最新初中数学几何图形初步经典测试题附答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()
A.20°B.22°C.28°D.38°
【答案】B
【解析】
【分析】
过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.
【详解】
解:过C作CD∥直线m,
∴∠2=60°+45°-90°=15°.
故选:A.
【点睛】
此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE这一关系是解题的关键.
11.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )
A.厉B.害C.了D.我
【答案】D
【解析】
如图2,
当∠AOC在∠AOB的内部时,
∵∠AOB=60°,∠AOC=40°
∴∠BOC=∠AOB-∠AOC=60°-40°=20°
即∠BOC的度数是100°或20°
故选:C
【点睛】
本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.
18.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是( )
分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“的”与“害”是相对面,
“了”与“厉”是相对面,
“我”与“国”是相对面.
故选:D.
点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
∵AB=AC,BD=BC,
∴AD⊥BC,
∴PB=PC,
∴PC+PE=PB+PE,
∵ ,
∴当B、P、E共线时,PC+PE的值最小,此时BE是△ABC的中线,
∵AD也是中线,
∴点P是△ABC的重心,
故选:A.
【点睛】
此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.
5.如图,在正方形 中, 是 上一点, , 是 上一动点,则 的最小值是()
【详解】
解:A、根据作图方法可得AD是∠BAC的平分线,正确;
B、∵∠C=90°,∠B=30°,
∴∠CAB=60°,
∵AD是∠BAC的平分线,
∴∠DAC=∠DAB=30°,
∴∠ADC=60°,正确;
C、∵∠B=30°,∠DAB=30°,
∴AD=DB,
∴点D在AB的中垂线上,正确;
D、∵∠CAD=30°,
17.若∠AOB=60°,∠AOC=40°,则∠BOC等于()
A.100°B.20°C.20°或100°D.40°
【答案】C
【解析】
【分析】
画出符合题意的两个图形,根据图形即可得出答案.
【详解】
解:如图1,
当∠AOC在∠AOB的外部时,
∵∠AOB=60°,∠AOC=40°
∴∠BOC=∠AOB+∠AOC=60°+40°=100°
∵四边形ABCD为菱形,周长为12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四边形AEF′D是平行四边形,
∴EF′=AD=3.
∴EP+FP的最小值为3.
故选C.
考点:菱形的性质;轴对称-最短路线问题
10.如图,将三个同样的正方形的一个顶点重合放置,如果 °, °时,那么 的度数是()
最新初中数学几何图形初步经典测试题附答案
一、选择题
1.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=30°,则∠2等于()
A.40°B.60°C.50°D.70°
【答案】B
【解析】
【分析】
根据两直线平行内错角相等得 ,再根据直角三角板的性质得 ,即可求出∠2的度数.
【详解】
∵a∥b∥c
9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A.1B.2C.3D.4
【答案】C
【解析】
试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
【答案】C
【解析】
【分析】
先根据 得到 ,再通过对顶角的性质得到 ,最后利用三角形的内角和即可求出答案.
【详解】
解:给图中各角标上序号,如图所示:
∵
∴ (两直线平行,同位角相等),
又∵ (对顶角相等),
∴ .
故C为答案.
【点睛】
本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.
∵∠ABC=30°,∠BAC=90°,
∴∠ACB=60°,
∵直线m∥n,
∴CD∥直线m∥直线n,
∴∠1=∠ACD,∠2=∠BCD,
∵∠1=38°,
∴∠ACD=38°,
∴∠2=∠BCD=60°﹣38°=22°,
故选:B.
【点睛】
本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.
13.如图:点C是线段AB上的中点,点D在线段CB上,若AD=8,DB= ,则CD的长为()
19.如图,小强从A处出发沿北偏东70°方向行走,走至B处,又沿着北偏西30°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )
A.左转80°B.右转80°C.右转100°D.左转100°
【答案】C
【解析】
【分析】
过C点作CE∥AB,延长CB与点D,根据平行线的性质得出∠A+∠ABH=180°,∠ECB=∠ABC,求出∠ABH=110°,∠ABC=80°,即可求出∠ECB=80°,得出答案即可.
