液压泵变量与马达变量.

合集下载

液压泵和液压马达的主要参数及计算公式

液压泵和液压马达的主要参数及计算公式
最高转速
在额定压力下,超过额定转速而允许短暂运行的最大转速
最低转速
正常运转所允许的最低转速
同左(马达不出现爬行现象)


输入功率Pt
W
驱动泵轴的机械功率
Pt=pQ/η
马达入口处输出的液压功率
Pt=pQ
输出功率P0
泵输出的液压功率,其值为泵实际输出的实际流量和压力的乘积
P0=pQ
马达输出轴上输出的机械功率





q0
ml/r
Q=q0nηv10-3
Pt=pQ/60η
Q=q0n10-3/ηv
T0=pq0ηm/2π
n
r/min
Q
L/min
p
MPa
Pt
kW
T0
N.m
液压泵和液压马达的主要参数及计算公式
液压泵和液压马达的主要参数及计算公式
参数名称
单位
液压泵
液压马达


?、


排量q0
m3/r
每转一转,由其密封腔内几何尺寸变化计算而得的排出液体的体积
理论流量Q0
m3/s
泵单位时间内由密封腔内几何尺寸变化计算而得的排出液体的体积
Q0=q0n/60
在单位时间内为形成指定转速,液压马达封闭腔容积变化所需要的流量
ηv=Q/Q0
马达的理论流量与实际流量的比值
ηv=Q0/Q
机械效率ηm
泵理论扭矩由压力作用于转子产生的液压扭矩与泵轴上实际输出扭矩之比
ηm=pT0/2πTt
马达的实际扭矩与理论扭矩之比值
ηm=2πT0/pq0
总效率η
泵的输出功率与输入功率之比

液压泵和液压马达的主要参数及计算公式

液压泵和液压马达的主要参数及计算公式
精选资料,欢迎下载

马达的理论流量与实际流量的泵的实际输出流量与理论流容积效率比值量的比值ηv/Qη=Q=Q/Qη0vv0泵理论扭矩由压力作用于马达的实际扭矩与理论扭矩之转子产生的液压扭矩与泵轴机械效率效比值上实际输出扭矩之比η率m/pqTη=2π00mTπη=pT/2tm0泵的输出功率与输入功率之马达输出的机械功率与输入的总效率η比ηη液压功率之比η=mvηηη=mvml/rq0r/minn单-3-3ηn10/Q=qnQ=q位η10L/minQvv00换

液压泵和液压马达的主要参数及计算公式液பைடு நூலகம்泵和液压马达的主要参数及计算公式
液压马达单位参数名称泵液压每转一转,由其密封腔内几何尺寸变化计算而得的排出液体的3/rqm排量0体积排泵单位时间内由密封腔内在单位时间内为形成指定转量几何尺寸变化计算而得的排速,液压马达封闭腔容积变化所理论流量、出液体的体积需要的流量Q0流3/smn/60Q=qQn/60=q0000量马达进口处流量泵工作时出口处流量Q实际流量ηQ=qη/60n/60Q=qnv0v0在正常工作条件下,按试验标准规定能连续运转的最高压力额定压力最高压力按试验标准规定允许短暂运行的最高压力压Papmax力工作压力泵工作时的压力p额定转速在额定压力下,能连续长时间正常运转的最高转速n转r/min最高转速速在额定压力下,超过额定转速而允许短暂运行的最大转速最低转速同左(马达不出现爬行现象)正常运转所允许的最低转速输入功率驱动泵轴的机械功率马达入口处输出的液压功率PP=pQP=pQ/ηttt泵输出的液压功率,其值为泵马达输出轴上输出的机械功率输出功率实际输出的实际流量和压力的功Wη乘积=pQPP率00=pQP0Tn/30Tn/30=PππP=0t机械功率N.m压力为p时泵的输入扭矩或马达的输出扭矩,T–液体压力作用下液压马达转理论扭矩子形成的扭矩扭N.m矩T液压马达轴输出的扭矩液压泵输入扭矩T0t实际扭矩π=pqTT/2η=pqπη/2m0mt00

