2018年福建省泉州市中考数学二模试卷含答案解析

合集下载

2018年福建省泉州市中考数学试卷含答案

2018年福建省泉州市中考数学试卷含答案

福建省泉州市2018年中考数学试卷一、选择题<每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分.D.的形状是体的正视图是< )C .D .4.<3分)<2018•泉州)把不等式组的解集在数轴上表示出来,正确的是B .D .解:,,7,则圆积V<m3)一定的污水处理池,池的底面积S<m2)与其深度h<m)满足关系式:C .D .<h要掌握它的性质才能灵活解题.反比例函数y=8.<4分)<2018•泉州)的立方根是.考点:立方根分析:根据立方根的定义即可得出答案.解答:解:的立方根是;故答案为:.点评:此题考查了立方根,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方,由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.考点:因式分解-运用公式法专题:因式分解.分析:分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.解答:解:1﹣x2=<1+x)<1﹣x).故答案为:<1+x)<1﹣x).点评:本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.千M,考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:110000=1.1×105,故答案为:1.1×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.OA D,若QC=QD,则∠AOQ= 35 °.5PCzVD7HxAAOQ=A0B=×70°=35°.13.<4分)<2018•泉州)计算:+= 1 .解:原式=14.<4分)<2018•泉州)方程组的解是.故原方程组的解为.F、G、H,则四边形EFGH的形状一定是平行四边形.jLBHrnAILgAC AC和BD相交于点O,AC:BD=1:2,则AO:BO= 1:2 ,菱形ABCD的面积S=16 .xHAQX74J0XAO8AB=2S==16直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 3 ,依次继续下去…,第2018次输出的结果是 3 .LDAYtRyKfEx代入x第6次输出的结果为×4=2;.÷x=.x=、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.Zzz6ZB2Ltk外没有任何区别,现将它们放在盒子里搅匀.dvzfvkwMI1<1)随机地从盒子里抽取一张,求抽到数字3的概率;<2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点<x,y)在函数y=图象上的概率.rqyn14ZNXI比例图象上的情况数,即可求出所求的概率.的概率为;P==<1)求a的值;<2)若点A<m,y1)、B<n,y2)<m<n<3)都在该抛物线上,试比较y1与y2的动,设有征文、独唱、绘画、手抄报四个工程,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.EmxvxOtOco<1)此次有200 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是36 度.请你把条形统计图补充完整.SixE2yXPq5<2)经研究,决定拨给各工程活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少扇形统计图中“独唱”部分的圆心角是296×10+80×12+200×15+224×12=9608动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l<cm)与时间t<s)满足关系:l=t2+t<t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.kavU42VRUs<1)甲运动4s后的路程是多少?<2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?<3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?l=t2+t=8+6=14<cm甲走过的路程为t2+t则t2+t+4t=21则t2+t+4t=63B、C,点A<﹣2,0),P是直线BC上的动点.y6v3ALoS89<1)求∠ABC的大小;<2)求点P的坐标,使∠APO=30°;<3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.M2ub6vSTnP。

2018年福建省泉州市中考数学二模试卷含答案解析

2018年福建省泉州市中考数学二模试卷含答案解析
9.
B. 8(������ ‒ 3) = 7(������ + 4) D.
1 ������ 7
‒ 3 = 8������ + 4
1
如图,在3 × 3的网格中,A,B 均为格点,以点 A 为圆心,以 AB 的长为半径作弧,图中的点 C 是该弧与格线的交点,则 ������������������∠������������������的值是( )
1
11. 已知
,������ = 2
‒1
,则 a______������(填“ > ”,“ < ”或“ = ”).
12. 正八边形的每一个内角的度数为______度. 13. 一个暗箱中放有除颜色外其他完全相同的 m 个红球,6 个黄球,3 个白球现将球 搅匀后,任意摸出 1 个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸 到黄球的频率稳定在30%附近,由此可以估算 m 的值是______. 14. 如图,将 △ ������������������绕点 A 顺时针旋转120 ,得到 △ ������������������.这时点 D、E、B 恰好在同 一直线上,则∠������������������的度数为______.
,其中
������ =
2 2.
第 3 页,共 18 页
19. 某公交公司决定更换节能环保的新型公交车.购买的数量和所需费用如下表所示: A 型数量(辆) 3 2 B 型数量(辆) 1 3 所需费用(万元) 450 650
(1)求 A 型和 B 型公交车的单价; (2)该公司计划购买 A 型和 B 型两种公交车共 10 辆,已知每辆 A 型公交车年均载 客量为 60 万人次,每辆 B 型公交车年均载客量为 100 万人次,若要确保这 10 辆 公交车年均载客量总和不少于 670 万人次,则 A 型公交车最多可以购买多少辆?

福建省泉州市数学中考二模试卷

福建省泉州市数学中考二模试卷

福建省泉州市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018七上·江阴期中) 如果向北走3m,记作+3m,那么-5m表示()A . 向东走5mB . 向南走5mC . 向西走5mD . 向北走5m2. (2分)(2012·绍兴) 下列运算正确的是()A . x+x=x2B . x6÷x2=x3C . x•x3=x4D . (2x2)3=6x53. (2分) (2019七上·丹江口期末) 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A . 3×106B . 30×105C . 300×104D . 30000004. (2分)(2020·丹东) 如图所示,该几何体的俯视图为()A .B .C .D .5. (2分) (2019八下·嘉兴期中) 二次根式中,字母的取值范围是()A .B .C .D .6. (2分) (2018九上·宁城期末) 在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1个球,摸到红球的概率是()A .B .C .D .7. (2分)(2019·海珠模拟) 若一个正多边形的一个外角是30°,则这个正多边形的边数是()A . 12B . 11C . 10D . 98. (2分) (2020九下·中卫月考) 如图,在△ABC中AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A . 40°B . 45°C . 55°D . 70°9. (2分)在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A . sinA=B . cosA=C . tanA=D . cotA=10. (2分)已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A .B .C .D .11. (2分)如图,已知直线a∥b∥c ,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F , AC=4,CE=6,BD=3,则BF=().A . 7B . 7.5C . 8D . 8.512. (2分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是()A . 20°B . 25°C . 40°D . 50°二、填空题 (共4题;共4分)13. (1分)(2019·黄石) 分解因式: ________14. (1分)(2020·泰顺模拟) 不等式组的解为________.15. (1分) (2019九上·浏阳期中) 如图,学校有一块长方形花圃,有极少数人从A走到B ,为了避免拐角C走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草.16. (1分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,BD=1,则AD的长是________ ,AC 的长是________ .三、解答题 (共6题;共60分)17. (10分) (2019七下·海淀期中) 计算:(1);(2).18. (5分)如图所示,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1、∠2的度数分别为x、y,请列出可以求出这两个角度数的方程组.19. (10分) (2020八下·江阴期中) “低碳环保,你我同行”.两年来,扬州市区的公共自行车给市民出行带来切实方便.电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车”,将本次调查结果归为四种情况:A.每天都用;B.经常使用;C.偶尔使用;D.从未使用.将这次调查情况整理并绘制如下两幅统计图如图2:根据图中的信息,解答下列问题:(1)本次活动共有________位市民参与调查;(2)补全条形统计图和扇形统计图;(3)扇形统计图中A项所对应的圆心角的度数为________;(4)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人.20. (10分)(2019·信阳模拟) 4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈ ,cos67°≈ ,tan67°≈ ,≈1.414).【答案】解:如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°= ,∴ ,解得x≈19.9m.∴AM=19.9+30=49.9m.∴风筝距地面的高度49.9m【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【题型】解答题【考查类型】模拟题【试题级别】九年级(1)请直接写出点C的坐标及k的值;(2)若点P在图象G上,且∠POB=∠BAO,求点P的坐标;(3)在(2)的条件下,若Q(0,m)为y轴正半轴上一点,过点Q作x轴的平行线与图象G交于点M,与直线OP交于点N,若点M在点N左侧,结合图象,直接写出m的取值范围.21. (10分) (2017八下·昌江期中) 如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D 点按逆时针方向旋转.(1)在图1中,DE交AB于M,DF交BC于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出写出结论,不用证明.22. (15分)(2019·祥云模拟) 如图,在平面直角坐标系中,直线与轴,轴分别交于点A、B,抛物线经过点A和点B,与x轴的另一个交点为C,动点D从点A出发,以每秒1个单位长度的速度向O点运动,同时动点E从点B出发,以每秒2个单位长度的速度向A点运动,设运动的时间为t秒,0﹤t﹤5.(1)求抛物线的解析式;(2)当t为何值时,以A、D、E为顶点的三角形与△AOB相似;(3)当△ADE为等腰三角形时,求t的值;(4)抛物线上是否存在一点F,使得以A、B、D、F为顶点的四边形是平行四边形?若存在,直接写出F点的坐标;若不存在,说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、17-2、18-1、19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、22-4、。

