材料力学课后习题答案

合集下载

材料力学课后答案.doc

材料力学课后答案.doc

材料力学课后答案第一章材料单向静拉伸载荷下的力学性能一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现彖。

静力韧度:材料在静拉仲时单位体积材科从变形到断裂所消耗的功。

弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

比例极限:应力一应变曲线上符合线性关系的最高应力。

包中格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(。

P)或屈服强度(。

S)增加;反向加载时弹性极限(。

P)或屈服强度3 s)降低的现象。

解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。

晶体学平面一一解理面,一般是低指数,表面能低的晶面。

解理而:在解理断裂屮具冇低指数,表而能低的品体淫平而。

韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征出纤维状转变为结晶状)。

静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。

是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。

二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金屈的弹性模量主要取决于金屈键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不皱感的性能指标,这是弹性模量在性能上的主要特点。

改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。

三、什么是包辛格效应,如何解释,它冇什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。

特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载吋犁性变形立即开始了。

包辛格效应可以用位错理论解释。

第一,在原先加载变形时,位错源在滑移而上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。

材料力学第3版习题答案

材料力学第3版习题答案

材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。

若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。

请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。

在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。

因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。

在本例中,材料的屈服强度是200 MPa。

第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。

若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。

要计算应变,我们可以使用公式ε =σ/E。

将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。

第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。

如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。

请解释塑性变形与弹性变形的区别。

答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。

弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。

而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。

第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。

如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。

请计算在单轴拉伸下,材料达到断裂的临界应力。

材料力学课后答案

材料力学课后答案

材料力学课后答案材料力学是一门研究材料的结构和性质以及力学行为的学科。

以下是材料力学课后习题的答案。

1. 对于一个材料试验样品的拉伸测试,如何计算应力和应变?答:应力是试样受到的外部力除以其截面积,应变是试样的长度变化除以其原始长度。

2. 当一根钢条受到拉伸力时,它的截面积会变大还是变小?为什么?答:当钢条受到拉伸力时,它的截面积会减小。

这是因为外部力导致钢条内部发生塑性变形,使其截面积减小。

3. 什么是杨氏模量?如何计算?答:杨氏模量是表征材料在受到应力时的变形能力的物理量。

它可以通过应力与应变之间的比率来计算,即杨氏模量=应力/应变。

4. 什么是泊松比?如何计算?答:泊松比是一个无量纲的物理量,它描述了材料在拉伸或压缩时的横向收缩量与纵向伸长量之间的比例关系。

它可以通过横向应变与纵向应变之间的比率来计算,即泊松比=横向应变/纵向应变。

5. 什么是屈服强度?如何确定屈服强度?答:屈服强度是材料在受到应力时开始产生塑性变形的应力值。

它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,屈服强度对应于曲线上的屈服点。

6. 材料的断裂强度是什么?如何计算?答:材料的断裂强度是指材料在受到拉伸或压缩的最大应力值。

它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,断裂强度对应于曲线上的断裂点。

7. 什么是韧性?如何评价材料的韧性?答:韧性是材料在受力过程中吸收能量的能力。

可以通过材料的断裂能量来评价韧性,断裂能量是在材料断裂前吸收的总能量。

8. 什么是冷加工和热加工?它们对材料性能有何影响?答:冷加工是在室温下对材料进行塑性变形,而热加工是在高温下对材料进行塑性变形。

冷加工会使材料变硬和脆化,而热加工则会使材料变软和韧性增加。

以上是材料力学课后习题的答案,希望对你的学习有所帮助。

如果有任何疑问,请随时向我提问。

材料力学课后习题答案

材料力学课后习题答案

材料力学课后习题答案欢迎大家来到大学网,小编搜集整理了材料力学课后习题答案供大家查阅,希望大家喜欢。

1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成1个高度为b 的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的1种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。

弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

材料力学完整课后习题答案

材料力学完整课后习题答案

习题2-2一打入基地内的木桩如图所示,杆轴单位长度的摩擦力fkx2,试做木桩的后力图。

解:由题意可得:l 1 0 fdx F 有kl 3 F k 3F / l 3 3 l FN x1 3Fx 2 / l 3dx F x1 / l 3 0习题2-3 石砌桥墩的墩身高l 10m ,其横截面面尺寸如图所示。

荷载 F 1000kN ,材料的密度2.35kg / m 3 ,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:N F G F Alg 2-3 图1000 3 2 3.14 12 10 2.35 9.8 3104.942kN 墩身底面积: A 3 2 3.14 12 9.14m 2 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