液压变量泵(马达)变量调节原理与应用

液压变量泵(马达)变量调节原理与应用

液压变量泵(马达)变量调节原理与应用
液压变量泵(马达)是液压传动中一种常用的液压元件,它有着广泛的应用范围和较高的性能指标。

液压变量泵(马达)的可变容积能力是其最大的特点之一,而其变量调节原理与应用则是实现这一特点的关键。

一、变量调节原理
液压变量泵(马达)的可变容积主要通过改变工作腔内有效容积实现。

这种有效容积的变化可以通过机械、液压或电控手段来实现,形成了不同的变量调节方式。

目前主要有以下几种方式:
1. 机械式变量调节
机械式变量调节主要通过改变可变容积泵或马达的偏心距或液压缸路程,实现泵或马达的输出流量调节。

此种方式调节简单,但调节范围较小、调节量不稳定,适用范围较窄。

以上三种方式各有优劣,应根据液压传动系统的实际需要选择适合的变量调节方式。

二、应用
液压变量泵(马达)是液压传动中实现定量供油的重要元件,其可变容积的特点使得其能够适应不同的负载需求,进而实现更高的效率和更低的能耗。

液压变量泵(马达)广泛应用于各种液压传动系统中,如工程机械、农业机械、船舶、飞机和机床等领域。

液压变量泵(马达)的特点决定了其在液压传动中具有广泛的应用前景。

未来,液压变量泵(马达)会更加普及化,应用范围更加广泛,同时为了适应能源的节约和减排等要求,高性能、高效率、节能的液压变量泵(马达)将成为液压传动领域的主流趋势。

液压泵和液压马达的主要参数及计算公式

液压泵和液压马达的主要参数及计算公式
液压泵和液压马达的主要参数及计算公式
液压泵和液压马达的主要参数及计算公式
参数名称
单位
液压泵
液压马达





排量q0
m3/r
每转一转,由其密封腔内几何尺寸变化计算而得的排出液体的体积
理论流量Q0
m3/s
泵单位时间内由密封腔内几何尺寸变化计算而得的排出液体的体积
Q0=q0n/60
在单位时间内为形成指定转速,液压马达封闭腔容积变化所需要的流量
P0=pQηቤተ መጻሕፍቲ ባይዱ
机械功率
Pt=πTn/30
P0=πTn/30
T–压力为p时泵的输入扭矩或马达的输出扭矩,N.m


理论扭矩
N.m
液体压力作用下液压马达转子形成的扭矩
实际扭矩
液压泵输入扭矩Tt
Tt=pq0/2πηm
液压马达轴输出的扭矩T0
T0=pq0ηm/2π


容积效率ηv
泵的实际输出流量与理论流量的比值
最高转速
在额定压力下,超过额定转速而允许短暂运行的最大转速
最低转速
正常运转所允许的最低转速
同左(马达不出现爬行现象)


输入功率Pt
W
驱动泵轴的机械功率
Pt=pQ/η
马达入口处输出的液压功率
Pt=pQ
输出功率P0
泵输出的液压功率,其值为泵实际输出的实际流量和压力的乘积
P0=pQ
马达输出轴上输出的机械功率





q0
ml/r
Q=q0nηv10-3
Pt=pQ/60η
Q=q0n10-3/ηv

液压泵和液压马达的主要参数及计算公式

液压泵和液压马达的主要参数及计算公式
P0=pQ
马达输出轴上输出的机械功率 P0=pQη
机械功率
Pt=πTn/30
P0=πTn/30
T – 压力为 p 时泵的输入扭矩或马达的输出扭矩,N.m
理论扭矩 扭 矩
实际扭矩
N.m 液压泵输入扭矩 Tt Tt=pq0/2πηm
液体压力作用下液压马达转子形成的扭 矩
液压马达轴输出的扭矩 T0 T0=pq0ηm/2π
m3/s
Q0=q0n/60
Q0=q0n/60
泵工作时出口处流量 Q=q0nηv/60
马达进口处流量 Q=q0n/60ηv
额定压力
压 力 最高压力 pmax
Pa
工作压力 p
在正常工作条件下,按试验标准规定能连续运转的最高压力 按试验标准规定允许短暂运行的最高压力 泵工作时的压力
额定转速 n 转 速 最高转速
液压泵和液压马达的主要参数及计算公式
参数名称
单位
液压泵
液压马达
排量 q0 排 量 、 理论流量 Q0 流 量
实际流量 Q
m3/r 每转一转,由其密封腔内几何尺寸变化计算而得的排出液体的体积
泵单位时间内由密封腔内几何尺寸变化 在单位时间内为形成指定转速,液压马
计算而得的排出液体的体积
达封闭腔容积变化所需要的流量
最低转速
r/min
在额定压力下,能连续长时间正常运转的最高转速
在额定压力下,超过额定转速而允许短暂运行的最大转速
正常运转所允许的最低转速
同左(马达不出现爬行现象)
输入功率 Pt
驱动泵轴的机械功率 Pt=pQ/η
马达入口处输出的液压功率 Pt=pQ
功 输出功率 P0 率
W
泵输出的液压功率,其值为泵实际输出 的实际流量和压力的乘积

