基本含义是交互式的线性和通过优化求解器.它是美国芝加哥大学的 Linus Schrage 教授于1980年开发了一套用于求解最优化问题的工具包,后来经过完善成何扩充,并成立了LINDO系统公司.这套软件主要产品有:LINDO,LINGO,LINDO API和What’sBest.它们在求解最优化问题上,与同类软件相比有着绝对的优势.软件有演示版和正式版.正式版包括:求解包(solver suite)、高级版(super)、超级版(hyper)、工业版(industrial)、扩展版(extended).不同版本的LINGO对求解问题的规模有限制,如附表3-1所示.附表3-1 不同版本LINGO对求解规模的限制版本类型总变量数整数变量数非线性变量数约束数演示版 300 30 30 150求解包 500 50 50 250高级版 2000 200 200 1000超级版 8000 800 800 4000工业版 32000 3200 32000 16000扩展版无限无限无限无限3.1 LINGO程序框架LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络最优化问题和最大最小求解问题,以及排队论模型中最优化等问题.一个LINGO程序一般会包括以下几个部分:(1) 集合段:集部分是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(2) 数据段:在处理模型的数据时,需要为集部分定义的某些元素在LINGO求解模型之前为其指定值.数据部分以关键字“data:”开始,以关键字“enddata”结束.(3) 目标和约束段:这部分用来定义目标函数和约束条件等.该部分没有开始和结束的标记.主要是要用到LINGO的部函数,尤其是与集合有关的求和与循环函数等.(4)初始段:这个部分要以关键字“INIT:”开始,以关键字“ENDINIT”结束,它的作用是对集合的属性定义一个初值.在一般的迭代算法中,如果可以给一个接近最优解的初始值,会大大减少程序运行的时间.(5) 数据预处理段:这一部分是以关键字“CALC:”开始,以关键字“ENDCALC”结束.它的作用是把原始数据处理成程序模型需要的数据,它的处理是在数据段输入完以后、开始正式求解模型之前进行的,程序语句是按顺序执行的.3.2 LINGO中集合的概念在对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等.LINGO允许把这些相联系的对象聚合成集(sets).一旦把对象聚合成集,就可以利用集来最大限度地发挥LINGO建模语言的优势.现在将深入介绍如何创建集,并用数据初始化集的属性.3.2.1集的构成集是LINGO建模语言的基础,是程序设计最强有力的基本构件.借助于集能够用一个单一的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型.集是一群相联系的对象,这些对象也称为集的元素.一个集可能是一系列产品、卡车或雇员.每个集的元素可能有一个或多个与之有关联的特征,把这些特征称为属性.属性值可以预先给定,也可以是未知的,有待于LINGO求解的.LINGO有两种类型的集:原始集(primitive set)和派生集(derived set).一个原始集是由一些最基本的对象组成的.一个派生集是用一个或多个其它集来定义的,也就是说,它的元素来自于其它已存在的集.3.2.2模型的集部分集部分在程序中又称为集合段,它是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(1)原始集的定义为了定义一个原始集,必须详细说明集的名字,而集的元素和相应的属性是可选的.定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分容是可选的(下同).Setname是用来标记集的名字,最好具有较强的可读性.集名字必须严格符合标准命名规则:以拉丁字母或下划线为首字符,其后由拉丁字母、下划线、阿拉伯数字组成的总长度不超过32个字符的字符串,且不区分大小写.注意:该命名规则同样适用于集元素名和属性名等的命名.Member_list是集元素的列表.如果集元素放在集定义中,那么对它们可采取显式和隐式罗列两种方式.如果集元素不放在集定义中,那么可以在随后的数据部分定义.①当显式罗列元素时,必须为每个元素输入一个不同的名字,中间用空格或逗号隔开,允许混合使用.例3.1 定义一个名为friends的原始集,它具有元素John,Jill,Rose和Mike,其属性有sex和age:sets:friends/John Jill, Rose Mike/: sex, age;endsets②当隐式罗列元素时,不必罗列出每个集元素.可采用如下语法:setname/member1..member N/[: attribute_list];这里的member1是集的第一个元素名,member N是集的最后一个元素名.LINGO将自动产生中间的所有元素名.LINGO也接受一些特定的首元素名和末元素名,用于创建一些特殊的集.③集元素不放在集定义中,而在随后的数据部分来定义.例3.2!集部分;sets:friends:sex,age;endsets!