A.15°B.25°C.30°D.45°
【答案】A
【解析】
【分析】
根据∠2=∠BOD+EOC-∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度数从而求解.
【详解】
∵∠BOD=90°-∠3=90°-30°=60°,
∠EOC=90°-∠1=90°-45°=45°,
∵∠2=∠BOD+∠EOC-∠BOE,
15.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )
A.140° B.130° C.50° D.40°
【答案】C
【解析】
【分析】
根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.
【详解】
设这个角为α,则它的余角为90°-α,补角为180°-α,
A. B. C. D.
【答案】C
【解析】
【分析】
分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.
【详解】
解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕斜边所在直线旋转一周后形成的几何体为:
A.8B.9C.10D.11
【答案】C
【解析】
【分析】
连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.
【详解】
解:如图,连接 ,交 于 ,连接 ,则此时 的值最小
∵四边形 是正方形
关于 对称
;
故 的最小值是10,
故选:C.
【点睛】
本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.
B、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意.
C.根据平行线的性质可知:∠1=∠2,本选项不符合题意.
D、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.
故选:B.
【点睛】
本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
A.4B.3C.2D.1
【答案】D
【解析】
【分析】
根据线段成比例求出DB的长度,即可得到AB的长度,再根据中点平分线段的长度可得AC的长度,根据 即可求出CD的长度.
【详解】
∵
∴
∴
∵点C是线段AB上的中点
∴
∴
故答案为:D.
【点睛】
本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键.
根据题意得,180°-α=3(90°-α)+10°,
180°-α=270°-3α+10°,
解得α=50°.
故选C.
【点睛】
本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.
16.如图,直线 ,将一块含 角的直角三角尺( )按所示摆放.若 ,则 的大小是()
A. B. C. D.
6.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()
A. B.
C. D.
【答案】A
【解析】
【分析】
将展开图折叠还原成包装盒,即可判断正确选项.
【详解】
解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;
B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;
C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;
D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;
故选:A.
【点睛】
本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.
7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是
故选:A.
【点睛】
本题考查余角、补角的计算.
3.将一副三角板如下图放置,使点 落在 上,若 ,则 的度数为()
A.90°B.75°C.105°D.120°
【答案】B
【解析】
【分析】
根据平行线的性质可得 ,再根据三角形外角的性质即可求解 的度数.
【详解】
∵
∴
∴
故答案为:B.
【点睛】
本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.
4.在等腰 中, , 、 分别是 , 的中点,点 是线段 上的一个动点,当 的周长最小时, 点的位置在 的()
A.重心B.内心C.外心D.不能确定
【答案】A
【解析】
【分析】
连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.
【详解】
连接BP、BE,
∴
∵直角三角板的直角顶点落在直线b上
∴
∵∠1=30°
∴
故答案为:B.
【点睛】
本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.
2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()
A.35°B.45°C.55°D.65°
【答案】A
【解析】
【分析】
【详解】
解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°
【详解】
过C点作CE∥AB,延长CB与点D,如图
14.如图,在 中, , ,如图:(1)以 为圆心,任意长为半径画弧分别交 、 于点 和 ;(2)分别以 、 为圆心,大于 的长为半径画弧,两弧交于点 ;(3)连结 并延长交 于点 .根据以上作图过程,下列结论中错误的是()
A. 是 的平分线B.
C.点 在 的中垂线上D.
【答案】D
【解析】
【分析】
根据作图的过程可以判定AD是∠BAC的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.
故选C.
【点睛】
本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.
8.下列图形中 与 不相等的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据对顶角,平行线,等角的余角相等等知识一一判断即可.
【详解】
解:A、根据对顶角相等可知,∠1=wk.baidu.com2,本选项不符合题意.
∴CD= AD,
∵AD=DB,
∴CD= DB,
∴CD= CB,
S△ACD= CD•AC,S△ACB= CB•AC,
∴S△ACD:S△ACB=1:3,
∴S△DAC:S△ABD≠1:3,错误,
故选:D.
【点睛】
本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.
A.态 B.度 C.决 D.切
【答案】A
【解析】
【分析】
正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.
【详解】
正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.
故选A.
【点睛】
注意正方体的空间图形,从相对面入手,分析及解答问题.