液压泵和液压马达的主要参数及计算公式

液压泵和液压马达的主要参数及计算公式

液压泵和液压马达的主要参数及计算公式液压泵和液压马达是液压系统中的核心部件。

液压泵负责将液压油从储油器中吸入并提供给液压系统,液压马达通过接收液压系统提供的液压油来驱动执行机构,完成所需的工作。

以下是液压泵和液压马达的主要参数及计算公式。

一、液压泵的主要参数及计算公式:1.流量(Q):液压泵的输出流量,通常以升/分钟或立方米/小时为单位。

计算公式为:Q=V*n其中,Q为流量,V为排量,n为转速。

2.排量(V):液压泵每转一圈提供的油液体积。

计算公式为:V=A*L其中,A为泵的活塞面积,L为活塞行程。

3.转速(n):液压泵每分钟转动的圈数。

4.输出压力(P):液压泵提供的最大工作压力。

单位通常为兆帕(MPa)。

5.效率(η):液压泵的输出功率与输入功率之比。

其中,P为液压泵的工作压力,Q为液压泵的流量,P0为液压泵的输入功率。

二、液压马达的主要参数及计算公式:1.转速(n):液压马达的输出转速。

2.扭矩(T):液压马达的输出扭矩。

计算公式为:T=P*V/1000其中,T为扭矩,P为液压马达的工作压力,V为液压马达的排量。

3.输出功率(P):液压马达的输出功率。

计算公式为:P=T*n/1000其中,P为输出功率,T为扭矩,n为转速。

4.效率(η):液压马达的输出功率与输入功率之比。

η=(P*1000)/(P0*n)其中,P为输出功率,P0为输入功率,n为转速。

以上是液压泵和液压马达的主要参数及计算公式。

根据这些参数,我们可以根据液压系统的需求选择适合的液压泵和液压马达,以确保系统的工作效率和性能。

《液压与气压传动》(第3版)习题答案刘建明

《液压与气压传动》(第3版)习题答案刘建明

《液压与气压传动》教材(第3版)习题参考答案第1章习题P4 小节习题:(1)机械能、液压能。

(2)动力元件、执行元件、控制调节元件、辅助元件和工作介质。

(3)动力元件。

(4)机械能、机械能。

(5)压力、流量和流动方向。

(6)1.液压传动的优点1)能方便地实现无级调速,且调速范围大。

2)容易实现较大的力和转矩的传递。

液压传动装置的体积小、重量轻、运动惯性小。

3)液压传动装置工作平稳,反应速度快,换向冲击小,便于实现频繁换向。

4)易于实现过载保护,而且工作油液能实现自行润滑,从而提高元件的使用寿命。

5)操作简单,易于实现自动化。

6)液压元件易于实现标准化、系列化和通用化。

2.液压传动的缺点1)液体的泄漏和可压缩性使液压传动难以保证严格的传动比。

2)在工作过程中能量损失较大,传动效率较低。

3)对油温变化比较敏感,不宜在很高或很低的温度下工作。

4)液压传动出现故障时,不易诊断。

P7 小节习题:(1)由于液体内磨擦力的作用,而产生阻止液层间的相对滑动。

(2)动力黏度、运动黏度、相对黏度。

(3)运动黏度,υ,m2/s,mm2/s。

(4)黏度较低。

(5) 40℃运动黏度,mm2/s。

(6)石油型、乳化型和合成型。

(7)水分、空气、微小固体颗粒、胶质状生成物。

(8)a.堵塞过滤器,使液压泵吸油困难,产生噪声,堵塞阀类元件小孔或缝隙,使阀动作失灵。

微小固体颗粒还会加剧零件磨损,擦伤密封件,使泄漏增加。

b.水分和空气混入会降低液压油的润滑能力,加速氧化变质,产生气蚀;还会使液压液压系统出现振动、爬行等现象。

(9)a.严格清洗元件和系统。

b.尽量减少外来污染物。

c.控制液压油的温度。

d.定期检查、清洗和更换滤芯。

e.定期检查和更换液压油。

本章习题 1.填空题(1)法向力, N/㎡ 即 pa 。

(2)压力 和 流量 。

(3)绝对压力 和 相对压力,相对压力 。

(4)输入流量。

(5)沿程压力损失 和局部压力损失 。

液压三种调速回路特性比较分析报告

液压三种调速回路特性比较分析报告

液压三种调速回路特性分析报告学院:机械工程学院班级:机师1111姓名:***学号:***********液压三种调速回路特性分析报告下面分析三种调速回路为什么在速度稳定性、承载能力、调速范围、功率特性、适用范围等特性方面不同。

三种调速回路特性比较1、首先分析比较进出油回路与旁油回路在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:(1)进油节流调速回路:液压缸动作后,活塞杆缓慢动作,逐渐调大通流面积可以观察到活塞杆运动速度增大;在运行过程中,可以看到活塞杆动作时快时慢,这个是由于进油口有节流阀限制流量,而在回油口又没有背压阀的原因,所以运动平稳性差;通常在刚启动时由于有节流阀串联在进油口,所以启动冲击小;另外多余的油液被溢出,所以工作效率低。