数据部分;data:friends,sex,age=John,1,16 Jill,0,14 Rose,0,17 Mike,1,13;enddata注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行.在集部分只定义了一个集friends,并未指定元素.在数据部分罗列了集元素John,Jill,Rose和Mike,并对属性sex和age分别给出了值.集元素无论用何种字符标记,它的索引都是从1开始连续计数.在attribute_ list可以指定一个或多个集元素的属性,属性之间必须用逗号隔开.LINGO置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后再借助于LINGO 求解器求解.因此,集属性的值一旦在模型中被确定,就不可能再更改.只有在初始部分中给出的集属性值在以后的求解中可更改.这与前面并不矛盾,初始部分是LINGO求解器的需要,并不是描述问题所必须的.(2) 定义派生集为了定义一个派生集,必须详细说明集的名字和父集的名字,而集元素和属性是可选的.可用下面的语法定义一个派生集:setname(parent_set_list)[/member_list/][:attribute_list];setname是集的名字.parent_set_list是已定义的集的列表,多个时要用逗号隔开.如果没有指定成员列表,那么LINGO会自动创建父集元素的所有组合作为派生集的元素.派生集的父集既可以是原始集,也可以是其它的派生集.例3.3sets:product/A,B/;machine/M,N/;week/1..2/;allowed(product,machine,week):x;endsetsLINGO生成了三个父集的所有组合共八组作为allowed集的元素,列表如下:编号元素1 (A,M,1)2 (A,M,2)3 (A,N,1)4 (A,N,2)5 (B,M,1)6 (B,M,2)7 (B,N,1)8 (B,N,2)元素列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集.如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集.同原始集一样,派生集元素的说明也可以放在数据部分.一个派生集的元素列表有两种方式生成:①显式罗列;②设置元素选择的过滤器.当采用方式①时,必须显式罗列出所有要包含在派生集中的元素,并且罗列的每个元素要属于稠密集.使用前面的例子,显式罗列派生集的元素,如:allowed(product,machine,week)/A M 1,A N 2,B N 1/;如果需要生成一个大的、稀疏的集,那么显式罗列就十分麻烦.但是许多稀疏集的元素都满足一些条件,可以把这些逻辑条件看作过滤器,在LINGO生成派生集的元素时把使逻辑条件为假的元素从稠密集中过滤掉.例3.4sets:!学生集:性别属性sex,1表示男性,0表示女性;年龄属性age;students/John,Jill,Rose,Mike/:sex,age;!男学生和女学生的联系集:友好程度属性friend![0,1]之间的数;linkmf(students,students)|sex(&1)#eq#1#and#sex(&2)#eq#0: friend;!男学生和女学生的友好程度大于0.5的集;linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x;endsetsdata:sex,age =1 16,0 14,0 17,0 13;friend =0.3,0.5,0.6;enddata用竖线(|)来标记一个元素过滤器的开始.#eq#是逻辑运算符,用来判断是否“相等”. &1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有元素;&2可看作派生集的第2 个原始父集的索引,它取遍该原始父集的所有元素;&3,&4,…,依此类推.注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效.因此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作限制的总和.3.3 LINGO数据部分和初始部分在处理模型的数据时,需要为集指定一些元素并且在LINGO求解模型之前为集的某些属性指定数值.为此,LINGO为用户提供了两个可选部分:输入集元素数值的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section).3.3.1数据部分(1) 数据部分入门数据部分以关键字“data:”开始,“enddata”结束.在这里,可以指定集元素和集的属性.其语法如下:object_list = value_list;对象列(object_list)包含要指定值的属性名、要设置集元素的集名,用逗号或空格隔开.一个对象列中只能有一个集名,而属性名可以有任意多个.如果对象列中有多个属性名,那么它们的类型必须一致.数值列(value_list)包含要分配给对象列中对象的值,用逗号或空格隔开.注意属性值的个数必须等于集元素的个数.例3.5sets:SET0/A,B,C/: X,Y;endsetsdata:X=1,2,3;Y=4,5,6;enddata在集SET0中定义了两个属性X和Y.X的三个值是1,2,3,Y的三个值是4,5,6.