2018年福建泉州市普通高中毕业第二次质量检查

2018年福建泉州市普通高中毕业第二次质量检查

2018年福建泉州市普通高中毕业第二次质量检查理 科 数 学第 Ⅰ 卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|1216}xA x =<≤,{|}B x x a =<,若AB A =,则实数a 的取值范围是( )A .4a >B .4a ≥C .0a ≥D .0a > 2.已知i 是虚数单位,则复数134i i-++的共轭复数在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限3.6名同学合影留念,站成两排三列,则其中甲乙两人不在同一排也不在同一列的概率为( ) A .15B .25C .49D .454.设12,F F 为双曲线()2222:10,0x y a b abΓ-=>>的左、右焦点,P 为Γ上一点,2P F 与x 轴垂直,直线1P F 的斜率为34,则双曲线Γ的渐近线方程为( )A .y x =±B .y =±C .y =D .2y x =±5.执行如图所示的程序框图,运行相应的程序,若输入x 的值为2,则输出S 的值为( )A .64B .84C .340D .13646.已知数列{}n a 的前n 项和为n S ,且11a =,()*12n n n a a n N +=∈,则2016S =( )A .1008323-B .201621-C .200923-D .200823-7.已知函数()()()sin 2co s f x x x ϕϕ=+-+()0ϕπ<<的图象关于直线x π=对称,则c o s 2ϕ=( )A .35B .35-C .45D .45-8.在区域(),|11x x y x y x y ⎧≥⎫⎧⎪⎪⎪Ω=+≤⎨⎨⎬⎪⎪⎪-≤⎩⎩⎭中,若满足0a x y +>的区域面积占Ω面积的13,则实数a 的值是( ) A .23B .12C .12-D .23-9.在四面体A B C D 中,若A B C D ==,2A C B D ==,A D B C ==则直线A B 与C D 所成角的余弦值为( ) A .13-B .14-C .14D .1310.函数2||1||()2x x n x f x =的图象大致是( )A .B .C .D .11.已知12,F F 是椭圆2222:1(0)x y C a b ab+=>>的左、右焦点,点P 在椭圆C 上,线段2P F 与圆222x y b +=相切于点Q ,且点Q 为线段2P F 的中点,则22a e b+(其中e 为椭圆C 的离心率)的最小值为( )A .4 C .412.“牟合方盖”是我国古代数学家刘微在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).如图,正边形A B C D 是为体现其直观性所作的辅助线,若该几何体的正视图与侧视图都是半径为r 的圆,根据祖暅原理,可求得该几何体的体积为( )A .383r B .383r π C .3163r D .3163r π第 Ⅱ 卷本卷包括必考题和选考题两个部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)、(23)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. (13)已知椭圆22:143xyC +=的左顶点、上顶点、右焦点分别为,,A B F ,则A B A F ⋅=_________.(14)已知曲线2:2C y x x =+在点(0,0)处的切线为l ,则由,C l 以及直线1x =围成的区域面积等于__________.(15)在平面直角坐标系x O y 中,角θ的终边经过点(,1)(1)P x x ≥,则co s sin θθ+的取值范围是_____.(16)已知在体积为12π的圆柱中,,A B C D 分别是上、下底面两条不平行的直径,则三棱锥A B C D -的体积最大值等于_________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)在数列{}n a 中,14a =,21(1)22n n n a n a n n +-+=+.(Ⅰ)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列; (Ⅱ)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .(18)(本小题满分12分)某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试. 测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子完全停下所需要的距离).无酒状态与酒后状态下的试验数据分别列于表1和表2.表1表2已知表1数据的中位数估计值为26,回答以下问题.(Ⅰ)求,a b 的值,并估计驾驶员无酒状态下停车距离的平均数;(Ⅱ)根据最小二乘法,由表2的数据计算y 关于x 的回归方程ˆˆˆyb x a =+; (Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”y 大于(Ⅰ)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?(附:对于一组数据1122(,),(,),,(,)n n x y x y x y ,其回归直线ˆˆˆy b x a =+的斜率和截距的最小二乘估计分别为1221ˆni i i ni i x y n x ybx n x==-=-∑∑,ˆˆay b x =-.)(19) (本小题满分12分)如图,在三棱锥A B C D -中,平面A B D ⊥平面B C D ,A B A D =,60C B D ∠=,24B D B C ==,点E 在C D 上,2D E E C =.(Ⅰ)求证:A C B E ⊥;(Ⅱ)若二面角E B A D --5A B C D -的体积.(20) (本小题满分12分)在平面直角坐标系x O y 中,抛物线2:2(0)C x p y p =>的焦点为F ,过F 的直线l 交C 于,A B 两点,交x 轴于点D ,B 到x 轴的距离比B F 小1.(Ⅰ)求C 的方程;(Ⅱ)若B O F A O D S S ∆∆=,求l 的方程.(21) (本小题满分12分)已知函数()ln f x x kx k =-+.(Ⅰ)若()0f x ≥有唯一解,求实数k 的值;(Ⅱ)证明:当1a ≤时,2(())e 1xx f x k x k a x +-<--.(附:ln 20.69≈,ln 3 1.10≈,32e 4.48≈,2e 7.39≈)请考生在第(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系x O y 中,曲线1C 的参数方程为1c o s ,sin x y αα=+⎧⎨=⎩(α为参数);在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为2c o s s in ρθθ=.(Ⅰ)求1C 的普通方程和2C 的直角坐标方程;(Ⅱ)若射线l :y k x =(0)x ≥分别交1C ,2C 于,A B 两点(,A B 异于原点).当k ∈时,求O A O B ⋅的取值范围.(23)(本小题满分10分)选修4—5:不等式选讲已知函数()f x x a x a =-++. (Ⅰ)当2a =时,解不等式()6f x >;(Ⅱ)若关于x 的不等式()21f x a <-有解,求实数a 的取值范围.2018年福建泉州市普通高中毕业班质量检查理科数学试题答案及评分参考一、选择题1-5:ADBCB 6-10:AACDD 11、12:CC(11)解法一:以圆心O 为原点,O P 的方向为x 轴的正方向建立平面直角坐标系,则有()2,0P ,1(,22A ,1(,22B -.设()00,Mx y ,可解得()01132x λ=-,)0312y λ=-,因为()00,Mx y 在圆内,所以()()22131331144λλ-+-<,整理,得311λ-<,解得2(0,)3λ∈,故答案选(B ).解法二:如图,在线段P A 的延长线上取点Q ,使得P A A Q =.连结O Q ,交圆O 于C .可求得60B O P A O P A O Q ∠=∠=∠=,故,,B O Q 三点共线.因为2P A P Q =,所以2(1)(1)P M P A P B P Q P Bλλλλ=+-=+-,故B M B Q λ=.又因为点M 在圆O 的内部(不包括边界),所以2(0,)3λ∈,答案选(B ).(12)解法一:可以看出,(1,0)是曲线(1)y a x x =-与曲线ln y x =的一个公共点,且当1a =时,两曲线在点(1,0)处的切线方程均为1y x =-.由导数的概念,可知当01a <<或1a >时,曲线(1)y a x x =-与直线1y x =-交于两点,必与曲线ln y x =交于两点,故答案为(D ).解法二:方程2ln a x a x x -=显然有一个根1x =.若满足在去心邻域(1,1)δδ-+存在非1的根则符合题意.又因为对于区间(1,1)δδ-+(其中δ为任意充分小正数),1ln x x -(表示等价无穷小 ),故去心邻域(1,1)δδ-+中,方程等价为1a x =,所以a 取遍去心邻域11(,)11δδ+-,所以排除选项(A )(B )(C ),答案为(D ).解法三:2ln a x a x x -=有两个不同根,由于两者都是连续函数,令特殊值1a =,不合题意;令特殊值2a =,符合题意;令特殊值12a =,符合题意.故选项(D ).解法四:依题意,可知()ln 1x a x x=-有两个不同实根.设()ln x F x x=,则()21l n 'xF x x-=.当(0,1)x ∈时,()F x 单调递增;当(1,)x ∈+∞时,()F x 单调递减;当1a =时,()()1F x a x ≤-恒成立,当且仅当1x =取到等号,即只有一个根,与题意不合.当1a <时,显然符合题意.当1a >时,可以发现0x +→时,()()1F x a x <-;(或者()()111F a a a --<-)21x a=当时,()211F x a a⎛⎫>-⎪⎝⎭(证明后补).根据零点存在性定理可得在(0,1)必有一根.故两图象有两个公共点.故a 的取值范围是(0,1)(1,)+∞.补证:21x a=时,()()1F x a x >-,即证2221ln 1a a a a⎛⎫>- ⎪⎝⎭,即证221ln a a a a >-,这是显然的22ln 0a a >,而10a a-<.得证解法五:方程2ln a x a x x -=显然有一个实根1x =,故当1x ≠时方程()ln 1x a x x =-还有另一个实根,当0x +→时,()ln 1x x x →+∞-;当x →+∞时,()ln 01x x x +→-;且()()()()()2111111ln 'ln 'ln 1limlimlimlimlim112121'1'x x x x x x x x x x x x x xx x x x -----+→→→→→=====-----⎡⎤⎡⎤⎣⎦⎣⎦,()()()()()2111111ln 'ln 'ln 1limlimlimlimlim112121'1'x x x x x x x x x x x x x xx x x x +++++-→→→→→=====-----⎡⎤⎡⎤⎣⎦⎣⎦;显然,0a >,且1a ≠都是符合题意.二、填空题:本大题考查基础知识和基本运算.每小题5分,满分20分.(13)6 (14)13(15) (16)8解析:(15)解法一:依题意,可知π(0,]4θ∈,所以ππ(,]442πθ+∈,故πs in (),1]42θ+∈,所以πc o s s in in ()(1,4θθθ+=+∈,故答案为.解法二:由三角函数定义,得c o s θ=,s in θ=,所以c o s sinθθ+=+====因为1y xx=+在[1,)+∞单调递增,所以[2,)y∈+∞,所以2(0,1]1xx∈+,从而co s sinθθ+∈,故答案为(1,.(16)解:设上、下底面圆的圆心分别为1,O O,圆的半径为r,由已知21π12πV r O O=⋅=圆柱,所以2112r O O⋅=,则A B C D C O A B D O A BV V V---=+,因为O是C D中点,所以C到平面O A B的距离与D到平面O A B的距离相等,故C O A BD O A BV V--=,从而2A B C D C O A BV V--=.设三棱锥C O A B-的高为h,则h r≤,所以11221223323A B C D D O A B O A BV V S h A B O O h r O O h--∆===⋅⋅=⋅212212833r O O≤⋅=⨯=,故三棱锥A B C D-的体积最大值等于8.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分)解法一:(Ⅰ)21(1)22n nn a n a n n+-+=+的两边同时除以(1)n n+,得*12()1n na ann n+-=∈+N,·······································································································3分所以数列nan⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列.·································································6分(Ⅱ)由(Ⅰ),得22nann=+,································································································7分所以222na n n=+,故2111(1)111()222(1)21nn na n n n n n n+-==⋅=⋅-+++, ···························8分所以111111[(1)()()]22231nSn n=-+-++-+,1111111[(1)()]223231n n=++++-++++,11(1)212(1)n n n =-=++. ····························································································· 12分解法二:依题意,可得1(1)22nn n a a n n++=++, ········································································ 1分 所以1(1)222211nn n n n n n a n a a a a a nn nn nnn++++-=-=+-=++,即*12()1n n a a n n n+-=∈+N , ··········································································································· 3分 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列.································································· 6分 (Ⅱ)同解法一. ····················································································································· 12分(18)(本小题满分12分)本小题主要考查频率分布直方图、数学期望等基础知识;考查抽象概括能力、数据处理能力、运算求解能力、应用意识;考查统计与概率思想、分类与整合思想.解:(Ⅰ)依题意,得6502610a =-,解得40a =,······································································· 1分又36100a b ++=,解得24b =; ································································································ 2分 故停车距离的平均数为26402482152535455527100100100100100⨯+⨯+⨯+⨯+⨯=. ················ 4分(Ⅱ)依题意,可知50,60x y ==, ···························································································· 5分 2222221030305050607070909055060ˆ1030507090550b ⨯+⨯+⨯+⨯+⨯-⨯⨯=++++-⨯, ············································· 6分 710=, ············································································································································ 7分 7ˆ60502510a=-⨯=,所以回归直线为ˆ0.725yx =+. ········································································································ 8分 (Ⅲ)由(I )知当81y >时认定驾驶员是“醉驾”. ······························································· 9分 令ˆ81y>,得0.72581x +>,解得80x >, ············································································· 11分 当每毫升血液酒精含量大于80毫克时认定为“醉驾”. ···························································· 12分(19) (本小题满分12分)解法一:(Ⅰ)取B D 的中点O ,连结,,A O C O E O .因为A B A D =,B O O D =,所以A O B D ⊥, ······································································· 1分 又平面A B D ⊥平面B C D ,平面A B D平面B C D B D =,A O ⊂平面A B D ,所以A O ⊥平面B C D , ················································································································· 2分 又B E ⊂平面B C D ,所以A O B E ⊥. 在B C D ∆中,2B D B C =,2D E E C =,所以2B D D E B CE C==,由角平分线定理,得C B E D B E ∠=∠, ····················································································· 3分 又2B C B O ==,所以B E C O ⊥, ··························································································· 4分 又因为A OC O O =,A O ⊂平面A C O ,C O ⊂平面A C O ,所以B E ⊥平面A C O , ················································································································· 5分 又A C ⊂平面A C O ,所以A C B E ⊥. ························································································ 6分 (Ⅱ)在B C D ∆中,24B D B C ==,60C B D ∠=,由余弦定理得C D =222B C C D B D +=,即90B C D ∠=,所以30E B D E D B ∠=∠=,B E D E =,所以E O B D ⊥, ················································· 7分 结合(Ⅰ)知,,,O E O D O A 两两垂直.以O 为原点,分别以向量,,O E O D O A 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O x y z -(如图),设(0)A O t t =>,则()0,0,A t ,()0,2,0B -,(,0,0)3E ,所以()0,2,B A t =,22,0)3B E =, ············································································ 8分设(),,x y z =n 是平面A B E 的一个法向量,则0,0,B A B E ⎧⋅=⎪⎨⋅=⎪⎩n n即20,20,3y tz x y +=⎧⎪⎨+=⎪⎩,整理,得,2,x z y t ⎧=⎪⎨=-⎪⎩令1y =-,得21,)t=-n . ·································································································· 9分因为O E ⊥平面A C D ,所以(1,0,0)=m 是平面A B D 的一个法向量. ······························ 10分又因为二面角E B A D --5,所以c o s ,5<>==m n ,解得2t =或2t =-(舍去), ···························· 11分又A O ⊥平面B C D ,所以A O 是三棱锥A B C D -的高,故111223323A B C D B C D V A O S -∆=⋅⋅=⨯⨯⨯⨯=. ····················································· 12分解法二:(Ⅰ)取B D 中点O ,连结,,O A O C O E .因为A B A D =,B O D O =,所以A O B D ⊥, ································································· 1分 又因为平面A B D ⊥平面B C D ,平面A B D平面B C D B D =,A O ⊂平面A B D ,所以A O ⊥平面B C D , ··············································································································· 2分 在平面B C D 内,过O 作O F O D ⊥(如图),则O F ,O D ,O A 两两垂直. 以O 为原点,分别以向量,,O F O D OA 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O x y z -(如图),设()0A O t t =>, ······························································· 3分在B C D ∆中,24B D B C ==,60C B D ∠=,由余弦定理得C D =因为222B C C D B D +=,所以90B C D ∠=,故30C D B ∠=, ········································· 4分则有()0,0,A t ,()0,2,0B -,1,0)C -,0,0)3E , ·········································· 5分所以1,)A C t =--,22,0)3B E =,所以()()12003A CB E t ⋅=+-⨯+-⨯=,所以A C B E ⊥. ························································································································· 7分 (Ⅱ)由(Ⅰ)可得()0,2,B A t =. 设(),,x y z =n 是平面AB E 的法向量,则0,0,B A B E ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20,3y tz x y +=⎧⎪⎨+=⎪⎩整理,得,2,x zy t ⎧=⎪⎨=-⎪⎩令1y =-,得21,)t=-n . ·································································································· 9分因为O E ⊥平面A C D ,所以(1,0,0)=m 是平面A B D 的一个法向量. ······························ 10分又因为二面角E B A D--的余弦值为5,所以c o s ,5<>==m n ,解得2t =或2-(不合,舍去), ····················· 11分又A O ⊥平面B C D ,所以A O是三棱锥A B C D -的高, 故111223323A B C D B C D V A O S -∆=⋅⋅=⨯⨯⨯⨯=. ····················································· 12分解法三:(Ⅰ)同解法一. ·················································································································· 6分(Ⅱ)过点O 作O F A B ⊥于点F ,连结E F .。