在本回路中,工作部件的运动速度随外负载的增减而忽快忽慢,难以得到准确的速度,故适用于轻负载或负载变化不大,以及速度不高的场合。

(2)回油节流调速回路:节流阀在回油路中,所以这种回路多用在功率不大,但载荷变化较大,运动平稳性要求较高的液压系统中,如磨削和精镗的组合机床等。

(3)旁路节流调速回路:与前两种回路的调速方法不同,它的节流阀和执行元件是并联关系,节流阀开的越大,活塞杆运行越慢。

这种回路适用于负载变化小,对运动平稳性要求不高的高速大功率的场合,例如牛头刨床的主传动系统,有时候也可用在随着负载增大,要求进给速度自动减小的场合。

2、分析比较用节流阀和用调速阀在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:由于调速阀本身能在负载变化的变件下保证节流阀进、出油口间压差基本不变,通过的流量也基本不变,因而回路的速度-负载性将得到改善,旁路节流调速回路的承载能力也不会因活塞速度降低而减小。

调速阀节流调速回路的速度-负载特性曲线如图7-6所示3、分析比较限压式和稳流式容积节流调速回路在速度稳定性、承载能力、调速范围、功率特性、适用范围等方面的区别:(1)限压式容积节流调速回路变量泵输出的流量P q 和进入液压缸的流量1q 相适应。

液压泵和液压马达的主要参数及计算公式

液压泵和液压马达的主要参数及计算公式
P0=pQ
马达输出轴上输出的机械功率
P0=pQη
机械功率
Pt=πTn/30
P0=πTn/30
T?–?压力为p时泵的输入扭矩或马达的输出扭矩,N.m


理论扭矩
N.m
液体压力作用下液压马达转子形成的扭矩
实际扭矩
液压泵输入扭矩Tt
Tt=pq0/2πηm
液压马达轴输出的扭矩T0
T0=pq0ηm/2π


容积效率ηv
泵的实际输出流量与理论流量的比值
ηv=Q/Q0
马达的理论流量与实际流量的比值
ηv=Q0/Q
机械效率ηm
泵理论扭矩由压力作用于转子产生的液压扭矩与泵轴上实际输出扭矩之比
ηm=pT0/2πTt
马达的实际扭矩与理论扭矩之比值
ηm=2πT0/pq0
总效率η
泵的输出功率与输入功率之比
η=ηvηm
马达输出的机械功率与输入的液压功率之比η=ηvηm
液压泵和液压马达的主要参数及计算公式
液压泵和液压马达的主要参数及计算公式
液压泵和液压马达的主要参数及计算公式
参数名称
单位
液压泵
液压马达


?、


排量q0
m3/r
每转一转,由其密封腔内几何尺寸变化计算而得的排出液体的体积
理论流量Q0
m3/s
泵单位时间内由密封腔内几何尺寸变化计算而得的排出液体的体积
Q0=q0n/60
在单位时间内为形成指定转速,液压马达封闭腔容积变化所需要的流量
Q0=q0n/60
实际流量Q
泵工作时出口处流量
Q=q0nηv/60
马达进口处流量