N 3104.942kN 339.71kPa 0.34MPa A 9.14m 2习题2-7 图示圆锥形杆受轴向拉力作用,试求杆的伸长。

2-7 图解:取长度为dx 截离体(微元体)。

则微元体的伸长量为:Fdx l F F l dx d l ,l dx EA x 0 EA x E 0 A x r r1 x r r d d1 d ,r 2 1 x r1 2 x 1 ,r2 r1 l l 2l 2 d d1 d d1 d d1 2 d d A x 2 x 1 u2 ,d 2 x 1 du 2 dx 2l 2 2l 2 2l 2l 2l dx d d 2l du dx du ,2 2 1 du 2 d 2 d1 A x u d1 d 2 u l F F l dx 2 Fl l du 因此,l dx 0 u 2 0 EA x E 0 A x E d1 d 2 l 2 Fl 1 l 2 Fl 1 u E d d d d E d1 d 2 0 2 2 d 1 1 x 1 2l 2 0 2 Fl 1 1 E d1 d 2 d 2 d 1 dd1 l 1 2l 2 2 2 Fl 2 2 4 Fl E d1 d 2 d 2 d1 Ed 1 d 2习题2-10 受轴向拉力 F 作用的箱形薄壁杆如图所示。

材料力学第二版课后答案

材料力学第二版课后答案

材料力学第二版课后答案1. 弹性力学。

1.1 问题1。

根据胡克定律,弹性体的应力与应变成正比。

即应力与应变之间的关系可以用线性方程表示。

弹性模量是衡量材料抵抗形变的能力的物理量,不同材料具有不同的弹性模量。

弹性模量越大,表示材料越难产生形变,具有更好的抗变形能力。

1.2 问题2。

杨氏模量是用来描述材料在拉伸或压缩时的刚度,它是应力和应变之间的比值。

杨氏模量越大,表示材料在受力时产生的应变越小,具有更好的刚度。

2. 塑性力学。

2.1 问题1。

在塑性力学中,屈服点是材料开始产生塑性变形的点,超过屈服点后,材料会产生持久的塑性变形。

屈服点的大小取决于材料的性质和外部加载条件。

2.2 问题2。

在塑性变形过程中,材料会逐渐失去弹性,出现持久的塑性变形。

材料的屈服点和断裂点是塑性变形的重要指标,它们决定了材料的可塑性和韧性。

3. 疲劳力学。

3.1 问题1。

疲劳破坏是由于材料在交变应力作用下产生的微小裂纹逐渐扩展,最终导致材料的疲劳破坏。

疲劳寿命是材料在特定应力幅和应力比下能够承受的循环载荷次数,是衡量材料抗疲劳性能的重要指标。

3.2 问题2。

影响材料疲劳寿命的因素有很多,包括应力幅、应力比、工作温度、材料表面质量等。

合理设计零件结构和选择合适的材料可以有效延长材料的疲劳寿命,提高零件的可靠性。

4. 断裂力学。

4.1 问题1。

断裂韧性是材料抵抗裂纹扩展的能力,它是衡量材料抗断裂性能的重要指标。

断裂韧性越高,表示材料在受到外部裂纹扩展力时,能够抵抗裂纹的进一步扩展,具有更好的抗断裂能力。

4.2 问题2。

断裂韧性测试通常采用冲击试验或拉伸试验来进行。

通过测试可以得到材料的断裂韧性指标,对材料的选择和设计提供重要参考依据。

5. 综合应用。

5.1 问题1。

在实际工程中,材料力学的知识可以帮助工程师选择合适的材料和设计合理的结构,以满足工程的使用要求。

合理应用材料力学知识可以提高工程的安全性和可靠性。

5.2 问题2。

材料力学的理论不仅可以应用在工程领域,还可以应用在材料科学、航空航天、汽车制造等领域。

材料力学课后习题答案

材料力学课后习题答案

材料力学课后习题答案1. 弹性力学。

1.1 问题描述,一根钢丝的弹性模量为200GPa,其截面积为0.01m²。

现在对这根钢丝施加一个拉力,使其产生弹性变形。

如果拉力为2000N,求钢丝的弹性变形量。

解答:根据胡克定律,弹性变形量与拉力成正比,与材料的弹性模量和截面积成反比。

弹性变形量可以用以下公式计算:$$。

\delta = \frac{F}{AE}。

$$。

其中,$\delta$表示弹性变形量,F表示拉力,A表示截面积,E表示弹性模量。

代入已知数据,可得:$$。

\delta = \frac{2000N}{0.01m² \times 200GPa} = 0.001m。

$$。

所以,钢丝的弹性变形量为0.001m。

1.2 问题描述,一根长为1m,截面积为$10mm^2$的钢棒,两端受到拉力为1000N的作用。