福建省泉州市中考数学二模考试试卷

福建省泉州市中考数学二模考试试卷

福建省泉州市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共40分)1. (2分)计算:|﹣ |=()A .B . ﹣C . 3D . ﹣32. (3分)如图1,木工师傅做门框时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的依据是()A . 三角形的稳定性B . 四边形的不稳定性C . 两点之间线段最短D . 矩形的四个角都是直角3. (3分) (2019七下·武昌期中) 在下面哪两个整数之间()A . 5和6B . 6和7C . 7和8D . 8和94. (2分) (2015八上·龙华期末) 如图,已知数轴上的点A,B,O,C,D,E分别表示数﹣3、﹣2、0、1、2、3,则表示数﹣1+ 的点P应落在线段()A . AB上B . OC上C . CD上D . DE上5. (3分) (2020八上·中山期末) 已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法表示为()A . 1.52×10-5米B . 1.52×105米C . 1.52×104米D . 1.52×10-4米6. (3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为()A . 14B . 16C . 20D . 287. (3分)(2017·港南模拟) 如图,在△ABC中,AB=10,AC=8,BC=12,AD⊥BC于D,点E、F分别在AB、AC边上,把△ABC沿EF折叠,使点A与点D恰好重合,则△DEF的周长是()A . 14B . 15C . 16D . 178. (3分)某商品降价30%后,每台售价a元,那么该商品原价应为()元.A . 0.3aB . 0.7aC .D .9. (3分)如图,点A和点B相距60cm,且关于直线L对称,一只电动青蛙在与直线L相距20cm,与点A 相距50cm的点P1处以A为对称中心跳至P2处,然后从P2处以L为对称轴跳至P3处,再从P3处以B为对称中心跳至P4处,再从P4处以L为对称轴跳至P5处,又从P5处以A为对称中心跳至P6处…,如此重复跳跃,则P2011与直线L的距离是()A . 20cmB . 30cmC . 40cmD . 50cm10. (3分)(2017·临沂模拟) 当x=3时,分式(﹣x﹣1)÷ 的值为()A .B .C .D .11. (2分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A . 10B .C . 2D .12. (2分)(2017·青山模拟) 函数y= 的自变量x的取值范围为()A . x>2B . x<2C . x≤2D . x≠213. (2分)(2012·大连) 如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A . 20B . 24C . 28D . 4014. (2分)有一个边长为50cm的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为()A . 50cmB . 25cmC . 50cmD . 50cm15. (2分)函数y=-kx与y=(k≠0)的图象的交点个数是()A . 0B . 1C . 2D . 不确定16. (2分)(2017·福田模拟) 如图,已知E′(2,﹣1),F′(,),以原点O为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A . (﹣4,2)B . (4,﹣2)C . (﹣1,﹣1)D . (﹣1,4)二、填空题(本大题有3个小题,共12分,17~18小题各3分;1 (共3题;共12分)17. (3分) (2016九下·崇仁期中) 如图,矩形OABC的两点OA、OC分别在x轴、y轴的正半轴上,点G为矩形对角线的交点,经过点G的双曲线y= 在第一象限的图象与BC相交于点M,交AB于N,若已知S△MBN=9,则k的值为________.18. (3分)如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是________.19. (6分) (2017八下·日照开学考) 如图,已知AB=AC,∠A=40°,AB=10,DC=3,AB的垂直平分线MN交AC于点D,则∠DBC=________度,BD=________.三、解答题(本大题有7个小题,共66分。

2018年福建省泉州市中考数学试卷(含答案)

2018年福建省泉州市中考数学试卷(含答案)

2018年福建省泉州市初中毕业、升学考试数 学 试 题(满分150分,考试时间120分钟)友情提示:所有答案都必须填涂在答题卡的相应的位置上,答在本试卷一律无效.毕业学校_________________姓名___________考生号_________一、选择题(共7小题,每题3分,满分21分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1. 7-的相反数是( ).A. 7-B. 7C.71- D. 71解:应选B 。

⒉42)(a 等于( ).A.42a B.24a C.8a D. 6a 解:应选C 。

⒊把不等式01≥+x 在数轴上表示出来,则正确的是( ).解:应选B 。

⒋下面左图是两个长方体堆积的物体,则这一物体的正视图是( ).解:应选A 。

⒌若4-=kx y 的函数值y 随着x 的增大而增大,则k 的值可能是下列的( ).A .4- B.21- C.0 D.3 解:应选D 。

⒍下列图形中,有且只有两条对称轴的中心对称图形是( ). A .正三角形 B.正方形 C.圆 D.菱形 解:应选D 。

⒎如图,点O 是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别交于点E 、F ,则( )A .EF>AE+BF B. EF<AE+BFC.EF=AE+BFD.EF ≤AE+BF C 解:应选C 。

B (第七题图)二、填空题(每题4分,共40分;请将正确答案填在答题卡相应位置) ⒏比较大小:5-__________0.(用“>”或“<”号填空〕解:<。

⒐因式分解:x x 52-=__________. 解:)5(-x x 。

⒑光的速度大约是300 000 000米/秒,将300 000 000用科学计数法法表示为__________. 解:8103⨯。

⒒某校初一年段举行科技创新比赛活动,各个班级选送的学生数分别为3、2、2、6、6、5,则这组数据的平均数是__________. 解:4.⒓n 边形的内角和为900°,则n =__________.解:7. ⒔计算:=---111m m m __________. 解:1. D⒕如图,在△ABC 中,AB=AC ,BC=6,AD ⊥BC 于点D ,则BD 的长是__________. 解:3.C D (第十四题图) ⒖如图,在△ABC 中,∠A=60°,∠B=40°,点D 、E 分别在BC 、AC 的延长线上,则∠1=_ °. 解:80°。

福建省泉州市洛江区2018年中考质量检查数学试题及答案

福建省泉州市洛江区2018年中考质量检查数学试题及答案

yMx NyM Nx洛江区 2018 年初三质检数学试题一、选择题(每小题 4 分,共 40 分) 1.绝对值等于 3 的数是( ).A .B .C .3D .3 或3. 下列运算中,正确的是( ).A .B .C .D .3.抛一个质地匀的正方体骰子,当骰子停止后,朝上一面的点数为 5 的概率是().A .1B .C .D .04. 如图,是一个由 4 个相同的正方体组成的立体图形,它的主视图是().5. 声音在空气中传播:每小时约通过 1200000m ,1200000 用科学记数表示为( ).A .B .C .D . 6.如图数轴上表示的是下列哪个不等式组的解集().A.B .C .D .(第 6 题)7.如图,A 、B 、C 三点在正方形网格线的交点处,若捋△ACB 绕点 A 逆时针转得到△,则 tan的值为( ). A . B . C . D .18.如图,两个同心圆的半径分别为 6cm 和 3cm ,大圆的弦 AB 与小圆相切, 则劣弧 AB 的长为( ).A .B .4C .6D .89.正五边形的每一个外角是( ).A .36oB .54oC .72oD .108o 10.下列图形中,阴形部分的面积最大的( ). yM (1,3)N (3,1)x (第 7 题)(第 8 题)A.B .C .二、填空题:(每小题 4 分,共 24 分) 11.计算:=.yM (1,3)xN(-1,-3)D .12. 因式分解:= .13. 如图,路灯距离地面 8 米:身高 1.6 米的小明在距离灯的底部(点 O )20 米的 A 处,则小明的影子AM 长为 .14. 已知某校学生“科技创社团”成员的年龄与人数情况如右表所示,那么“科技创斯社团”成员年龄的中位数是 岁.15.已知 A (-2,y 1),B (-1,y 2),C (4,y 3)都在反比例函数的图象上,则 y 1、y 2、y 3 的大小关系(从大到小)为 .16.在每个小正方形的边长为 1 的网格中,点 A 、B 、C 均在格点上,在 △ABC 的 内 部 有 一 点 P , 满 足 S △PAB :S △PBC :S △PCA = 1:2:3,请在如图所示的网格中,用无刻度直尺画出点 P (保留画图痕迹)三、解答题:(本大颗共 9 小西,共 86 分) 17.(8 分)化简:.(按要求填空)(第 16 题)18.(8 分)如图,点 E 、F 在 B C 上,B E =C F ,A B =D C ,∠ B=∠ C ,求证:∠ A=∠ DAD19.(8 分)如图,已知锐角△A B C (1) 过点 A 作 BC 边的垂线 MN ,交 BC 于 D(尺规作图,保留痕迹,不要求写作法)(2) 在(1)条件下,若 BC=5,AD=4,tan ∠ BAD=,求 DC 的长.BEF CAB C(第 13 题)20.(8 分)阅读下列材料,回答问题:解方程,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设, 那么,于是原方程可变为①,解得 y 1=1,y 2=4.当 y 1=1 时,,∴ ;当 y 2=4 时,,∴;∴ 原方程有四个解: x 1=1,x 2=,x 3=2,x 4=,(1) 在解原方程得到方程①的过程中,利用 法达到降次目的,体现了数学的转化思想;(2) 解方程:21.(8 分)为了发展旅游,建设美丽洛江,某中学九年级一班同学积积极参加了植树活动,今年四月份该班同学植树情况部分如图所示,且植树 2 株的人数占 32%.(1) 求该班的总人数、植树株数的众数,并把条形统计图补充完整;(2) 若将该班同学的植树人数所占比例绘制成扇形统计图时,求“植树 3 株”对应扇形的圆心角的度数; (3) 从该班参加植树的学生中任意抽取一名,其植树株数超过该班植树株数的平均数的概率.22.(10 分)某经销商销售一种产品,这种产品的成本价为 10元/千克,市场调查发现,该产品每天的销售 y (千克)与销售价 x (元/千克,且 1018)之间的函数关系如图所示: (1) 求 y (千克)与销售价 x 之间的函数关系; (2) 该经销商想要获得 150 元的销售利润,销售价应定为多少?y(千克)4024O1018 x(元/千克)23.(10 分)如图,已知:△ABC 中,AB=AC ,以 AB 为直径的⊙ O 交 BC 于点 D ,过 DDE ⊥ AC 于 E .(1) 求证:直线 DE 是⊙ O 的切线; (2)若 CD=,∠ ACB=300,分别求 AB 、OE 的大小.9724.(12 分)已知抛物线y= 经过点A(2,0) .(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B 关于原点的对称点为C.①若B、C 都在抛物线上,求m 的值;②若点C 在第四象限,当AC2的值最小时,求m 的值.25.(14 分)如图,在Rt△ABC 中,∠ A=900,AB=12,AC=16,点 D 为边BC 的中点,DE⊥BC 交边AC 于点E,点P 为射线AB 上的一动点,点Q 为直线AC 上的一动点,且∠ PDQ=900.(1)求ED、EC 的长;(2)若BP=2,求CQ 的长;(3)若线段PQ 与线段DE 交点为F,当△PDF 为等腰三角形时,求BP 的长洛江区2018 年初三质检数学参考答案。