也可采用如下例子中的复合数据说明(data statement)实现同样的功能.例3.6sets:SET0/A,B,C/: X,Y;endsetsdata:X,Y=1 4 2,5 3 6;enddata如果对象列中有n个对象,LINGO在为对象指定值时,首先在n个对象的第1个索引处依次分配数值列中的前n个对象,然后在n个对象的第2个索引处依次分配数值列中紧接着的n个对象,…,依此类推.(2) 参数输入在数据部分也可以指定一些标量变量(scalar variables).当一个标量变量在数据部分确定时,称之为参数.例如,假设模型中用利率9%作为一个参数,就可以输入一个利率作为参数.例3.7data:interest_rate = .09;enddata实际中也可以同时指定多个参数.如:data:interest_rate,inflation_rate = .09, .025;enddata(3) 实时数据处理在某些情况下,模型中的某些数据并不是定值.譬如模型中有一个参数在2%至6%围,对不同的值求解模型,观察模型的结果对参数依赖的程度,那么把这种情况称为实时数据处理.处理方法是在该语句的数值后面输入一个问号(?).data:interest_rate,inflation_rate = .09 ?;enddata在每一次求解模型时,LINGO都会提示为参数inflation_rate输入一个值.在WINDOWS操作系统下,将会看到一个如下面的对话框:直接输入一个值再点击OK按钮,LINGO就会把输入的值指定赋给inflation_rate,然后继续求解模型.除了参数之外,也可以实时输入集的属性值,但不允许实时输入集元素名.(4) 指定属性为一个值可以在数据定义的右边输入一个值来把所有的元素的该属性指定为一个值.如下面的例子.例3.9sets:days /MO,TU,WE,TH,FR,SA,SU/:needs;endsetsdata:needs = 40;enddataLINGO将用40指定days集的所有元素的needs属性.对于多个属性的情形如下:sets:days /MO,TU,WE,TH,FR,SA,SU/:needs,cost;endsetsdata:needs cost = 40 90;enddata(5) 数据部分的未知数值表示法有时候只需为一个集的部分元素的某个属性指定数值,而让其余元素的该属性是未知的,以便让LINGO 去求出它们的最优值.在数据定义中输入两个相连的逗号表示该位置对应元素的属性值未知,两个逗号间可以有空格.例3.10sets:years/1..6/: capacity;endsetsdata:capacity = ,24,40,,,;属性capacity的第2个和第3个值分别为24和40,其余的未知.3.3.2初始部分初始部分是LINGO提供的另一个可选容.在初始部分中,与数据部分中的数据定义相同,可以输入初始定义(initialization statement).在对实际问题的建模时,初始部分并不起到描述模型的作用,初始部分输入的值仅被LINGO求解器当作初始值来使用,并且仅仅对非线性模型有用.这与数据部分指定变量的值不同,LINGO求解器可以自由改变初始部分初始化变量的数值.一个初始部分以关键字“init:”开始,以关键字“endinit”结束.初始部分的初始定义规则和数据部分的数据定义规则相同.也就是说,可以在定义的左边同时初始化多个集属性,即可以把集属性初始化为一个数值,也可以用问号定义为实时数据,还可以用逗号指定为未知数值.例3.11init:X,Y = 1,0;endinitY=log(X);X^2+Y^2<=1;3.4 LINGO函数3.4.1运算符及其优先级LINGO 中的运算符可以分为三类:算数运算符、逻辑运算符和关系运算符.(1) 算数运算符算数运算符分为5种: (加法), (减法), (乘法), (除法), (求幂).(2) 逻辑运算符逻辑运算符分为两类:#AND#(与),#OR#(或),#NOT#(非):这3个运算符是参与逻辑值之间的运算,其结果还是逻辑值.运算符#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于)是用于“数与数之间”的比较,其结果是实逻辑值.(3) 关系运算符LINGO中有3种关系运算符:<(小于等于),>(大于等于),=(等于).注意LINGO中优化模型的约束一般没有严格大于、严格小于,要和逻辑运算符区分开.运算符的优先等级如附表3-2所示.附表3-2 运算符的优先级3.4.2 LINGO数学函数(1) 基本数学函数LINGO中有相当丰富的数学函数,这些函数的用法简单.下面列表对各个函数的用法做简单的介绍,具体情况如附表3-3所示.(2) 集合循环函数集合循环是指对集合上的元素(下标)进行循环操作的函数,它的一般用法如下:function(setname[(set_index_list)[|condition]]:expression_list);其中function是集合函数名,是FOR,MAX,MIN,PROD,SUM五种之一.setname是集合名;set_index_list 是集合索引列表(可以省略);condition是实用逻辑表达式描述的过滤条件(通常含有索引,可以省略);expression_list是一个表达式(对FOR可以是一组表达式).