求钢棒的伸长量。

解答:根据胡克定律,钢棒的伸长量可以用以下公式计算:$$。

\delta = \frac{F \cdot L}{AE}。

$$。

其中,$\delta$表示伸长量,F表示拉力,L表示长度,A表示截面积,E表示弹性模量。

代入已知数据,可得:$$。

\delta = \frac{1000N \times 1m}{10mm² \times 200GPa} = 0.005m。

$$。

所以,钢棒的伸长量为0.005m。

2. 塑性力学。

2.1 问题描述,一块金属材料的屈服强度为300MPa,现在对其施加一个拉力,使其产生塑性变形。

如果拉力为500MPa,求金属材料的塑性变形量。

解答:塑性变形量与拉力成正比,与材料的屈服强度无关。

塑性变形量可以用以下公式计算:$$。

\delta = \frac{F}{A}。

$$。

其中,$\delta$表示塑性变形量,F表示拉力,A表示截面积。

代入已知数据,可得:$$。

\delta = \frac{500MPa}{300MPa} = 1.67。

华科材料力学课后答案

华科材料力学课后答案

华科材料力学课后答案1. 弹性力学。

1.1 问题一。

根据胡克定律,弹簧的伸长量与所受外力成正比。

即伸长量ΔL与外力F满足ΔL=kF,其中k为弹簧的弹性系数。

根据题意,当外力为100N时,弹簧的伸长量为5mm,求弹簧的弹性系数k。

解,根据胡克定律,伸长量ΔL与外力F成正比,即ΔL=kF。

代入已知条件ΔL=5mm,F=100N,解得k=0.05N/mm。

1.2 问题二。

一根钢棒的长度为2m,横截面积为2cm²,弹性模量为2×10^11N/m²。

当外力作用在钢棒上时,钢棒的伸长量为多少?解,根据胡克定律,伸长量ΔL与外力F成正比,即ΔL=FL/AE,其中F为外力,L为长度,A为横截面积,E为弹性模量。

代入已知条件F=100N,L=2m,A=2cm²=2×10^-4m²,E=2×10^11N/m²,解得ΔL=0.1mm。

2. 塑性力学。

2.1 问题一。

一块材料的屈服强度为200MPa,抗拉强度为400MPa。

求这种材料的屈服应力和极限应力。

解,屈服应力即屈服强度,为200MPa;极限应力即抗拉强度,为400MPa。

2.2 问题二。

一块材料在拉伸过程中,当外力达到1000N时发生塑性变形,而当外力继续增加到1500N时,材料发生断裂。

求这种材料的屈服强度和极限强度。

解,屈服强度为1000N,极限强度为1500N。

3. 疲劳力学。

3.1 问题一。

一根钢材在交变应力作用下,发生疲劳破坏,其疲劳极限为200MPa。

求该钢材在交变应力为150MPa时的寿命。

解,根据疲劳极限的定义,当交变应力小于疲劳极限时,材料不会发生疲劳破坏,因此寿命为无穷大。

3.2 问题二。

一根铝材在交变应力为100MPa时,其寿命为1000次循环。

求该铝材的疲劳极限。

解,根据题意,当交变应力为100MPa时,寿命为1000次循环,代入疲劳极限的定义,得到疲劳极限为100MPa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8-1 试求图示各杆的轴力,并指出轴力的最大值。

(2) 取1-1(3) 取2-2(4) 轴力最大值:(b)(1) 求固定端的约束反力;(2) 取1-1(3) 取2-2(4) (c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2(4) 取3-3(5) 轴力最大值:(d)(1) 用截面法求内力,取(2) 取1-1(2) 取2-2(5) 轴力最大值: 8-2 试画出8-1解:(a) (b)(c) (d) 8-5AB 与BC 段的直径((FN Fx x分别为d 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。

解:(1)(2) 求1-1、8-6 题8-512,AB 段的直径d 1=40 mm ,如欲使AB 与BC段横截面上的正应力相同,试求BC 段的直径。

解:(1) 用截面法求出1-1、2-2截面的轴力;(2)求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。