A.20°B.22°C.28°D.38°
【答案】B
【解析】
【分析】
过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.
【详解】
解:过C作CD∥直线m,
∴∠2=60°+45°-90°=15°.
故选:A.
【点睛】
此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE这一关系是解题的关键.
11.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )
A.厉B.害C.了D.我
【答案】D
【解析】
如图2,
当∠AOC在∠AOB的内部时,
∵∠AOB=60°,∠AOC=40°
∴∠BOC=∠AOB-∠AOC=60°-40°=20°
即∠BOC的度数是100°或20°
故选:C
【点睛】
本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.
18.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是( )
分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“的”与“害”是相对面,
“了”与“厉”是相对面,
“我”与“国”是相对面.
故选:D.
点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
∵AB=AC,BD=BC,
∴AD⊥BC,
∴PB=PC,
∴PC+PE=PB+PE,
∵ ,
∴当B、P、E共线时,PC+PE的值最小,此时BE是△ABC的中线,
∵AD也是中线,
∴点P是△ABC的重心,
故选:A.
【点睛】
此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.
5.如图,在正方形 中, 是 上一点, , 是 上一动点,则 的最小值是()
【详解】
解:A、根据作图方法可得AD是∠BAC的平分线,正确;
B、∵∠C=90°,∠B=30°,
∴∠CAB=60°,
∵AD是∠BAC的平分线,
∴∠DAC=∠DAB=30°,
∴∠ADC=60°,正确;
C、∵∠B=30°,∠DAB=30°,
∴AD=DB,
∴点D在AB的中垂线上,正确;
D、∵∠CAD=30°,
17.若∠AOB=60°,∠AOC=40°,则∠BOC等于()
A.100°B.20°C.20°或100°D.40°
【答案】C
【解析】
【分析】
画出符合题意的两个图形,根据图形即可得出答案.
【详解】
解:如图1,
当∠AOC在∠AOB的外部时,
∵∠AOB=60°,∠AOC=40°
∴∠BOC=∠AOB+∠AOC=60°+40°=100°
∵四边形ABCD为菱形,周长为12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四边形AEF′D是平行四边形,
∴EF′=AD=3.
∴EP+FP的最小值为3.
故选C.
考点:菱形的性质;轴对称-最短路线问题
10.如图,将三个同样的正方形的一个顶点重合放置,如果 °, °时,那么 的度数是()
最新初中数学几何图形初步经典测试题附答案
一、选择题
1.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=30°,则∠2等于()
A.40°B.60°C.50°D.70°
【答案】B
【解析】
【分析】
根据两直线平行内错角相等得 ,再根据直角三角板的性质得 ,即可求出∠2的度数.
【详解】
∵a∥b∥c
9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A.1B.2C.3D.4
【答案】C
【解析】
试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
【答案】C
【解析】
【分析】
先根据 得到 ,再通过对顶角的性质得到 ,最后利用三角形的内角和即可求出答案.
【详解】
解:给图中各角标上序号,如图所示:
∵
∴ (两直线平行,同位角相等),
又∵ (对顶角相等),
∴ .
故C为答案.
【点睛】
本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.
∵∠ABC=30°,∠BAC=90°,
∴∠ACB=60°,
∵直线m∥n,
∴CD∥直线m∥直线n,
∴∠1=∠ACD,∠2=∠BCD,
∵∠1=38°,
∴∠ACD=38°,
∴∠2=∠BCD=60°﹣38°=22°,
故选:B.
【点睛】
本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.
13.如图:点C是线段AB上的中点,点D在线段CB上,若AD=8,DB= ,则CD的长为()
19.如图,小强从A处出发沿北偏东70°方向行走,走至B处,又沿着北偏西30°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )
A.左转80°B.右转80°C.右转100°D.左转100°
【答案】C
【解析】
【分析】
过C点作CE∥AB,延长CB与点D,根据平行线的性质得出∠A+∠ABH=180°,∠ECB=∠ABC,求出∠ABH=110°,∠ABC=80°,即可求出∠ECB=80°,得出答案即可.