2018年福建省泉州市中考数学二模试卷

2018年福建省泉州市中考数学二模试卷

2018年福建省泉州市中考数学二模试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共40.0分)1.计算的结果是A. 3B.C.D.2.如图是由八个相同小正方体组成的几何体,则其主视图是A.B.C.D.3.从泉州市电子商务中心获悉,近年来电子商务产业蓬勃发展截止到2018年3月,我市电商从业人员已达873 000人,数字873 000可用科学记数法表示为A. B. C. D.4.下列各式的计算结果为的是A. B. C. D.5.不等式组的解集在数轴上表示为A. B.C. D.6.下列图形中,是中心对称图形,但不是轴对称图形的是A. B. C. D.7.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是A. 最低温度是B. 众数是C. 中位数是D. 平均数是8.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x的方程符合题意的是A. B.C. D.9.如图,在的网格中,A,B均为格点,以点A为圆心,以AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是A. B. C. D.10.如图,反比例函数的图象经过正方形ABCD的顶点A和中心E,若点D的坐标为,则k的值为A. 2B.C.D.二、填空题(本大题共6小题,共24.0分)11.已知,,则a______填“”,“”或“”.12.正八边形的每一个内角的度数为______度13.一个暗箱中放有除颜色外其他完全相同的m个红球,6个黄球,3个白球现将球搅匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到黄球的频率稳定在附近,由此可以估算m的值是______.14.如图,将绕点A顺时针旋转,得到这时点D、E、B恰好在同一直线上,则的度数为______.15.已知关于x的一元二次方程有两个相等实数根,则m的值为______.16.在平行四边形ABCD中,,,点E为BC中点,连结AE,将沿AE折叠到的位置,若,则点到直线BC的距离为______.三、计算题(本大题共2小题,共16.0分)17.解方程:.18.先化简,再求值:,其中.四、解答题(本大题共4小题,共34.0分)19.如图,在锐角中,,.尺规作图:作BC边的垂直平分线分别交AC,BC于点D、保留作图痕迹,不要求写作法;在的条件下,连结BD,求的周长.20.为进一步弘扬中华优秀传统文化,某校决定开展以下四项活动:A经典古诗文朗诵;B书画作品鉴赏;C民族乐器表演;D围棋赛学校要求学生全员参与,且每人限报一项九年级班班长根据本班报名结果,绘制出了如下两个尚不完整的统计图,请结合图中信息解答下列问题:直接填空:九年级班的学生人数是______,在扇形统计图中,B项目所对应的扇形的圆心角度数是______;将条形统计图补充完整;用列表或画树状图的方法,求该班学生小聪和小明参加相同项目活动的概率.21.求证:矩形的对角线相等要求:画出图形,写出已知,求证和证明过程22.如图,菱形ABCD中,,,以点A为圆心的与BC相切于点E.求证:CD是的切线;求图中阴影部分的面积.五、计算题(本大题共1小题,共10.0分)23.该公司计划购买A型和B型两种公交车共10辆,已知每辆A型公交车年均载客量为60万人次,每辆B型公交车年均载客量为100万人次,若要确保这10辆公交车年均载客量总和不少于670万人次,则A型公交车最多可以购买多少辆?六、解答题(本大题共2小题,共26.0分)24.如图1,在矩形ABCD中,,,点E从点B出发,沿BC边运动到点C,连结DE,过点E作DE的垂线交AB于点F.求证:;求BF的最大值;如图2,在点E的运动过程中,以EF为边,在EF上方作等边,求边EG 的中点H所经过的路径长.25.已知:二次函数的图象与x轴交于点A、,顶点为求该二次函数的解析式;如图,过A、C两点作直线,并将线段AC沿该直线向上平移,记点A、C分别平移到点D、E处若点F在这个二次函数的图象上,且是以EF为斜边的等腰直角三角形,求点F的坐标;试确定实数p,q的值,使得当时,.答案和解析【答案】1. A2. C3. C4. D5. C6. A7. D8. A9. B10. B11.12. 13513. 1114.15. 016.17. 解:去分母得:,去括号得:,移项得:,系数化为1得:.18. 解:,当时,原式.19. 解:如图,DE为所作;垂直平分BC,,的周长.20. 50;21. 解:已知:四边形ABCD是矩形,AC与BD是对角线,求证:,证明:四边形ABCD是矩形,,,又,≌ ,,所以矩形的对角线相等22. 证明:连接AE,过A作,,四边形ABCD是菱形,,,与相切于点E,,,在与中,,≌ ,,是的切线;在菱形ABCD中,,,,,,在中,,,菱形ABCD的面积,在菱形ABCD中,,,扇形MAN的面积,阴影面积菱形ABCD的面积扇形MAN的面积.23. 解:设A型和B型公交车的单价分别为a万元,b万元,根据题意,得:,解得:,答:购买每辆A型公交车100万元,购买每辆B型公交车150万元;设购买A型公交车x辆,则购买B型公交车辆,根据题意得:,解得:,,且,,最大整数为8,答:A型公交车最多可以购买8辆.24. 解:证明:如图1,在矩形ABCD中,,,,,,,,;由可得,,,∽ ,,在矩形ABCD中,,,设,则,,,,当时,BF存在最大值;如图2,连接FH,取EF的中点M,连接BM,HM,在等边三角形EFG中,,H是EG的中点,,,又是EF的中点,,在中,,M是EF的中点,,,点B,E,H,F四点共圆,连接BH,则,点H在以点B为端点,BC上方且与射线BC夹角为的射线上,如图,过C作于点,点E从点B出发,沿BC边运动到点C,点H从点B沿BH运动到点,在中,,,点H所经过的路径长是.25. 解:二次函数的顶点为,可设该二次函数的解析式为,把代入,得,解得,该二次函数的解析式为;由,得或1,.如图,过点C作轴于点H.,,,又,,,.在等腰直角中,,,,,,轴.由,可得直线AC的解析式为.由题意,设其中,则点,,,不合题意舍去,点F的坐标为;当时,,解得,.,当时,y随x的增大而减小;当时,y随x的增大而增大;当时,y有最小值.当时,,可分三种情况讨论:当时,由增减性得:,当时,最小,不合题意,舍去;当时,最大当时,Ⅰ若,由增减性得:,当时,最小,不合题意,舍去;当时,最大Ⅱ若,由增减性得:当时,,当时,最小,符合题意,最大,;当时,由增减性得:当时,,当时,最小,最大把,代入,得,解得,不合题意,舍去,,.综上所述,满足条件的实数p,q的值为,或,.【解析】1. 解:.故选:A.根据绝对值的性质进行计算.本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2. 解:主视图有3列,从左往右分别有3,1,2个小正方形,故选:C.主视图是从图形的正面看所得到的图形,根据小正方体的摆放方法,画出图形即可.此题主要考查了简单几何体的三视图,关键是掌握主视图是从物体的正面看得到的视图.3. 解:数字873 000可用科学记数法表示为.故选:C.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:A、,无法计算,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,故此选项正确.故选:D.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则计算得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握运算法则是解题关键.5. 解:解不等式,得:;解不等式,得:,所以不等式组的解集为:,数轴上表示为:,故选:C.先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.6. 解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.根据中心对称图形的定义旋转后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.7. 解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为,众数为,中位数为,平均数是,故选:D.将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.8. 解:设这个物品的价格是x元,则可列方程为:故选:A.根据“总人数不变”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.9. 解:如图作于H.在中,,故选:B.如图作于在中,即可解决问题;本题考查解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10. 解:反比例函数的图象经过正方形ABCD的顶点A和中心E,点D的坐标为,点A的坐标为,点E的坐标为,,解得,,故选:B.根据题意可以设出点A的坐标,从而可以得到点E的坐标,进而求得k的值,从而可以解答本题.本题考查反比例函数图象上点的坐标特征、正方形的性质,解答本题的关键是明确反比例函数的性质,利用反比例函数的知识解答.11. 解:,,,,.故答案为:.直接利用零指数幂的性质和负指数幂的性质分别化简得出答案.此题主要考查了零指数幂的性质和负指数幂的性质,正确化简各数是解题关键.12. 解:正八边形的每个外角为:,每个内角为.利用多边形的外角和为360度,求出正八边形的每一个外角的度数即可解决问题.本题需仔细分析题意,利用多边形的外角和即可解决问题.13. 解:由题意可得:,解得:,故答案为:11.直接利用样本估计总体,进而得出关于m的等式求出答案.此题主要考查了用样本估计总体,正确得出关于m的等式是解题关键.14. 解:绕点A顺时针旋转得到,,,,在中,,则,故答案为:.由旋转性质知,,,再等腰中得,据此可得答案.本题主要考查旋转的性质,解题的关键是掌握对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等.15. 解:关于x的一元二次方程有两个相等的实数根,,且,,解得,.故答案是:0.根据一元二次方程的根的判别式列出关于m的方程,通过解方程即可求得m的值.本题考查了根的判别式、一元二次方程的定义一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.16. 解:如图连接,作于H.,,,,,,,,,,∽ ,,,.故答案为.如图连接,作于利用 ∽ ,可得,由此即可解决问题;本题考查翻折变换、平行四边形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.17. 方程两边每一项都要乘各分母的最小公倍数6,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.注意:在去分母时,应该将分子用括号括上切勿漏乘不含有分母的项.18. 根据分式的除法和减法可以化简题目中的式子,再将a的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分是化简求值的方法.19. 利用基本作图作已知线段的垂直平分线作DE垂直平分BC;利用线段垂直平分线的性质得到,则利用等量代换得到的周长,然后把,代入计算计算.本题考查了基本作图:熟练掌握基本作图作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.20. 解:九年级班的学生人数是人,B项目所对应的扇形的圆心角度数是,故答案为:50,;项目所对应的人数为,条形统计图如图所示:画树状图如下:共有16种等可能的结果,其中小聪和小明参加相同项目活动的情况有4种,参加相同项目活动.依据项目A的数据,即可得到九年级班的学生人数,依据B项目所占的百分比,即可得出B项目所对应的扇形的圆心角度数;依据B项目所对应的人数为,即可将条形统计图补充完整;画树状图,即可得到共有16种等可能的结果,其中小聪和小明参加相同项目活动的情况有4种,进而得到小聪和小明参加相同项目活动的概率.本题考查列表法与树状图法,当有两个元素时,可用树形图列举,也可以列表列举解答本题的关键是明确题意,利用概率公式求出相应的概率.21. 由“四边形ABCD是矩形”得知,,,矩形的四个角都是直角,再根据全等三角形的判定原理SAS判定全等三角形,由此,得出全等三角形的对应边相等的结论.本题考查的是矩形的性质和全等三角形的判定在矩形中,对边平行相等,四个角都是直角;全等三角形的判定原理AAS;三个判定公理、SAS、;全等三角形的对应边、对应角都相等.22. 连接AE,根据菱形的性质和全等三角形的判定和性质以及切线的判定证明即可;利用菱形的性质和扇形的面积公式解答即可.此题考查菱形的性质,全等三角形的判定与性质,扇形面积公式,熟练掌握性质及公式是解本题的关键.23. 根据“购买A型公交车3辆,B型公交车1辆,共需450万元;若购买A型公交车2辆,B型公交车3辆,共需650万元”列方程组求解可得;设购买A型公交车x辆,则购买B型公交车辆,根据“这10辆公交车年均载客量总和不少于670万人次”求得x的范围即可.本题主要考查二元一次方程组、一元一次不等式的应用,解题的关键是根据题意确定相等关系或不等式关系以列出方程组和不等式是解题的关键.24. 依据,,即可得到,再根据,即可得出;依据 ∽ ,即可得到,设,则,根据,即可得到当时,BF存在最大值;连接FH,取EF的中点M,连接BM,HM,依据,可得点B,E,H,F四点共圆,连接BH,则,进而得到点H在以点B为端点,BC上方且与射线BC夹角为的射线上,再过C作于点,根据点E 从点B出发,沿BC边运动到点C,即可得到点H从点B沿BH运动到点,再利用在中,,即可得出点H所经过的路径长是.本题属于四边形综合题,主要考查了相似三角形的判定与性质,解直角三角形以及四点共圆的综合运用,解决问题的关键是作辅助线构造直角三角形,利用直角三角形斜边上中线的性质以及含角的直角三角形的性质得出结论.25. 由二次函数的顶点为,可设其解析式为,再把代入,利用待定系数法即可求出该二次函数的解析式;由二次函数的解析式求出过点C作轴于点解直角,得出,那么,解等腰直角得出,,由,得到轴利用待定系数法求出直线AC的解析式为设其中,则点,那么,解方程求出m,进而得出点F的坐标;先求出时,再根据二次函数的性质可知,当时,,应分三种情况讨论:;;.本题是二次函数综合题,其中涉及到利用待定系数法求二次函数、一次函数的解析式,二次函数的性质,等腰直角三角形的性质,函数图象上点的坐标特征等知识综合性较强,有一定难度利用数形结合与分类讨论是解题的关键.。