解:(2) mm 与d 2=20 mm ,F =80 kN 作用,试校核桁架的强度。

解:(1) 对节点(2) 列平衡方程解得: (2) 8-15 A 处承受铅直方向的载荷F b 。

已知载荷F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。

解:(1) 两杆所受的力;(2),木杆的边宽为84 mm 。

8-16 题8-14。

解:(1) 由8-14F 的关系;(2)取[F ]= kN 8-18 ,A 1=2A 2=100 mm 2,E =200GPa ,试计算杆AC 解:(2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷FC F A C B C FA F F F作用。

从试验中测得杆1与杆2的纵向正应变分别为ε1=×10-4与ε2=×10-4,试确定载荷F 及其方位角θ之值。

已知:A 1=A 2=200 mm 2,E 1=E 2=200 GPa 。

解:(1) 对节点θ的关系;(2) 由胡克定律:代入前式得: 8-23 题8-15A 1=400 mm 2与A 2=8000 mm 2,杆AB 的长度l E S =200 GPa 、E W =10 GPa 。

试计算节点A解:(1) 1杆伸长,2(2) 画出节点A 的协调位置并计算其位移; F 作用,试计(2) (3) 代入胡克定律; 求出约束反力:(4) 最大拉应力和最大压应力;8-27 图示结构,梁BD 为刚体,杆1与杆2用同一种材料制成,横截面面积均为A =300 mm 2,许用应力[σ]=160 MPa ,载荷F =50 kN ,试校核杆的强度。

解:(1) 对 (2) (3)8-30 [σ1] =80 MPa ,[σ2] =60 MPa ,[σ3] =120 MPa ,弹性模量分别为E 1=160 GPa ,E 2=100 GPa ,E 3=200 GPa 。

若载荷F =160 kN ,A 1=A 2 =2A 3,试确定各杆的横截面面积。

解:(1) 对节点C(C x FA列平衡方程;(2)(3) 简化后得:1(4) 8-31解:(1) (2) 8-32 d 。

已知载荷F 1=50 kN ,F 2= kN 。

B 的约(3) ,板宽应力解:(1) (2) (3) 校核1-1校核2-2 F C F F 41F D d xFCF9-1 试求图示各轴的扭矩,并指出最大扭矩值。

(2) 取1-1(3) 取2-2 (4) (b)(1)(2) 取1-1(3) 取2-2 (4) 注:本题如果取1-1、(c)(1) 用截面法求内力,取1-1、2-2、3-3截面; (2) 取1-1(3) 取2-2 (4) 取3-3(5) 最大扭矩值:(d) (1) (2) 取1-1(3) 取2-2 (4) 取3-3(5)9-2 试画题9-1解:(a)(b)(c)Nm Nm ( Nm MA xxxx(d)9-4P 1=50 kW ,轮2、轮3。

(1) (2) 解:(1) (2) (3) 9-8 T =1 kNm ,试计算A 点处(ρA解:(1) (2) 9-16 d 1=4d 2/3,试求轴内材料的切变模量为G 。

解:(1)(2) 比较得 (3) 求C 9-18 [τ] =80 MPa ,单位长度的许用扭转角[θ]= 0/m ,切变模量G =80 GPa ,试确定轴径。

解:(1) 考虑轴的强度条件;(2) 考虑轴的刚度条件;(3) 综合轴的强度和刚度条件,确定轴的直径;9-19 图示两端固定的圆截面轴,直径为d ,材料的切变模量为G ,截面B 的转角为φB ,试求所加扭力偶矩M 之值。

解:(1) (2) 求(3) (4) 用转角公式求外力偶矩M ;C x x )xMCx10-1 试计算图示各梁指定截面(标有细线者)的剪力与弯矩。

取C由平衡关系求内力(3) 求B -截面内力 截开B -由平衡关系求内力(b) (1) 求A 、B (2) 求A +取A +(3) 求C取C (4) 求B 取B(c)(1) 求A 、B(2) 求A +取A +(3) 求C -取C -(4) 求C +截面内力; 取C +(5) 求B -截面内力; 取B - (d)(1) 求A +截面内力B/2 /2 (d)BB MC F MB MB RMB RC F M B RB R取A +截面右段研究,其受力如图;(3) 求C -取C -(4) 求C +截面内力; 取C +(5) 求B -截面内力;取B -qB B B Bxx B B(b)(1) 求约束力;(2)(c)(1) 求约束力;(2)(d)(1) 求约束力;(2)(e)(1) 求约束力;(2)(f)(1) 求约束力;(2)xx x x x xx x x11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。

解:(1)(2)(3) 最大应力: K 点的应力:11-7 图示梁,由No22槽钢制成,弯矩M =80 ,并位于纵向对称面(即x-y 平面)内。

试求梁内的最大弯曲拉应力与最大弯曲压应力。

解:11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底边的纵向正应变ε=×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。