下面对具体的集合函数作如下解释:FOR(集合元素的循环函数):对集合setname的每个元素独立生成表达式,表达式由expression_list 描述.MAX(集合属性的最大值):返回集合setname上的表达式的最大值.MIN(集合属性的最小值) :返回集合setname上的表达式的最小值.PROD(集合元素的乘积函数):返回集合setname上的表达式的积.SUM(集合元素的求和函数) :返回集合setname上的表达式的和.(3) 集合操作函数集合操作函数是对集合进行操作的函数,主要有4种,下面分别介绍它们的一般用法.1)INDEX([set_name,]primitive_set_element)这个函数给出元素primitive_set_element在集合set_name中的索引值(即按定义集合时元素出现顺序的位置编号).如果省略编号set_name,LINGO按模型中定义的集合顺序找到第一个含有元素primitive_set_element的集合,并返回索引值.通过下面例子解释函数的使用方法.例如,假设定义一个女孩的集合和一个男孩的集合:SETS:GIRLS/DEBBLE,SUE,ALICE/;BOYS/BOB,JOE,SUE,FRED/;ENDSETS注意到女孩集和男孩集中都有一个为SUE的元素,如果要调用此函数INDEX(SUE),则得到返回索引值是2.因为集合GIRLS在集合BOYS之前,则索引函数只对集合GIRLS检索.如果想查找男孩集中的SUE,则应该使用INDEX(BOYS,SUE),则此时得到的索引值是3.2)IN(set_name,primitive_index_1[,primitive_index_2 …])这个函数用于判断一个集合中是否含有某个索引值.它的返回值是1(逻辑值“真”),或是0(逻辑值“假”).例3.12全集为I,B是I的一个子集,C是B的补集.sets:I/x1..x4/;B(I)/x2/;C(I)|#not#in(B,&1):;endsets3)wrap(index,limit)该函数返回j=index-k*limit,其中k是一个整数,取适当值保证j落在区间[1,limit].该函数相当于index模limit再加1.该函数在循环、多阶段计划编制中特别有用.4)size(set_name)该函数返回集set_name的元素个数.在LINGO模型中,如果没有明确给出集的大小,则使用该函数能够使模型中的数据变化和集的大小改变更加方便.(4) 变量定界函数变量界定函数能够实现对变量取值围的附加限制,共4种:1)bin(x)表示限制就是x为0或1;2)bnd(L,x,U)表示限制变量x满足;3)free(x)表示取消对变量x的默认下界为0的限制,即x可以取任意实数;4)gin(x)表示限制变量x为整数.在默认情况下,LINGO规定变量是非负的,即下界值为0,上界为+∞.free取消了默认的下界为0的限制,使变量也可以取负值.bnd用于设定一个变量的上下界,它也可以取消默认下界为0的约束.(5) 概率论中相关函数1)pbn(p,n,x)二项分布的分布函数,当n和(或)x不是整数时,用线性插值法进行计算.2)pcx(n,x)自由度为n的χ2分布的分布函数在x点的取值.3)peb(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,且系统容量无限时的Erlang繁忙概率,多用于解决排队问题.4)pel(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,系统容量为有限时的Erlang繁忙概率,多用于解决排队问题.5)pfd(n,d,x)自由度为n和d的F分布的分布函数在x点的取值.6)pfs(load,x,c)当负荷上限为load,顾客数为c,平行服务台数量为x时,顾客源有限的Poisson服务系统的等待或有返回顾客数的期望值.load是顾客数乘以平均服务时间,再除以平均返回时间.当c和(或)x不是整数时,采用线性插值进行计算.7)phg(pop,g,n,x)超几何(Hypergeometric)分布的分布函数.pop表示产品总数,g是正品数.从所有产品中任意取出n(n≤pop)件.pop,g,n和x都可以是非整数,这时采用线性插值进行计算.8)ppl(a,x)Poisson分布的线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从均值为a的Poisson 分布.9)pps(a,x)均值为a的Poisson分布的分布函数在x点的取值.当x不是整数时,采用线性插值进行计算.10)psl(x)单位正态线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从标准正态分布.11)psn(x)标准正态分布的分布函数在x点的取值.12)ptd(n,x)自由度为n的t分布的分布函数在x点的取值.13)qrand(seed)产生(0,1)区间的拟随机数.qrand只允许在模型的数据部分使用,它将用拟随机数填满集属性.通常定义一个m×n的二维表,m表示运行实验的次数,n表示每次实验所需的随机数的个数.在行,随机数是独立分布的;在行间,随机数是非均匀的.这些随机数是用“分层取样”的方法产生的.(6) 金融函数目前LINGO提供了两个金融函数.1)fpa(I,n)返回如下情形的净现值:单位时段利率为I,连续n个时段支付,每个时段支付单位费用.