变量泵定量马达调速回路

变量泵定量马达调速回路

变量泵定量马达调速回路
变量泵定量马达调速回路是一种常见的工业控制系统,用于控
制液压马达的转速和方向。

这种调速回路通常由变量泵、定量马达、压力控制阀、流量控制阀和反馈传感器等组成。

通过精确调节泵的
输出流量和压力,以及控制流向阀的开合状态,可以实现对马达的
精准调速和方向控制。

在变量泵定量马达调速回路中,变量泵负责提供液压能源,其
输出流量和压力可以通过调节泵的转速或者改变泵的排量来实现。

定量马达则负责将液压能源转化为机械能,驱动机械装置进行工作。

压力控制阀和流量控制阀则起到调节和控制液压系统压力和流量的
作用,保证系统稳定运行。

在调速回路中,反馈传感器扮演着关键的角色,它可以实时监
测马达的转速和位置,并将反馈信号传递给控制系统。

控制系统根
据反馈信号对变量泵和流向阀进行调节,以实现对马达转速和方向
的精确控制。

变量泵定量马达调速回路具有精度高、响应快、可靠性强等优点,广泛应用于各种工业设备中,如机床、起重机、注塑机等。


不仅可以提高设备的工作效率和精度,还可以减少能源消耗,降低设备的维护成本,是一种非常重要的控制系统。

随着科技的不断进步和工业自动化水平的提高,变量泵定量马达调速回路将会有更广阔的应用前景。

第三章—液压泵和液压马达

第三章—液压泵和液压马达

第三章 液压泵和液压马达
该泵配油盘上的吸油窗口和压油窗口对泵的中心线是对称的 。如图所示,泵工作时,油泵出口压力经泵内通道作用在小柱塞 面积上,这样柱塞上的作用力 F PA与弹簧的作用力方向相反。 当PA=KSX0时,柱塞上所受的液压力与弹簧初始力相平衡,此时的 压力P称为泵的限定压力,用PB表示则: PB=KSX0/A 系统的压力P< PB 时,则:PA<KSX0 这表明定子不动,最大偏心距保持不变,泵也保持最大流量。 当系统的压力P> PB 时,则: PA>KSX0 这表明压力油的作用力大于弹簧的作用力,使定子向右移动, 弹簧被压缩,偏心距e减小,泵的流量也随之减小。
第三章 液压泵和液压马达
3.5 柱塞式液压泵
柱塞式液压泵按柱塞在转子内排列方式不同,分为径 向柱塞泵和轴向柱塞泵,轴向柱塞泵又可分为斜盘和斜轴两 大类。柱塞泵由于间隙泄露小、构件受力合理,所以可在高、 超高压力下满意地工作,广泛用于高压、大功率的液压传动 系统中。
第三章 液压泵和液压马达
柱塞泵的优点: 1.参数高:额定压力高,转速高,泵 的驱动功率大; 2.效率高,容积效率为95%左右,总效率为90%左 右; 3.寿命长; 4.变量方便,形式多; 5.单位功率的重量轻; 6.柱塞泵主要零件均受压应力,材料强度性能可得 以充分利用;
第三章 液压泵和液压马达
应用举例 限压式变量叶片泵对既要实现快速行 程,又要实现工作进给(慢速移动)的执行元件来说 是一种合适的油源;快速行程需要大的流量,负载压 力较低,正好使用其AB段曲线部分;工作进给时负载 压力升高,需要流量减小,正好使用其BC段曲线部分。 例如组合机床动力滑台的进给系统、定位和加紧系统 等。 机床加工件:未加工之前或回程要求快;加工时 流量小、速度慢。

液压泵与液压马达

液压泵与液压马达

目录前言第一章液压泵与液压马达1概述1.1液压泵和液压马达的分类……1.2液压泵和液压马达的主要参数和常用计算公式1.3液压泵和液压马达的结构特点1.4液压泵的变量方式和控制方式1.5液压泵和液压马达的选择和应用2齿轮泵和齿轮马达2.1概述2.2 CB系列齿轮泵2.3CBG系列齿轮泵和CMG系列齿轮泵马达2.4CBL系列齿轮泵2.5 CBX3系列齿轮泵2.6 CBK系列高压齿轮泵2.7 CMK1系列齿轮马达2.8 CB(M)KO系列齿轮泵和齿轮马达2.9 CBY系列齿轮泵2.10 CBC2系列齿轮泵2.11 CPC4系列齿轮泵2.13G2系列齿轮泵2.14 GPA系列内啮合齿轮泵2.15GP3型内啮合齿轮泵2.16NB系列内啮合齿轮泵3叶片泵和叶片马达3.1概述3.2YB-E系列叶片泵3.3 YB-B系列叶片泵3.4 SV系列叶片泵3.5 T6系列叶片泵3.6 YB1系列叶片泵3.7D7系列叶片泵3.8 PV2R系列叶片泵3.9YBN系列限压变量叶片泵3.10YMF-E型叶片马达4螺杆泵4.1概述4.2国产三螺杆泵主要型号及规格4.3LB型三螺杆泵5轴向柱塞泵马达5.1概述5.2A2F6.1系列斜轴式轴向柱塞定量泵和马达5.3 A2F6.1E系列(内藏)斜轴式轴向柱塞定量泵和马达5.4A7V系列斜轴式轴向柱塞变量泵5.5A6VM型斜轴式变量液压马达5.6A8V60斜轴式轴向柱塞变量双泵5.7ZB/ZM型斜轴式轴向柱塞变量双泵/马达5.8A2V系列斜轴式轴向柱塞变量泵5.9A4V斜盘式轴向柱塞变量泵5.10A10V斜盘式轴向柱塞变量泵5.11PVB 系列斜盘式轴向柱塞变量泵5.12CY14-IB系列斜盘式轴向柱塞泵和马达5.13森斯特通轴和马达5.14AR、A和AH系列轴向柱塞变量泵6 SXM系列双斜盘轴向柱塞6.1型号说明6.2主要技术参数6.3外型和安装连接尺寸7径向柱塞泵7.1概述7.20514型径向柱塞泵8曲轴连杆式液压马达及其改进产品8.1概述8.2JM型曲轴连杆式液压马达及其改进产品8.3JM23a-D0.09型高水基液压马达8.4IJMD型曲轴连杆式液压马达8.5IJMF型曲轴连杆式液压马达8.6JMDG型曲轴连杆式液压马达8.7BJM系列摆缸式液压马达9内曲线径向柱塞式液压马达9.1概述9.2NJM系列横梁传力式内曲线液压马达9.3QJM系列球塞式内曲线马达10摆线液压马达10.1概述10.2BM-C、BM-E、BM-F系列摆线齿轮马达10.3BYM系列摆线马达10.4BM1 BM2BM3系列摆线马达10.5YMC系列摆线马达10.63MC系列摆线马达10.7BM3-D系列摆线马达10.8查林(char-Lynn)系列摆线马达10.9丹佛斯摆线马达11摆动液压马达11.1概述11.2YM系列单叶片式摆动液压马达11.3HR系列叶片式摆动液压马达11.4TUB系列齿轮齿条系列叶片式摆动液压马达第二章液压缸1.液压缸的类型、典型结构及安装连接方式1.1液压缸的类型1.3液压缸的典型结构1.4液压缸的安装连接方式2. 液压缸的基本参数及常用计算公式2.1压力2.2液压缸的基本尺寸参数2.3液压缸的理论推力和拉力2.4效率2.5液压缸负载率2.6活塞的线速度2.7活塞的作用力F2.8活塞的加(减)线速度a2.9液压缸的流量qv2.10液压缸的功率p3. 液压缸的设计与计算3.1设计步骤3.2结构设计3.3缓冲装置3.4排气装置3.5油口尺寸3.6安装连接元件3.7液压缸的设计和使用中的几个问题3.8液压缸典型产品介绍第三常规液压阀1常规控制阀的分类2液压阀的安装连接3压力控制阀3.1 溢流阀3.2电磁溢流阀3.3卸荷溢流阀3.4顺序阀3.5平衡阀3.6减压阀3.7压力控制阀产品介绍4流量控制阀4.1节流阀及单向节流阀4.2行程节流阀4.3调速阀及单向调速阀4.4溢流节流阀4.5流量控制阀产品介绍5方向控制阀5.1方向控制阀分类5.2换向阀的滑阀机能5.3单向阀5.4液控单向阀5.5充液阀5.6电磁换向阀5.7电磁球阀5.8液控换向阀和电液换向阀5.9手动换向阀5.10方向阀的其他品牌5.11方向控制阀产品介绍第四章二通插装阀1概述2主要技术参数3插件3.1插件面积比3.2插件结构3.3各种插件的型号、机能符号和功能代号4盖板功能与机能符号5二通插装阀的方向控制组件(包括带有节流控制组件)5.1单向阀功能5.2换向阀的功能(通径16至40)5.3单向阀、换向阀的各种盖板尺寸6二通插装阀的压力控制组件6.1溢流阀(通径16至40)6.2电磁溢流阀(通径16至40)6.3比例溢流阀(通径16至40)6.4卸荷溢流阀(通径16至40)6.5减压阀(通径16至40)6.6二通插装阀各种压力阀控制面板7比例流量控制组件7.1凡尔维斯脱比例节流阀的功能符号7.2凡尔维斯脱比例节流阀的主要技术参数。