解:(2) (3) (4) [σ+]=35 MPa ,解:(2) (3) A +A -截面尺寸b 。

已知载荷F =10 kN ,q =5 N/mm,许用应力[σ] =160 Mpa 。

max max max22176 408066ZMPabh W σ====⨯6max max 337.51030132 ********K ZM y M y MPa bh I σ⋅⋅⨯⨯====⨯zM zy qz Nm解:(1)(2) (3) 解得:11-17[σ]=160 Mpa ,解:(1)(2) 画弯矩图:(3) 解得: 查表,选取11-20许用应力30%。

为了消除此种过载,配置一辅助梁CD ,试求辅助梁的最小长度a 。

解:(1) 当F解得:(2)配置辅助梁后,弯矩图为:11-22 F 2= kN ,l =1 m ,许用应力[σ] =160 MPa, (1) 截面为矩形,h =2b ; (2) 截面为圆形。

解:(2) 解得:(3) 解得: εa =×10-3并求拉力F 及偏心距e 的数值。

2x xhy解:(2) 将b 数值代入上面二式,求得:MPa ,试求板边切口的允许深度x 。

(δ=5 mm )解:52FF e15-3 图示两端球形铰支细长压杆,弹性模量E =200Gpa ,试用欧拉公式计算其临界载荷。

(1) 圆形截面,d =25 mm ,l =1.0 m ;(2) 矩形截面,h =2b =40 mm ,l =1.0 m ; (3) No16工字钢,l =2.0 m 。

解:(1) 圆形截面杆: 两端球铰: μ=1,()()42298-8412220010 1.910 1.910 m 37.8 6411cr d EI I P kN l πππμ-⨯⨯⨯==⨯∴===⨯ (2) 矩形截面杆:两端球铰:μ=1, I y <I z()()23298-8 422220010 2.6102.610 m 52.6 1211y y cr EI hb I P kN l ππμ-⨯⨯⨯⨯∴==⨯∴===⨯(3) No16工字钢杆:两端球铰:μ=1, I y <I z查表I y =×10-8 m 415-8 图示桁架,由两根弯曲刚度EI 相同的等截面细长压杆组成。

,设载荷F 与杆AB 的轴线的夹角为,且0<</2,试求载荷F 的极限值。

解:(1) 分析铰B 的受力,画受力图和封闭的力三角形: (2) 两杆的临界压力: AB 和BC 皆为细长压杆,则有: (3) 两杆同时达到临界压力值, F 为最大值; 由铰B 的平衡得: 15-9 图示矩形截面压杆,有三种支持方式。

杆长l =300 mm ,截面宽度b =20 mm ,高度h =12 mm ,弹性模量E =70 GPa ,λp =50,λ0=30,中柔度杆的临界应力公式为σcr =382 MPa – MPa)λ试计算它们的临界载荷,并进行比较。

解:(a) (1) 比较压杆弯曲平面的柔度:长度系数: μ=2(2) 压杆是大柔度杆,用欧拉公式计算临界力;(b) (1) 长度系数和失稳平面的柔度:(2) 压杆仍是大柔度杆,用欧拉公式计算临界力;(c)(1)(2) 压杆是中柔度杆,选用经验公式计算临界力 b Flh zy y z9F F F θF F FθaF AB C θ126(l (lFl (A AA -A h b zF F三种情况的临界压力的大小排序:15-10 图示压杆,截面有四种形式。

但其面积均为A =×10 mm 2, 试计算它们的临界载荷,并进行比较。

材料的力学性质见上题。

解:(a)(1) 比较压杆弯曲平面的柔度:矩形截面的高与宽:长度系数:μ= (2) 压杆是大柔度杆,用欧拉公式计算临界力: (b)(1) 计算压杆的柔度:正方形的边长:mm a mm a 24,102.322∴⨯=长度系数:μ=(2) 压杆是大柔度杆,用欧拉公式计算临界力: (c)(1) 计算压杆的柔度: 圆截面的直径: 长度系数:μ=(2) 压杆是大柔度杆,用欧拉公式计算临界力: (d)(1)计算压杆的柔度:空心圆截面的内径和外径: 长度系数:μ=(2) 压杆是大柔度杆,用欧拉公式计算临界力; 四种情况的临界压力的大小排序:15-12 图示压杆,横截面为b h 的矩形, 试从稳定性方面考虑,确定h/b 的最佳值。

相关文档
最新文档