2018届福建省泉州市高三第二次 质量检查 数学试卷(理) 含答案解析

2018届福建省泉州市高三第二次 质量检查 数学试卷(理) 含答案解析

2018届福建省泉州市高三第二次质量检查数学试卷(理)含答案解析注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用5.0毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合(){},|1A x y y x ==-,(){},|1B x y y x ==-+,则A B =I(A )∅(B ){}1(C ){}0,1(D )(){}1,0(2)设向量a ,b 满足,()3-=g a a b ,则a 与b 的夹角为(A (B (C (D (3)设等差数列{}n a 的前n 项和为n S .若136a a +=,416S =,则4a =(A )6(B )7(C )8(D )9(4)若双曲线2222:1(0,0)x y C a b a b-=>>的右焦点()40F ,到其渐近线的距离为2,则C 的渐近线方程为(A )y x = (B )y =(C )y x =(D )y =(5)执行如图所示的程序框图,若输出的2=S ,则判断框内可以填入(A )5<i(B )6<i(C )7<i(D )8<i(6)若函数()()()()sin 0,0,0,f x A x A ωϕωϕ=+>>∈π的部分图象如图所示,则()f x 的一条对称轴为 (A )1121x =-π (B )56x =-π (C )1112x =π (D )76x =π(第(5)题图)(第(6)题图)(7)李雷和韩梅梅两人都计划在国庆节的7天假期中,到“东亚文化之都--泉州”“二日游”,若他们不同一天出现在泉州,则他们出游的不同方案共有 (A )16种(B )18种(C )20种(D )24种(8)已知偶函数()f x 在()0,+∞上单调递增,则(A )()()ee23f f >-(B )()()23ee f f >-(C )((0.5log 0.5f f >(D )0.5f f >(9视图,则该几何体的体积为(A )32π (B )53π(C )116π(D )136(10)已知正三棱柱111ABC A B C -111,B C BB 的中点.1p :1//AC MN ;2p :11AC C N ⊥; 3p :1B C ⊥平面AMN ;4p :异面直线AB 与MN 其中正确的结论是 (A )12,p p(B )23,p p(C )24,p p(D )34,p p(11)已知椭圆()2222:10+=>>x y C a b a b的左、右焦点分别为1F ,2F .2F 也是抛物线2:2(0)E y px p=>的焦点,点A为C与E的一个交点,且直线1AF的倾斜角为45︒,则C的离心率为(A(B1(C)3(D1(12x的方程()0f f x⎡⎤=⎣⎦的实数解最多有(A)4个(B)7个(C)10个(D)12个二、填空题:本大题共4小题,每小题5分.(13对应的点位于第三象限,则实数a的取值范围是 .(14)若,x y满足约束条件2,0,20,xx yx y≥-⎧⎪+≥⎨⎪-+≤⎩则2z x y=-的最大值为 .(15)甲和乙玩一个猜数游戏,规则如下:已知五张纸牌上分别写有112n⎛⎫- ⎪⎝⎭(*,5n n∈≤≤N1)五个数字,现甲、乙两人分别从中各自随机抽取一张,然后根据自己手中的数推测谁手上的数更大.甲看了看自己手中的数,想了想说:我不知道谁手中的数更大;乙听了甲的判断后,思索了一下说:我也不知道谁手中的数更大.假设甲、乙所作出的推理都是正确的,那么乙手中的数是 .(16)已知数列{}n a,{}n b,{}n c满足1112,2,2,n n n nn n n nn n n na ab cb a b cc a b c+++=++⎧⎪=++⎨⎪=++⎩且18a=,14b=,1c=,则数列{}n na的前n项和为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)△ABC的内角,,A B C的对边分别为,,a b c,且cosb A c=-.(Ⅰ)求B;(Ⅱ)若c=cos10A=,求△ABC的面积.(18)(本小题满分12分)如图,在四棱锥P ABCD -中,//AD BC ,2AB BC ==,4AD PD ==,60BAD ∠=o ,120ADP ∠=o ,点E 为PA 的中点.(Ⅰ)求证://BE 平面PCD ;(Ⅱ)若平面PAD ⊥平面ABCD ,求直线BE 与平面PAC 所成角的正弦值.(19)(本小题满分12分)某工厂有两台不同机器A 和B 生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如下所示:[80,90)的产品,质量等级为良好;鉴定成绩达到[60,80)的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.(Ⅰ)从等级为优秀的样本中随机抽取两件,记X 为来自B 机器生产的产品数量,写出X 的分布列,并求X 的数学期望;(Ⅱ)完成下列22⨯列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为B 机器生产的产品比A 机器生产的产品好;(III 润为5元/件,A 机器每生产10万件的成本为20万元,B 机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?附:1.独立性检验计算公式:22()()()()()n ad bc K a b c d a c b d -=++++.2.临界值表:PECDA(20)(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>经过点(2,离心率为2.(Ⅰ)求E 的方程;(Ⅱ)过E 的左焦点F 且斜率不为0的直线l 与E 相交于A ,B 两点,线段AB 的中点为C ,直线OC 与直线4x =-相交于点D ,若△ADF 为等腰直角三角形,求l 的方程.(21)(本小题满分12分)函数()()ln 1f x x ax =++的图像与直线2y x =相切. (Ⅰ)求a 的值;(Ⅱ)证明:对于任意正整数n ,选考题:请考生在第(22)、(23)两题中任选一题作答。

最新-福建省泉州市泉港三川中学2018届中考数学二模试

最新-福建省泉州市泉港三川中学2018届中考数学二模试

福建省泉州市泉港三川中学2018届中考数学二模试题 华东师大版一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1.下列运算结果等于1的是( ▲ )A .-2+1B .-12C .-(-1)D . ―||―12.下列运算正确的是( ▲ )A .(a 3)2=a 5B .(-2x 2)3=-8x 6C .a 3·(-a )2=-a 5D . (-x )2÷x =-x3.在下列一元二次方程中,两实根之和为5的方程是( ▲ )A .x 2-7x +5=0B .x 2+5x -3=0C .x 2-5x +8=0D .x 2-5x -2=04.为迎接2018年上海世博会,有15位同学参加世博知识竞赛预赛,他们的分数互不相同.若取前8位同学进入决赛,某人知道了自己的分数后,还需知道这15位同学的分数的哪个统计量,就能判断他能不能进入决赛( ▲ )A .中位数B .众数C .最高分数D .平均数9.用一个半径为10cm 半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为( ▲ )A .53cmB .52cmC .5cmD .7.5cm10.如图,直线l 交y 轴于点C ,与双曲线y =k x (k <0)交于A 、B两点,P 是线段AB 上的点(不与A 、B 重合),Q 为线段BC 上的点(不与B 、C 重合),过点A 、P 、Q 分别向x 轴作垂线,垂足分别为D 、E 、F ,连结OA 、O P 、OQ ,设△AOD 的面积为S 1、△POE的面积为S 2、△QOF 的面积为S 3,则有( ▲ )A .S 1<S 2<S 3B .S 3<S 1<S 2C .S 3<S 2<S 1D .S 1、S 2、S 3的大小关系无法确定二、填空题(本大题共8小题,每小题3分,共计24分.请把答案直接填写在答题卡相应位置.......上.) 11.25的算术平方根是 ▲ .12.2018年3月28日,山西省王家岭煤矿发生透水事故.这一事件牵动了全国人民的心,为尽快救出被困人员,各地紧急调拨救援物资,几天内调拨物资金额就达到1亿元,这个数据用科学记数法可表示为 ▲ 元.13.函数y =x -1中,自变量x 的取值范围是 ▲ .14.分解因式:a 3-16a = ▲ .15.有一杯2升的水,其中含有1个细菌,用一个小杯从中取出0.1升的水,则小杯中含有这个细菌的概率为 ▲ .16.在△ABC 中,若AB =AC ,∠A =45°,则∠B = ▲ 度. 17.若两个等边三角形的边长分别为a 与2a ,则它们的面积之比为 ▲ . 18.如图,在△ABC 中,AB =5cm ,∠A =45°,∠C =30°,⊙O 为△ABC 的外接圆,P 为 ⌒BC上任一点,则四边形OABP 的周长的最大值是 ▲ cm . 三、解答题(本大题共10小题,共计96分.)19.(本题有2小题,每小题6分,共12分.)(1)计算:(-1)2018×(-2)2+(3-π)0+||1-2sin60°; (2)解不等式组:⎩⎪⎨⎪⎧x -32+3≥x ,1-3(x -1)<8-x .20.(本题满分8分)先化简⎝ ⎛⎭⎪⎫1x +2-12-x ÷x x +2,然后从2,-2,0,3这4个数中选取一个你认为合适的数作为x 的值代入求值.21.(本题满分8分) 如图,E 、F 是□ABCD 的对角线AC 上的两点,且AF =CE .请你猜想线段BE 与DF 之间的关系,并加以证明.22.(本题满分8分)如图,在正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上). (1)平移△ABC ,使得点A 移到点A 1的位置,在网格中画出平移后得到的△A 1B 1C 1;(2)把△A 1B 1C 1绕点A 1按顺时针方向旋转90°,在网格中画出旋转后得到的△A 1B 2C 2;(3)如果网格中小正方形的边长为1,求点C 经过(1)、(2)变换的路径总长.23.(本题满分8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是 ▲ ;(2)从中随机抽出两张牌,牌面数字的和是5的概率是 ▲ ;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字.请用画树状图法或列表法求组成的两位数恰好是4的倍数的概率.24.(本题满分8分)北京时间2018年4月14日7时49分,青海玉树发生7.1级地震,牵动着亿万人的心,明星也不例外.在4月20日晚中央电视台“情系玉树,大爱无疆——抗震救灾大型募捐活动特别节目”上,众多明星纷纷献出了自己的爱心.下面为部分明星的A C D EF(第18题)个人捐款金额(单位:万元):20,20,30,10,20,30,20,10,10,2,20,30,20,100,20,100,200,10,20,5.(1)请用列表法把上述捐款金额统计出来;(2)在条形统计图、扇形统计图、折线统计图中,_ ▲ 统计图最不适合描述这组数据;(直接填写答案,不必画图)(3)请分别计算这组数据的平均数、众数与中位数,并指出平均数与众数这两个统计量中,哪个量更能反映这部分明星的捐款情况.25.(本题满分8分)某中学团委组织了“争做阳光少年”有奖征文活动,并设立若干奖项.学校计划派人根据设奖情况去购买A 、B 、C 三种奖品共50件,其中B 型奖品件数比A 型奖品件数的2倍少10件,C 型奖品所花费用不超过B 型奖品所花费用的1.5倍.各种奖品的单价如右表所示.如果计划A 型奖品买x 件,买50件奖品的总费用是w 元.(1)试求w 与x 之间的函数关系式,并求出自变量x 的取值范围;(2)请你设计一种方案,使得购买这三种奖品所花的总费用最少,并求出最少费用.26.(本题满分9分)在某段限速公路BC 上,交通管理部门规定汽车的最高行驶速度不能超过60千米/小时,并在另外一条高等级公路l 的收费站A 处设置了一个监测点.已知两条公路互相垂直,且在测速点A 测得A 到BC 的距离为100米,两条公路的交点O 位于A 的南偏西32°方向上,点B 位于A 的南偏西77°方向上,点C 位于A 的南偏东28°方向上.(注:本题中,两条公路均视为直线.) (1)一辆汽车从点B 匀速行驶到点C 所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速?(2)若一辆大货车在限速路上由B 处向C 行驶,一辆小汽车在高等级公路l 上由A 处沿AO 方向行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离.(结果保留根号)27.(本题满分13分)如图,抛物线y =ax 2-4ax +c 交x轴于A 、B 两点,交y 轴于C 点,点D (4,-3)在抛物线上,且四边形ABDC 的面积为18. (1)求抛物线的函数关系式;(2)若正比例函数y =kx 的图象将四边形ABDC 的面积分为1∶2的两部分,求k 的值;(3)将△AOC 沿x 轴翻折得到△AOC ′,问:是否存在这样的点P ,以P 为位似中心,将△AOC ′放大为原来的两倍后得到△EFG (即△EFG ∽△AOC ′,且相似比为2),使得点E 、G 恰好在抛物线上?若存在,请O lBA 北 西东 南求出符合条件的点P的坐标;若不存在,请说明理由.28.(本题满分14分)如图,在Rt△ABC中,∠ACB=90°,AC、BC的长为方程x2-14x+a=0的两根,且AC-BC=2,D为AB的中点.(2)动点P从点A出发,以每秒2个单位的速度,沿A→D→C的路线向点C运动;动点Q从点B出发,以每秒3个单位的速度,沿B→C的路线向点C运动,且点Q每运动1秒,就停止2秒,然后再运动1秒……若点P、Q同时出发,当其中有一点到达终点时整个运动随之结束.设运动时间为t秒.①在整个运动过程中,设△PCQ的面积为S,试求S与t之间的函数关系式;并指出自变量t的取值范围;②是否存在这样的t,使得△PCQ为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.九年级中考二模数学参考答案及评分标准21.(本题满分8分)猜想:BE∥DF,且BE=DF. ……………………2分理由如下:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC. ………………3分∴∠DAF=∠BCE. …………………4分又∵AF=CE,∴△ADF≌△CBE.……………………6分∴BE=DF.……………………………7分∠AFD=∠CEB.∴BE∥DF. ……………………………8分(注:若只猜想数量关系而没有考虑位置关系,扣2分,得5分)22.(本题满分8分)(1)图略,…………2分(2)图略,…………4分(3)变换(1)中的路径长为5,……5分变换(2)中的路径长为5π,……6分∴点C经过(1)、(2)变换的路径总长为5+5π.……8分23.(本题满分8分)(1)12;…………2分(2)13;……………4分(3)共有16中可能,其中符合条件的有4种,P(组成的两位数恰好是4的倍数)=416=14.…8分24.(本题满分8分)金额(万元) 2 5 10 20 30 100 200个数 1 1 4 8 3 2 1(1)如右表(2分)∴当大货车由B开出x米时,小汽车由A开出了2x米,……6分两车之间的距离S=(100-x)2+(100-2x)2=5x2-600x+20000=5(x-60)2+2000∴当x=60时,S取得最小值,为218米.………9分27.(本题满分13分)(1)y=ax2-4ax+c=a(x-2)2-4a+c,∴抛物线的对称轴为直线x=2.…1分∵点D(4,-3)在抛物线上,∴由对称性知C(0,-3). ………………………2分∴四边形ABCD为梯形.由四边形ABDC的面积为18、C D=4,OC=3得AB=8,∴A(-2,0). ……3分由A(-2,0)、C(0,-3)得y=14x2-x-3. ……………………………………4分(2)易得S△OBD=12S四边形ABDC,∴只可能出现两种情形:①直线y=kx与边BD。