第3章_液压泵与液压马达1

第3章_液压泵与液压马达1
降低噪声除了设计时要注意外,使用时也需要重视。
3.1 液压泵与液压马达概述
3.1.4 液压泵和液压马达的分类
按运动部件的形状和运动方式分:
齿轮泵(马达) 叶片泵(马达) 柱塞泵(马达) 螺杆泵(马达)
按排量能否改变分类:
定量泵(马达) 变量泵(马达)
按流量方向是否可以改变分:
单向变量泵(马达) 双向变量泵(马达)
排油过程: 密封容积减小
两个条件: 油箱通大气
配油装置
泵和马达的结构分析基础
3.1 液压泵与液压马达概述
液压泵的作用 (1)液压泵将机械能转换为液压能; (2)建立足够的压力以克服负载; (3)提供稳定的流量以满足执行元件运动速度的要求。
抓住密封容积的形成和变化是研究了解 泵结构特点和泵工作原理的关键
何谓配油? 配油方式?
⑶ 泵工作的两个条件:
油箱通大气或作用一定压力;配油(配流)装置不可少。
⑷ 泵输出压力取决于油液流动时所遇到的阻力大小;
⑸ 流量的建立靠密封容积的变化量和变化速率。
3.1 液压泵与液压马达概述
3.1.1 液压泵的工作原理
由上述原理知,液压泵工作的基本条件是:
1.必须构成封闭容积,并且容积可变;
流量脉动率
p(qma)sxhqp(qmi)nsh10% 0
产生流量脉动的原因 在轮齿不同的啮合点,密封容积的变化率不一样, 因此,瞬时输出的流量是变化的。
危害 流量脉动造成压力脉动,影响执行元件的工作平稳性。
1. 例:如图所示的齿
轮泵:
(1)试确定该泵有几个吸油口和压油口? (2)若三个齿轮的结构相同,其顶圆直径=48mm,齿宽B= 25mm,齿数z=14,n=1450r/min,容积效率,试求该泵的理 论流量和实际流量。 解:

液压元件(液压泵、马达)

液压元件(液压泵、马达)