A.15°B.25°C.30°D.45°
【答案】A
【解析】
【分析】
根据∠2=∠BOD+EOC-∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度数从而求解.
【详解】
∵∠BOD=90°-∠3=90°-30°=60°,
∠EOC=90°-∠1=90°-45°=45°,
∵∠2=∠BOD+∠EOC-∠BOE,
15.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )
A.140° B.130° C.50° D.40°
【答案】C
【解析】
【分析】
根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.
【详解】
设这个角为α,则它的余角为90°-α,补角为180°-α,
A. B. C. D.
【答案】C
【解析】
【分析】
分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.
【详解】
解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕斜边所在直线旋转一周后形成的几何体为:
A.8B.9C.10D.11
【答案】C
【解析】
【分析】
连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.
【详解】
解:如图,连接 ,交 于 ,连接 ,则此时 的值最小
∵四边形 是正方形
关于 对称
;
故 的最小值是10,
故选:C.
【点睛】
本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.
B、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意.
C.根据平行线的性质可知:∠1=∠2,本选项不符合题意.
D、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.
故选:B.
【点睛】
本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
A.4B.3C.2D.1
【答案】D
【解析】
【分析】
根据线段成比例求出DB的长度,即可得到AB的长度,再根据中点平分线段的长度可得AC的长度,根据 即可求出CD的长度.
【详解】
∵
∴
∴
∵点C是线段AB上的中点
∴
∴
故答案为:D.
【点睛】
本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键.
根据题意得,180°-α=3(90°-α)+10°,
180°-α=270°-3α+10°,
解得α=50°.
故选C.
【点睛】
本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.
16.如图,直线 ,将一块含 角的直角三角尺( )按所示摆放.若 ,则 的大小是()
A. B. C. D.
6.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()
A. B.
C. D.
【答案】A
【解析】
【分析】
将展开图折叠还原成包装盒,即可判断正确选项.
【详解】
解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;
B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;
C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;
D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;
故选:A.
【点睛】
本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.
7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是
故选:A.
【点睛】
本题考查余角、补角的计算.
3.将一副三角板如下图放置,使点 落在 上,若 ,则 的度数为()
A.90°B.75°C.105°D.120°
【答案】B
【解析】
【分析】
根据平行线的性质可得 ,再根据三角形外角的性质即可求解 的度数.
【详解】
∵
∴
∴
故答案为:B.
【点睛】
本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.
4.在等腰 中, , 、 分别是 , 的中点,点 是线段 上的一个动点,当 的周长最小时, 点的位置在 的()
A.重心B.内心C.外心D.不能确定
【答案】A
【解析】
【分析】
连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.
【详解】
连接BP、BE,
∴
∵直角三角板的直角顶点落在直线b上
∴
∵∠1=30°
∴
故答案为:B.
【点睛】
本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.
2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()
A.35°B.45°C.55°D.65°
【答案】A
【解析】
【分析】
【详解】
解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°
【详解】
过C点作CE∥AB,延长CB与点D,如图
14.如图,在 中, , ,如图:(1)以 为圆心,任意长为半径画弧分别交 、 于点 和 ;(2)分别以 、 为圆心,大于 的长为半径画弧,两弧交于点 ;(3)连结 并延长交 于点 .根据以上作图过程,下列结论中错误的是()
A. 是 的平分线B.
C.点 在 的中垂线上D.
【答案】D
【解析】
【分析】
根据作图的过程可以判定AD是∠BAC的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.
故选C.
【点睛】
本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.
8.下列图形中 与 不相等的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据对顶角,平行线,等角的余角相等等知识一一判断即可.
【详解】
解:A、根据对顶角相等可知,∠1=wk.baidu.com2,本选项不符合题意.
∴CD= AD,
∵AD=DB,
∴CD= DB,
∴CD= CB,
S△ACD= CD•AC,S△ACB= CB•AC,
∴S△ACD:S△ACB=1:3,
∴S△DAC:S△ABD≠1:3,错误,
故选:D.
【点睛】
本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.
A.态 B.度 C.决 D.切
【答案】A
【解析】
【分析】
正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.
【详解】
正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.
故选A.
【点睛】
注意正方体的空间图形,从相对面入手,分析及解答问题.