2018年福建省中考数学二模试卷

2018年福建省中考数学二模试卷

2018年福建省中考数学二模试卷一、选择题(共10小题,每题4分,满分40分.每题只有一个正确选项)1.(4分)|﹣|=()A.B.﹣ C.9 D.﹣92.(4分)港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A.55×103 B.5.5×104C.5.5×105D.0.55×1053.(4分)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(4分)下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6 D.a6÷a3=a25.(4分)将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A.50°B.110°C.130° D.150°6.(4分)如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.27.(4分)某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数8.(4分)如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD9.(4分)如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是()A.1 B.C.2 D.10.(4分)定义运算:a*b=2ab,若a,b是方程x2+x﹣m=0(m>0)的两个根,则(a+1)*a﹣(b+1)*b的值为()A.0 B.2 C.4m D.﹣4m二、填空题(共6题,每题4分,满分24分)11.(4分)分解因式:a3﹣a=.12.(4分)在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是.13.(4分)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)14.(4分)如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为(结果保留π).15.(4分)二次函数y=x2+mx+m﹣2的图象与x轴有个交点.16.(4分)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC 上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上,则线段CP长的取值范围是.三、解答题(共9题,满分86分)17.(8分)先化简,再求值:x(x+2y)﹣(x+1)2+2x,其中x=+1,y=﹣1.18.(8分)解分式方程:+=1.19.(8分)写字是学生的一项基本功,为了了解某校学生的书写情况,随机对该校部分学生进行测试,测试结果分为A,B,C,D四个等级.根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息,回答以下问题:(Ⅰ)把条形统计图补充完整;(Ⅱ)若该校共有2000名学生,估计该校书写等级为“D级“的学生约有人;(Ⅲ)随机抽取了4名等级为”A级“的学生,其中有3名女生,1名男生,现从这4名学生中任意抽取2名,用列表或画树状图的方法,求抽到的两名学生都是女生的概率.20.(8分)如图,一次函数y=ax+b的图象经过点A(2,0),与反比例函数y=的图象在第四象限交于点B(4,n),△OAB的面积为,求一次函数和反比例函数的表达式.21.(8分)如图,在△ABC中,∠C=90°,∠B=30°.(Ⅰ)作边AB的垂直平分线,交AB于点D,交BC于点E(用尺规作图,保留作图痕迹,不写作法);(Ⅱ)在(Ⅰ)的条件下,连接AE,求证:AE平分∠CAB.22.(10分)某乡村在开展“美丽乡村”建设时,决定购买A,B两种树苗对村里的主干道进行绿化改造,已知购买A种树苗3棵,B种树苗4棵,需要380元;购买A种树苗5棵,B种树苗2棵,需要400元.(Ⅰ)求购买A,B两种树苗每棵各需多少元?(Ⅱ)现需购买这两种树苗共100棵,要求购买A种树苗不少于60棵,且用于购买这两种树苗的资金不超过5620元,则有哪几种购买方案?23.(10分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.(Ⅰ)求证:BC为⊙O的切线;(Ⅱ)若F为OA的中点,⊙O的半径为2,求BE的长.24.(12分)已知:如图1,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,点D在线段BC上运动.(Ⅰ)当AD⊥BC时(如图2),求证:四边形ADCE为矩形;(Ⅱ)当D为BC的中点时(如图3),求CE的长;(Ⅲ)当点D从点B运动到点C时,设P为线段DE的中点,求在点D的运动过程中,点P经过的路径长(直接写出结论).25.(14分)已知直线l:y=kx+2k+3(k≠0),小明在画图时发现,无论k取何值,直线l总会经过一个定点A.(Ⅰ)点A 坐标为;(Ⅱ)抛物线y=2x2+bx+c(c>0)经过点A,与y轴交于点B.(i)当4<b<6时,若直线l经过点B,求k的取值范围.(ii)当k=1时,若抛物线与直线l交于另一点M,且≤AM≤4,求b的取值范围.2018年福建省中考数学二模试卷答案一、选择题(共10小题,每题4分,满分40分.每题只有一个正确选项)1.【解答】解:|﹣|=.故选:A.2.【解答】解:55000用科学记数法可表示为:5.5×104,故选:B.3.【解答】解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.4.【解答】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.5.【解答】解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选:C.6.【解答】解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=4,∴BE=4.故选:B.7.【解答】解:13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:C.8.【解答】解:连接DA,∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB,∵2∠DAB=∠BOD,∴∠CAD=∠BOD,故选:D.9.【解答】解:连接AG、GE、EC,则四边形ACEG为正方形,故=.故选:B.10.【解答】解:∵a,b是方程x2+x﹣m=0(m>0)的两个根,∴a2+a﹣m=0,b2+b﹣m=0,∴a2+a=m,b2+b=m,∴(a+1)*a﹣(b+1)*b=2(a+1)a﹣2(b+1)b=2a2+2a﹣2b2﹣2b=2m﹣2m=0,故选:A.二、填空题(共6题,每题4分,满分24分)11.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).12.【解答】解:∵袋子中共有5个小球,其中红球有2个,∴从中任意摸出1个球,摸到红球的概率是,故答案为:.13.【解答】解:如图在Rt△ABC中,AC=AB•sin34°=500×0.56≈280m,∴这名滑雪运动员的高度下降了280m.故答案为28014.【解答】解:解:∵S阴影=S扇形ABA′+S半圆﹣S半圆=S扇形ABA′==π.故答案为:π.15.【解答】解:y=x2+mx+m﹣2=0,b2﹣4ac=m2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,∴二次函数y=x2+mx+m﹣2的图象与x轴有2个交点.故答案为:2.16.【解答】解:在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC==5,如图1,BP=AB=3,CP=BC﹣BP=4﹣3=1;如图2,CP=AC=5.故线段CP长的取值范围是1≤CP≤5.故答案为:1≤CP≤5.三、解答题(共9题,满分86分)17.【解答】解:原式=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1,当x=+1,y=﹣1时,原式=4﹣1=3.18.【解答】解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.19.【解答】解:(Ⅰ)∵被调查的总人数为8÷16%=50人,∴B等级人数为50﹣(8+17+9)=16,补全统计图如下:(Ⅱ)估计该校书写等级为“D级“的学生约有2000×=360人,故答案为:360;(Ⅲ)列表如下:∵共有12种等可能的结果,抽到的两名学生都是女生的结果有6种.∴恰好抽到的两名学生都是女生的概率为=.20.【解答】解:∵点A(2,0),点B(4,n),=×2×(﹣n)=,∴S△AOB解得n=﹣,∴B(4,﹣),把(4,﹣)代入y=,可得k=﹣6,∴反比例函数的表达式为y=﹣.把A(2,0),B(4,﹣)代入y=ax+b,可得,解得,∴一次函数表达式为y=﹣x+.21.【解答】解:(Ⅰ)如图所示:DE就是所作的边AB的垂直平分线.(Ⅱ)∵∠C=90°,∠B=30°,∴∠CAB=60°,∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=30°,∴∠CAE=∠CAB﹣∠EAB=30°,∴∠CAE=∠EAB=30°,∴AE平分∠BAC.22.【解答】解:(Ⅰ)设购买A,B两种树苗分别为x元,y元,根据题意知,,解得,,但购买A,B两种树苗每棵分别为60元和50元;(Ⅱ)设购买A种树苗m棵,则购买B种树苗为(100﹣m)棵,根据题意得,60m+50(100﹣m)≤5620,∴m≤62,∵购买A种树苗不能少于60棵,且m为整数,∴m=60或61或62,∴有三种方案,分别为:方案1、购买A种树苗60棵,B种树苗40棵;方案2、购买A种树苗61棵,B种树苗39棵;方案3、购买A种树苗62棵,B种树苗38棵.23.【解答】证明:(Ⅰ)连接OD,∵OA=OD,∠A=45°,∴∠ADO=∠A=45°,∴∠AOD=90°,∵D是AC的中点,∴AD=CD,∴OD∥BC,∴∠ABC=∠AOD=90°,∴BC是⊙O的切线;(Ⅱ)连接OD,由(Ⅰ)可得∠AOD=90°,∵⊙O的半径为2,F为OA的中点,∴OF=1,BF=3,AD=,∴DF=,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,解得:BE=.24.【解答】(Ⅰ)证明:∵∠DAE=90°,AD⊥BC,∴AE∥DC,∵△ABC∽△ADE,∴∠AED=∠DCA,在△AED和△DCA中,,∴△AED≌△DCA,∴AE=DC,又AE∥DC,∴四边形ADCE为平行四边形,∵∠DAE=90°,∴四边形ADCE为矩形;(Ⅱ)解:在Rt△ABC中,BC==10,∵D为BC的中点,∴AD=BD=BC=5,∵△ABC∽△ADE,∴=,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ABD∽△ACE,∴=,即=,解得,CE=;(Ⅲ)如图,当D与B重合时,P为BC的中点,当D与C重合时,P′为CE的中点,当D与C重合时,△ABC∽△ADE,∴=,即=,解得,AE=,∴BE=AB+AE=,∴PP′=BE=,即点P经过的路径长为.25.【解答】解:(Ⅰ)∵直线l:y=kx+2k+3=k(x+2)+3,∴当x+2=0,即x=﹣2时,y=3,∴A(﹣2,3),故答案为(﹣2,3);(Ⅱ)∵抛物线y=2x2+bx+c(c>0)经过点A(﹣2,3),∴3=8﹣2b+c,∴c=2b﹣5,∴抛物线y=2x2+bx+c=2x2+bx+2b﹣5,∴B(0,2b﹣5)(i)若直线l经过点B,∴B(0,2k+3),∴2k+3=2b﹣5,∴b=k+4,∵4<b<6,∴4<k+4<6,∴0<k<2;(ii)当k=1时,直线l:y=x+5①,设直线l与抛物线的两交点坐标为A(x1,y1),M(x2,y2),∴y1=x1+5,y2=x2+5,∴y1﹣y2=x1﹣x2,∵抛物线y=2x2+bx+2b﹣5②,联立①②得,2x2+bx+2b﹣5=x+5,∴2x2+(b﹣1)x+2b﹣10=0,∴x1+x2=﹣(b﹣1),x1x2=b﹣5;△=(b﹣1)2﹣8(2b﹣10)=(b﹣9)2>0 AM2=(x1﹣x2)2+(y1﹣y2)2=2(x1﹣x2)2=2[(x1+x2)2﹣4x1x2]=2[(b﹣1)2﹣4(b﹣5)]=(b﹣9)2∵≤AM≤4,∴2≤AM2≤32,∴2≤(b﹣9)2≤32,∴1≤b≤7或11≤b≤17.∵c>0,∴2b﹣5>0,∴b>∴<b≤7或11≤b≤17。