• 内啮合齿轮泵的缺点是齿形复杂,加工困难,价格较贵, 且不适合高压工况。
1.3 柱塞泵
柱塞泵是通过柱塞在柱塞孔内往复运动时密封工作容 积的变化来实现吸油和排油的。柱塞泵的特点是泄漏小、 容积效率高,可以在高压下工作。 轴向柱塞泵可分为斜盘式和斜轴式两大类。
1.3.1 斜盘式轴向柱塞泵
斜盘1和配油盘4不动,传动轴5带动缸体3、柱塞2一起转动。 传动轴旋转时,柱塞2在其沿斜盘自下而上回转的半周内逐
1.1 液压泵、马达概述
机械损失 机械损失是指因摩擦而造成的转矩上的损失。 对液压泵来说,泵的驱动转矩总是大于其理论上需要的驱动 转矩,设转矩损失为 T f ,理论转矩为 Tt ,则泵实际输入转矩 为 T Tt T f ,用机械效率 m 来表征泵的机械损失,则
Tt T m
1.1 液压泵、马达概述
q (6.66 ~ 7) zm 2 bnv
上式是齿轮泵的平均流量。实际上,在齿轮啮合过 程中,排量是转角的周期函数,因此瞬时流量是脉动的。 脉动的大小用脉动率表示。
q q 若用 q max 、 min 来表示最大、最小瞬时流量, 0 表示 平均流量,则流量脉动率为
q max q min q0
T Tt m
1.1 液压泵、马达概述
马达的机械损失
T Tt m
液压马达的总效率等于其容积效率和机械效率的乘积。
v m
液压泵、马达的容积效率和机械效率在总体上与油液的 泄漏和摩擦副的摩擦损失有关。
1.2 齿轮泵
齿轮泵是一种常用的液压泵,它的主要优点是结构简 单,制造方便,价格低廉,体积小,重量轻,自吸性好, 对油液污染不敏感,工作可靠;其主要缺点是流量和压力 脉动大,噪声大,排量不可调。

变量泵变量马达容积调速回路

变量泵变量马达容积调速回路

变量泵变量马达容积调速回路1 引言变量泵变量马达容积调速回路是一种在机械系统中广泛应用的技术。

它通过控制液压马达和水泵的容积大小来达到调节机械设备运行的速度和负载的目的。

本篇文章将从原理、应用、优缺点等多个方面探讨该技术的相关内容。

2 原理变量泵变量马达容积调速回路的基本原理是利用流量不变的液压系统,通过调节容积(即液压泵和液压马达的容积)大小,从而实现机械设备的速度和负载的调整。

其工作原理如下:当液压泵通过齿轮传动来推动液压油时,液压油进入液压马达,驱动机械设备运转。

如果增大泵的容积,将会增加流量,从而增加输出扭矩和转速。

反之,若减小泵的容积,则会减小流量和马达的输出扭矩和转速。

因此,通过调节液压泵的容积,即可实现机械设备的运转速度和负载的调整。

3 应用变量泵变量马达容积调速回路广泛应用于工程机械、冶金、化工等行业的液压系统中。

其中,工程机械方面,如挖掘机、铲车、装载机等都需要使用液压系统调节机械设备的速度和负载。

此外,变量泵变量马达容积调速回路还被广泛地应用于轴、齿轮等机械传动系统中,能够有效控制设备的转速、转矩和输出功率。

4 优缺点变量泵变量马达容积调速回路的优点主要有以下几点:1. 能够实现精确的速度和负载控制,提高设备工作效率;2. 工作稳定性高,噪音小;3. 对于机械负载变化较大的情况,调速回路的扭矩输出能力对负载的调节响应速度非常快。

但其缺点也需要注意:1. 设备成本较高,因为需要在设计中添加调速回路相关的构件;2. 依赖液压系统,容易受到气泡、沙子等杂质的干扰,从而影响设备的工作稳定性;3. 如果调节回路出现问题,会导致设备不能正常工作。

5 总结本文介绍了变量泵变量马达容积调速回路的相关原理、应用和优缺点。

该技术不仅可以实现精确的速度和负载控制,对提高机械设备的工作效率也有很大帮助。

但是在使用中需要注意系统的稳定性和可靠性,及时检查调节回路是否存在问题,并及时进行维修保养,以确保设备的正常工作。

物理马达符号

物理马达符号

物理马达符号
如果它是三相直流异步电动机,就是一个圆圈加3M;
如果它是三相交流异步电动机,就是一个圆圈加3M另外再加一根波浪线;
如果它是一般的电动机,就是一个圆圈加个M.
它们三者都是在圆圈里面加如对应的符号
主要包括了定量液压泵-马达、变量液压泵-马达及液压整体式传动装置三种。

1、定量液压泵-马达
符号类型:单向流动,单向旋转,定排量。

2、变量液压泵-马达
符号类型:双向流动,双向旋转,变排量,外部泄油。

3、液压整体式传动装置
符号类型:单向旋转,变排量泵,定排量马达。

变量泵和定量马达的容积调速回路

变量泵和定量马达的容积调速回路

变量泵和定量马达的容积调速回路下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言变量泵和定量马达的容积调速回路是工业控制领域中常见的一种调速方法,该方法通过调节液压泵的输出量来实现马达的调速,具有操作简单、精度高等优点,被广泛应用于各种液压系统中。