若每个时段支付x单位的费用,则净现值可用x乘以fpa(I,n)得到.fpa的计算公式为.净现值就是在一定时期为了获得一定收益,在该时期初所支付的实际费用.2)fpl(I,n)返回如下情形的净现值:单位时段利率为I,第n个时段支付单位费用.fpl(I,n)的计算公式为.这两个函数间的关系:.(7)输入和输出函数输入和输出函数可以把模型与外部数据(如文本文件、数据库和电子表格等)连接起来.1)file函数该函数用于从外部数据文件中输入数据,它可以放在模型中任何地方.该函数的语法格式为file(’filename’).这里filename是文件名,可以采用相对路径和绝对路径两种表示方式.记录结束标记(~)之间的数据文件部分称为记录.如果数据文件中没有记录结束标记,那么整个文件被看作单个记录.除了记录结束标记外,从模型外部调用的文本和数据同在模型里是一样的.下面介绍一下在数据文件中的记录结束标记连同模型中file函数调用是如何工作的.当在模型中第一次调用file函数时,LINGO打开数据文件,然后读取第一个记录;第二次调用file 函数时,LINGO读取第二个记录等等.文件的最后一条记录可以没有记录结束标记,当遇到文件结束标记时,LINGO会读取最后一条记录,然后关闭文件.如果最后一条记录也有记录结束标记,那么直到LINGO 求解完成模型后关闭该文件.注意,如果有多个文件同时保持打开状态,可能就会导致一些问题,LINGO允许同时打开文件的上限数是16.在LINGO中不允许嵌套调用file函数.2)text函数该函数被用在数据部分,用来把求解结果输出至文本文件中.它可以输出集元素和集属性值.其语法为text([’filename’])这里filename是文件名,可以采用相对路径和绝对路径两种表示方式.如果忽略filename,那么数据就被输出到标准输出设备(大多数情形都是屏幕).text函数仅能出现在模型数据部分的一条语句的左边,右边是集名(用来输出该集的所有元素名)或集属性名(用来输出该集属性的值).用接口函数产生输出的数据定义称为输出操作.输出操作仅当求解器求解完模型后才执行,执行次序取决于其在模型中出现的先后.3)ole函数OLE是从EXCEL中引入或输出数据的接口函数,它是基于传输的OLE技术.OLE传输直接在存中传输数据,并不借助于中间文件.当使用OLE时,LINGO先装载EXCEL,再通知EXCEL装载指定的电子数据表,最后从电子数据表中获得Ranges.为了使用@OLE函数,必须有EXCEL5及其以上版本.@OLE函数可在数据部分和初始部分引入数据.OLE可以同时读集元素和集属性,集元素最好使用文本格式,集属性最好使用数值格式.原始集每个集元素需要一个单元(cell),而对于n元的派生集每个集元素需要n个单元,这里第一行的n个单元对应派生集的第一个集元素,第二行的n个单元对应派生集的第二个集元素,依此类推.4)ranged(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许减少的量.5)rangeu(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许增加的量.6)status()返回LINGO求解模型后的结束状态:0 --- Global Optimum(全局最优);1 --- Infeasible(不可行);2 --- Unbounded(无界);3 --- Undetermined(不确定);4 --- Feasible(可行);5 --- Infeasible or Unbounded(通常需要关闭“预处理”选项后重新求解模型,以确定模型究竟是不可行还是无界)6 --- Local Optimum(局部最优);7 --- Locally Infeasible(局部不可行,尽管可行解可能存在,但是LINGO并没有找到一个);8 --- Cutoff(目标函数的截断值被达到);9 --- Numeric Error(求解器因在某约束中遇到无定义的算术运算而停止).通常,如果返回值不是0,4或6时,那么解将不可信,几乎不能用.该函数仅被用在模型的数据部分来输出数据.7)dual(variable_or_row_name)返回变量的判别数(检验数)或约束行的对偶(影子)价格(dual prices).(8) 辅助函数1)if(logical_condition,true_result,false_result)if函数将评价一个逻辑表达式logical_condition是否为真,如果为真,返回true_ result,否则返回false_result.2)warn(’text’,logical_condition)如果逻辑条件logical_condition为真,则产生一个容为’text’的信息框.3)user(user_determined_arguments)该函数允许用户自己编写函数,可以用c语言等编写,返回值为用户函数计算的结果.3.5 LINGO程序出错信息在LINGO模型求解时,系统会对程序进行编译、求解或是执行于程序相关的命令,这都有可能出现一些语法或运行的错误.当出现时,系统会弹出一个出错报告框,显示错误代码,并且大致指出错误的所在位置.这些错误信息报告对于用户发现及改正程序中的错误有很大帮助.如附表3-4就出错提示信息,进行说明(没有说明的错误编号目前还没有使用).。