2018年福建泉州中考数学试卷及答案解析版

2018年福建泉州中考数学试卷及答案解析版

2018 年福建省泉州市初中毕业、升学考试( 满分: 150 分;考试时间: 120 分钟 )友谊提示:全部答案一定填写到答题卡相应的地点上.毕业学校姓名考生号一、选择题 ( 每题 3 分,共 21 分 ) :每题有四个答案,此中有且只有一个答案是正确的. 请答题卡上相应题目的答题地区内作答. 答对的得 3 分,答错或不答一律得0 分.1. ( 2018 福建泉州, 1, 3 分) 4 的相反数是()A. 4B. -4C. 1 1D.4 4【答案】 B2. ( 2018 福建泉州, 2, 3 分)在△ ABC 中,∠ A = 20°,∠ B = 60°,则△ ABC 的形状是 ( )A. 等边三角形B.锐角三角形C. 直角三角形D. 钝角三角形【答案】 D3.( 2018 福建泉州, 3,3 分)以下左图是由六个完整同样的正方体堆成的物体,则这一物体的正视图是( )【答案】 Ax2,4. ( 2018 福建泉州, 4, 3 分)把不等式组的解集在数轴上表示出来,正确的选项是( )2x 6【答案】 A5. ( 2018 福建泉州,9.3 环,方差以下表:5, 3 分)甲、乙、丙、丁四位选手各射击10 次,每人的均匀成绩都是则这四人中成绩发挥最稳固的是( )A. 甲B. 乙C. 丙D. 丁【答案】 B6. ( 2018 福建泉州, 6,3 分)已知⊙ O1 与⊙ O 订交,它们的半径分别是4、 7,则圆心距 O O22 1可能是 ( )A.2B.3C. 6D. 12【答案】 C7. ( 2018 福建泉州, 7,3 分)为了更好保护水资源,造福人类. 某工厂计划建一个容积V(m3) 一.定的污水办理池,池的底面积S(m2) 与其深度 h(m) 知足关系式: V = Sh( V≠0) ,则 S 对于 h 的函.。

2018届中考数学二模试卷(带答案) (18)

2018届中考数学二模试卷(带答案)  (18)

2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O 的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A .【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx+c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ) A .a=c B .a=b C .b=c D .a=b=c 【考点】根的判别式. 【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,化简即可得到a 与c 的关系.【解答】解:∵一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根, ∴△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,即(a+c )2﹣4ac=a 2+2ac+c 2﹣4ac=a 2﹣2ac+c 2=(a ﹣c )2=0, ∴a=c . 故选A【点评】一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.11.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1, ∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。

泉州市中考数学二模试卷

泉州市中考数学二模试卷

泉州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)-2的相反数等于()A . -2B . 2C .D .2. (2分)一个几何体的三视图如图所示,该几何体是()A . 直三棱柱B . 长方体C . 圆锥D . 立方体3. (2分) (2018八上·新蔡期中) 计算(a2)3的结果()A . a5B . a6C . a8D . 3a24. (2分) (2020七上·长兴期末) 2019年天猫双十一交易额最终定格在2684亿元,再次刷新双十一交易额记录,则2684亿元用科学记数法表示为()A . 2684×103元B . 26.84×1010元C . 0.2684×1012元D . 2.684×1011元5. (2分)(2012·内江) 如图,a∥b,∠1=65°,∠2=140°,则∠3=()A . 100°B . 105°C . 110°D . 115°6. (2分)在a2□4a□4的空格□中,任意填上“+”或“-”,在所得到的代数式中,能构成完全平方式的概率是()A . 1B . 0.5C . 0.75D . 0.257. (2分)为响应“绿色校园”的号召,八年级(5)班全体师生义务植树300棵。

原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务。

则下面所列方程中,正确的是()A . -=B . -=20C . -=D . =-8. (2分)如图,在一张矩形纸片的一端,将折出的一个正方形展平后,又折成了两个相等的矩形,再把纸片展平,折出小矩形的对角线,并将小矩形的对角线折到原矩形的长边上.设MN的长为2,在下面给出的三种折叠中能得到长为(﹣1)线段的有()A . 0种B . 1种C . 2种D . 3种9. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A . 平行四边形B . 圆C . 正五边形D . 等腰三角形10. (2分)已知是方程x2-2x-1=0的两个根,则的值为()A .B . 2C .D . -2二、填空题 (共4题;共9分)11. (1分)计算:=________ .12. (6分) (2018七下·灵石期中) 图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示,根据图中的信息,回答问题:(1)根据图2补全表格:(2)如表反映的两个变量中,自变量是________ ,因变量是________;(3)根据图象,摩天轮的直径为________m,它旋转一周需要的时间为________min.13. (1分) (2017八上·辽阳期中) 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在轴上,依次进行下去…若点A(1.5,0),B(0,2),则点B2014的横坐标为________.14. (1分) (2018九上·通州期末) 已知点,在反比例函数上,当时,,的大小关系是________.三、解答题。

2018年福建省数学中考二模试卷【答案】(解析版)

2018年福建省数学中考二模试卷【答案】(解析版)

8. (4 分)如图,AB 是⊙O 的直径,CD 是弦,如果 则∠A 等于( )
A.24° B.27° C.34° D.37° 9. (4 分)如图,▱ABCD 中,对角线 AC 与 AB、AD 的夹角分别为 α、β,点 E 是 AC 上任意一点,给出如下结论:①AB sinα=AD sinβ;②S△ABE=S△ADE;③ADsinα=AB sinβ. 其中正确的个数有( )
A.0 个 B.1 个 C.2 个 D.3 个 10. (4 分)如果关于 x 的不等式 x>2a﹣1 的最小整数解为 x=3,则 a 的取值范 围是( ) C. ≤a<2 D.a≤2
A.0<a<2 B.a<2
二、填空题: (共 24 分) 11. (4 分)16 的算术平方根是 .
12. (4 分)已知关于 x 的方程 mx2+2x﹣1=0 有两个实数根,则 m 的取值范围 是 .
(2)如图,设该函数图象交 x 轴于点 A、B(B 在 A 的右侧) ,交 y 轴于点 C.直 线 y=kx+b 经过点 B、C. ①如果 k=﹣ ,求 a 的值 ②设点 P 在抛物线对称轴上,PC+PB 的最小值为 ,求点 P 的坐标.
24. (12 分)边长为 6 的等边△ABC 中,点 P 从点 A 出发沿射线 AB 方向移动, 同时点 Q 从点 B 出发,以相同的速度沿射线 BC 方向移动,连接 AQ、CP,直线 AQ、CP 相交于点 D. (1)如图①,当点 P、Q 分别在边 AB、BC 上时, ①连接 PQ,当△BPQ 是直角三角形时,AP 等于 ;
13. (4 分)如图,线段 AB 的端点 A、B 分别在 x 轴和 y 轴上,且 A(2,0) ,B
(0,4) ,将线段 AB 绕坐标原点 O 逆时针旋转 90°得线段 A'B&的坐标是 .