液压泵和液压马达的主要参数及计算公式

液压泵和液压马达的主要参数及计算公式
ηv=Q/Q0
马达的理论流量与实际流量的比值
ηv=Q0/Q
机械效率ηm
泵理论扭矩由压力作用于转子产生的液压扭矩与泵轴上实际输出扭矩之比
ηm=pT0/2πTt
马达的实际扭矩与理论扭矩之比值
ηm=2πT0/pq0
总效率η
泵的输出功率与输入功率之比
η=ηvηm
马达输出的机械功率与输入的液压功率之比η=ηvηm
液压泵和液压马达的主要参数及计算公式
液压泵和液压马达的主要参数及计算公式
液压泵和液压马达的主要参数及计算公式
参数名称
单位
液压泵
液压马达





排量q0
m3/r
每转一转,由其密封腔内几何尺寸变化计算而得的排出液体的体积
理论流量Q0
m3/s
泵单位时间内由密封腔内几何尺寸变化计算而得的排出液体的体积
Q0=q0n/60


换Байду номын сангаас


q0
ml/r
Q=q0nηv10-3
Pt=pQ/60η
Q=q0n10-3/ηv
T0=pq0ηm/2π
n
r/min
Q
L/min
p
MPa
Pt
kW
T0


额定转速n
r/min
在额定压力下,能连续长时间正常运转的最高转速
最高转速
在额定压力下,超过额定转速而允许短暂运行的最大转速
最低转速
正常运转所允许的最低转速
同左(马达不出现爬行现象)


输入功率Pt
W
驱动泵轴的机械功率
Pt=pQ/η
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-3 液压泵与液压马达的变量
有调速或节能要求的应用场合,可以考 虑改变液压泵输出流量。
1、改变原动机(电机和柴油机)的工作转 速 2、 改变泵的排量 3、改变马达的排量还可以达到调速的目的
3-3 液压泵与液压马达的变量
变量泵和变量马达是通过一套变量机构 来改变泵和马达的排量的,最终达到改变 泵的输出流量和马达转速的。
四、变量马达的控制形式
变量马达的控制意义: (1)满足执行机构对速度和扭矩的要求 (2)充分发挥泵的能力,使泵始终在高 压下工作,还能充分地降低系统的工作 流量
四、变量马达的控制形式

恒功率控制
四、变量马达的控制形式


恒转矩控制:机械-液压反馈、电反馈
所谓恒扭矩马达就是使马达的排量和其进、出口压差的 乘积保持常数,即 p V const
二、变量机构的种类
操纵力的形式分: 手动、电动、液动和电液动
二、变量机构的种类
操纵力的形式分: 手动、电动、液动和电液动
二、变量机构的种类
控制压力油来源分: 内控:不需要单独的油源,结构简单,但 系统的工作压力脉动可能影响变量机构的工 作稳定性 外控:需要附加油源,变量机构工作不受 系统工作压力脉动的影响,尤其是需要双向 变量的泵必须是外控。
一、变量机构的工作原理
轴向柱塞泵的变 量机构:
通轴型直杆式轴向柱塞泵
通轴型直杆式轴向柱塞泵
一、变量机构的工作原理
连杆型轴向柱塞泵(马达)
内反馈限压式变量叶片泵
内反馈限压式变量叶片泵
外反馈限压式变量叶片泵
外反馈限压式变量叶片泵
二、变量机构的种类
操纵力的形式分: 手动、电动、液动和电液动 液压压力来源分: 外控和内控 信号反馈形式: 直接位置反馈、位移-力反馈和电信号反馈 控制的方式分: 恒压、恒流量、恒功率、恒转矩、


恒转矩控制: 机械-液压反馈
p V const
四、变量马达的控制形式


恒转矩控制:电反馈 p V const
四、变量马达的控制形式

恒转速控制:机-液系统
四、变量马达的控制形式

恒转速控制:电反馈
四、变量马达的控制形式

恒转速控制
四、变量马达的控制形式
四、变量泵的控制形式

恒压变量泵
四、变量泵的控制形式
比 例 控 制 式 恒 压 变 量 泵
四、变量泵的控制形式

恒功率控制变量泵
四、变量泵的控制形式

恒功率控制变量泵
四、变量泵的控制形式

恒流量变量泵
四、变量泵的控制形式
复合控制
四、变量泵的控制形式
复合控制
四、变量泵的控制形式
功率匹配变量泵
控制压力油来源分: 外控和内控
二、变量机构的种类
二、变量机构的种类
信号反馈形式: 直接位置反馈、位移-力反馈、压力-力反馈、电信号反 馈
二、变量机构的种类
控制的方式分: 泵: 恒压、恒流量、恒功率、复合控制 马达: 恒转矩、恒转速、恒功率
三、变量机构动态性能
要考虑阀动力学方程、变量操纵机 构动力学方程和泵的压力流量特性、油 液及管路的弹性
相关文档
最新文档