2018年福建省泉州市石狮市中考数学模拟试卷(4月份)附参考答案

2018年福建省泉州市石狮市中考数学模拟试卷(4月份)附参考答案

2018年福建省泉州市石狮市中考数学模拟试卷(4月份)一、选择题(共40分)1.(4分)﹣5的绝对值是( )A.5B.﹣5C.D.﹣2.(4分)在如图图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(4分)2018年政府工作报告中指出,5年来我国有约80 000 000农业转移人口成为城镇居民.用科学记数法表示数据80 000 000,其结果是( )A.80×106B.0.8×108C.8×107D.8×1084.(4分)下列运算中,正确的是( )A.2a2﹣a2=2B.(a3)2=a5C.a2•a4=a6D.a﹣3÷a﹣2=a5.(4分)如图所示的几何体的主视图是( )A.B.C.D.6.(4分)如图,下列关于数m、n的说法正确的是( )A.m>n B.m=n C.m>﹣n D.m=﹣n7.(4分)如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为( )A.130o B.50o C.40o D.25o8.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是( )A.10B.9C.8D.69.(4分)在一个不透明的塑料袋中装有红色、白色球共80个,除颜色外其它都相同,小明将球搅拌均匀后,任意摸出1个球记下颜色,再放回塑料袋中,通过大量重复试验后发现,其中摸到红色球的频率稳定在30%附近,则塑料袋中白色球的个数为( )A.24B.30C.50D.5610.(4分)在下列直线中,与直线y=x+3相交于第二象限的是( )A.y=x B.y=2xC.y=kx+2k+1(k≠1)D.y=kx﹣2k+1(k≠0)二、填空题(共24分)11.(4分)计算:(﹣3)2+(﹣4)0= .12.(4分)分解因式:2x2﹣2= .13.(4分)某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:一周在校的体育锻炼时间(小时)5678人数2562那么这15名学生这一周在校参加体育锻炼的时间的众数是 小时.14.(4分)如图,在正方形ABCD中,点E是BC边上一点,连接DE交AB的延长线于点F,若CE=1,BE=2,则DF的长为 .15.(4分)如图,AB是⊙O的直径,弦CD⊥AB于点E,连接BD,∠ABD=60°,CD=2,则的长为 .16.(4分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转90°得到的,且过点A(m,6),B(﹣6,n),则△OAB的面积为 .三、解答题(共86分)17.(8分)先化简,再求值:(1+),其中x=+2.18.(8分)如图,∠1=∠2,∠3=∠4,求证:AC=AD.19.(8分)如图,△ABC中,AB=AC.求作一点D,使得以A、B、C、D为顶点的四边形是菱形,并证明你作图的正确性.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学名著《孙子算经》中记载了一道题,大意如下:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?请解答上述问题.21.(8分)已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.22.(10分)进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007﹣2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)从2008年到2015年, 年全国汽车保有量增速最快;(2)已知2016年汽车保有量净增2200万辆,与2015年相比,2016年的增速约为 %(精确到1%),同时请你预估2018年我国汽车的保有量,并简要说明你预估的理由.23.(10分)如图,AB是⊙O的直径,点C是⊙O上一点,点D是OB的中点,过点D作AB的垂线交AC的延长线于点F,过点C作⊙O的切线交FD于点E.(1)求证:CE=EF;(2)如果sin F=,EF=5,求AB的长.24.(13分)矩形ABCD中,AB=2,AD=4,点E、F分别是线段BD、BC上的点,∠AEF=90°,线段AF与BD交于点H.(1)当AE=AB时.①求证:FB=FE;②求AH的长;(2)求EF长的最小值.25.(13分)如图,在正方形ABCD中,点A的坐标为(3,﹣1),点D的坐标为(﹣1,﹣1),且AB∥y轴,AD∥x轴.点P是抛物线y=x2+2x上一点,过点P作PE⊥x轴于点E,PF⊥y轴于点F.(1)直接写出点B的坐标;(2)若点P在第二象限,当四边形PEOF是正方形时,求正方形PEOF的边长;(3)以点E为顶点的抛物线y=ax2+bx+c(a≠0)经过点F,当点P在正方形ABCD内部(不包含边)时,求a的取值范围.2018年福建省泉州市石狮市中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(共40分)1.(4分)﹣5的绝对值是( )A.5B.﹣5C.D.﹣【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)在如图图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(4分)2018年政府工作报告中指出,5年来我国有约80 000 000农业转移人口成为城镇居民.用科学记数法表示数据80 000 000,其结果是( )A.80×106B.0.8×108C.8×107D.8×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:80 000 000=8×107.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)下列运算中,正确的是( )A.2a2﹣a2=2B.(a3)2=a5C.a2•a4=a6D.a﹣3÷a﹣2=a【分析】分别根据合并同类项法则、幂的乘方、同底数幂的乘法、同底数幂的除法分别计算可得.【解答】解:A、2a2﹣a2=a2,此选项错误;B、(a3)2=a6,此选项错误;C、a2•a4=a6,此选项正确;D、a﹣3÷a﹣2=a﹣3﹣(﹣2)=a﹣1,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、同底数幂的除法、积的乘方与幂的乘方.5.(4分)如图所示的几何体的主视图是( )A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.(4分)如图,下列关于数m、n的说法正确的是( )A.m>n B.m=n C.m>﹣n D.m=﹣n【分析】由图可知:点m表示的数是﹣2,点n表示的数是2,2与﹣2互为相反数,即可解答.【解答】解:由图可知:点m表示的数是﹣2,点n表示的数是2,2与﹣2互为相反数,∴m=﹣n,故选:D.【点评】本题考查了有理数,解决本题的关键是由数轴得到点m,n所表示的数.7.(4分)如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为( )A.130o B.50o C.40o D.25o【分析】先根据平行线的性质,得出∠ABC,再根据三角形内角和定理,即可得到∠2.【解答】解:∵直线a∥b,∴∠ABC=∠1=50°,又∵AC⊥b,∴∠2=90°﹣50°=40°,故选:C.【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,同位角相等.8.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是( )A.10B.9C.8D.6【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和的3倍可得方程180°(n﹣2)=360°×3,再解方程即可.【解答】解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.【点评】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).9.(4分)在一个不透明的塑料袋中装有红色、白色球共80个,除颜色外其它都相同,小明将球搅拌均匀后,任意摸出1个球记下颜色,再放回塑料袋中,通过大量重复试验后发现,其中摸到红色球的频率稳定在30%附近,则塑料袋中白色球的个数为( )A.24B.30C.50D.56【分析】设有白球有x个,利用频率约等于概率进行计算即可.【解答】解:设白球有x个,根据题意得:=30%,解得:x=56,即白色球的个数为56个,故选:D.【点评】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.10.(4分)在下列直线中,与直线y=x+3相交于第二象限的是( )A.y=x B.y=2xC.y=kx+2k+1(k≠1)D.y=kx﹣2k+1(k≠0)【分析】利用两直线平行的问题可对A进行判断;利用直线y=2x不经过第二象限可对B进行判断;利用直线y=kx+2k+1(k≠1)过定点(﹣2,1)可对C进行判断;利用k=1时,直线y=kx﹣2k+1与直线y=x+3平行可对D进行判断.【解答】解:A、直线y=x与直线y=x+3平行,它们没有交点,所以A选项错误;B、直线y=2x经过第一、三象限,所以B选项错误;C、直线y=kx+2k+1(k≠1)一定过定点(﹣2,1),而点(﹣2,1)在直线y=x+3上,所以C选项正确;D、直线y=kx﹣2k+1(k≠0)一定过定点(2,1),而点(2,1)在第一象限,且当k=1时,直线y=kx﹣2k+1与直线y=x+3平行,所以D选项错误.故选:C.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.对C进行判断的关键是确定该直线过定点.二、填空题(共24分)11.(4分)计算:(﹣3)2+(﹣4)0= 10 .【分析】直接利用有理数的乘方运算法则以及零指数幂的性质化简得出答案.【解答】解:原式=9+1=10.故答案为:10.【点评】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确化简各数是解题关键.12.(4分)分解因式:2x2﹣2= 2(x+1)(x﹣1) .【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13.(4分)某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:一周在校的体育锻炼时间(小时)5678人数2562那么这15名学生这一周在校参加体育锻炼的时间的众数是 7 小时.【分析】根据众数的概念求解.【解答】解:这15名学生中,一周在校的体育锻炼7小时的人数最多,即众数为7.故答案为:7.【点评】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.14.(4分)如图,在正方形ABCD中,点E是BC边上一点,连接DE交AB的延长线于点F,若CE=1,BE=2,则DF的长为 3 .【分析】根据正方形的性质以及相似三角形的性质即可求出答案.【解答】解:在正方形ABCD中,AD=CD=CB=CE+BE=3,∵CD∥BF,∴△CDE∽△BFE∴=∴∴BF=6∴AF=AB+BF=9,∴由勾股定理可知:DF=3故答案为:3【点评】本题考查相似三角形的性质与判定,涉及正方形的性质,勾股定理,相似三角形的性质与判定,本题属于中等题型.15.(4分)如图,AB是⊙O的直径,弦CD⊥AB于点E,连接BD,∠ABD=60°,CD=2,则的长为 .【分析】连接AD,OD,利用垂径定理得出半径OD,再利用圆周角定理得出∠BOD=60°,进而利用弧长公式解答即可.【解答】解:连接AD,OD,∵AB是⊙O的直径,弦CD⊥AB于点E,∠ABD=60°,CD=2,∴∠BAD=30°,∴∠BOD=60°,∴DE=,在Rt△OED中,OD=,∴的长=,故答案为:【点评】此题考查弧长的计算,关键是利用垂径定理得出半径OD.16.(4分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转90°得到的,且过点A(m,6),B(﹣6,n),则△OAB的面积为 16 .【分析】作AM⊥y轴于M,BN⊥x轴于N,直线AM与BN交于点P,根据旋转的性质得出点A (m,6),B(﹣6,n)在函数y=﹣的图象上,根据待定系数法求得m、n的值,继而得出P(6,6),然后根据S△AOB=S矩形OMPN﹣S△OAM﹣S△OBN﹣S△PAB即可求得结果.【解答】解:作AM⊥y轴于M,BN⊥x轴于N,直线AM与BN交于点P,∵曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转90°得到的,且过点A(m,6),B(﹣6,n),∴点A(m,6),B(﹣6,n)在函数y=﹣的图象上,∴6m=﹣12,﹣6n=﹣12,解得m=﹣2,n=2,∴A(﹣2,6),B(﹣6,2),∴P(﹣6,6),∴S△AOB=S矩形OMPN﹣S△OAM﹣S△OBN﹣S△PAB=6×6﹣×2×6﹣×6×2﹣×4×4=16,故答案为16.【点评】本题考查反比例函数的图象、旋转的性质、待定系数法求反比例函数的解析式,解题的关键是矩形解决问题,属于中考填空题中的压轴题.三、解答题(共86分)17.(8分)先化简,再求值:(1+),其中x=+2.【分析】根据分式的加法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1+)===,当x=+2时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.(8分)如图,∠1=∠2,∠3=∠4,求证:AC=AD.【分析】先证出∠ABC=∠ABD,再由ASA证明△ABC≌△ABD,得出对应边相等即可.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.19.(8分)如图,△ABC中,AB=AC.求作一点D,使得以A、B、C、D为顶点的四边形是菱形,并证明你作图的正确性.(要求:尺规作图,保留作图痕迹,不写作法)【分析】分别以B,C为圆心,以AB长画弧,两弧相交一点,即为D点.【解答】解:如图即为所求作的菱形理由如下:∵AB=AC,BD=AB,CD=AC,∴AB=BD=CD=AC,∴四边形ABDC是菱形.【点评】本题主要考查了菱形的判定,熟练掌握菱形的判定是解决问题的关键.20.(8分)我国古代数学名著《孙子算经》中记载了一道题,大意如下:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?请解答上述问题.【分析】求大马和小马的总数,直接设两个未知数,依据大马的总数+小马的总数=100,大马拉瓦的总数+小马拉瓦的总数=100,构建一个二元一次方程组求解.【解答】解:设大马x匹,小马y匹,依题意得:,解得:,答:大马有25匹,小马有75匹.【点评】本题考查了二元一次方程组的应用,关键找到大小马的总数和大小马拉的瓦总数两个等量关系,难点是会小马总数来表示拉瓦总数.21.(8分)已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.【分析】(1)由△>0得到关于m的不等式,解之得到哦m的范围,根据一元二次方程的定义求得答案;(2)由(1)知m=5,还原方程,利用因式分解法求解可得.【解答】解:(1)由题意知,△=(2m)2﹣4(m﹣2)(m+3)>0,解得:m<6,又m﹣2≠0,即m≠2,则m<6且m≠2;(2)由(1)知m=5,则方程为3x2+10x+8=0,即(x+2)(3x+4)=0,解得x=﹣2或x=﹣.【点评】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.22.(10分)进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007﹣2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)从2008年到2015年, 2010 年全国汽车保有量增速最快;(2)已知2016年汽车保有量净增2200万辆,与2015年相比,2016年的增速约为 13 %(精确到1%),同时请你预估2018年我国汽车的保有量,并简要说明你预估的理由.【分析】(1)由图可得,从2008年到2015年,2010年全国汽车保有量增速最快;(2)根据2016年汽车保有量净增2200万辆,即可得出2016年汽车的保有量,根据2200÷17200,即可得到2016年的增长率,根据每年的汽车增长量,求得2018年我国汽车保有量即可.【解答】解:(1)由图可得,从2008年到2015年,2010年全国汽车保有量增速最快,为19%;故答案为:2010;(2)∵2200+17200=19400万辆,2200÷17200≈13%,∴2016年汽车的保有量为19400万辆,与2015年相比,2016年的增长率约为13%,与上一年相比,预估2017年,2018年的增速分别为12%,11%,由此预估2018年我国汽车的保有量将达到24118万辆.故答案为:13.【点评】本题主要考查了折线统计图以及条形统计图,解题时注意:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.从条形图可以很容易看出数据的大小,便于比较.23.(10分)如图,AB是⊙O的直径,点C是⊙O上一点,点D是OB的中点,过点D作AB的垂线交AC的延长线于点F,过点C作⊙O的切线交FD于点E.(1)求证:CE=EF;(2)如果sin F=,EF=5,求AB的长.【分析】(1)根据切线的性质得:∠1+∠2=90°,由垂直定义和同圆的半径相等得:∠A=∠1,∠2=∠F,所以CE=EF;(2)本题介绍两种解法:解法一:根据sin∠F=,设AD=3k,AF=5k,可得FD=4k,表示DB=k,AB=4k,证明△FAD∽△BGD,列比例式得:,DG=k,根据直角三角形的性质得:∠3=∠4,则得k的值,从而代入AB=4k=.解法二:设AD=3k,AF=5k,可得FD=4k,根据勾股定理列方程:CO2+CE2=OD2+DE2=OE2,则(2k)2+52=k2+(4k﹣5)2,解出k的值可得结论.【解答】(本小题满分10分)(1)证明:如右图,连结OC.∵CE切⊙O于点E,∴OC⊥CE.………………………………(2分)∴∠1+∠2=90°.∵FD⊥AB,∴∠A+∠F=90°.又∵OC=OA,∴∠A=∠1.………………………………….(3分)∴∠2=∠F.∴CE=EF.…………………………………………………………….(4分)(2)解法一:∵FD⊥AB,sin∠F=,∴设AD=3k,AF=5k,可得FD=4k.……………(5分)∵D为OB的中点,∴DB=k,AB=4k.…………(6分)连结CB交FD于点G.∵AB为⊙O直径,∴∠ACB=∠FCB=90°.∴∠F=∠B.∵∠FDA=∠GDB=90°,∴△FAD∽△BGD,………………………………………(7分)∴,即,解得DG=k,可得FG=4k﹣k=k………………………………………………(8分)∵∠FCB=90°,∴∠4+∠F=∠2+∠3.∵∠F=∠2,∴∠3=∠4.∴CE=EF=EG.…………………………………………(9分)∵EF=5,∴FG=10.∴=10,k=,∴AB=4k=.…………(10分)(2)解法二:如右图,∵FD⊥AB,sin F=,∴设AD=3k,AF=5k,可得FD=4k.……………(5分)∵D为OB的中点,∴DB=k,AB=4k.…………(6分)由(1)得CE=EF=5.………………………………………(7分)连结OE.∵∠OCE=∠ODE=90°,∴CO2+CE2=OD2+DE2=OE2,……………………(8分)即(2k)2+52=k2+(4k﹣5)2,13k2﹣40k=0,解得k1=0(舍去),k2=.……………………………(9分)∴AB=4k=.………………………………………(10分)【点评】此题考查了切线的性质,锐角三角函数定义,圆周角定理以及勾股定理等知识,第二问利用三角函数的比设未知数是关键.24.(13分)矩形ABCD中,AB=2,AD=4,点E、F分别是线段BD、BC上的点,∠AEF=90°,线段AF与BD交于点H.(1)当AE=AB时.①求证:FB=FE;②求AH的长;(2)求EF长的最小值.【分析】(1)①先根据矩形的性质得出∠ABF=90°,再利用HL证明△ABF≌△AEF,即可得出FB=FE;②由AE=AB,FB=FE,根据线段垂直平分线的判定定理得出AF垂直平分BE.在Rt△ABD中根据勾股定理求出BD==2,再证明△AHB∽△DAB,根据相似三角形对应边成比例求出AH;(2)过点E作MN∥AB分别交AD,BC于点M,N,易得MN⊥AD,MN⊥BC.设AM=x,则DM=4﹣x.易证△DME∽△DAB,根据相似三角形对应边成比例求出ME=2﹣,那么EN=.再证明△AEM∽△EFN,得出EF=AE.根据垂线段最短得到当AE⊥BD时,AE最小,EF也最小.由(1)可知AE的最小值为,那么EF的最小值为.【解答】解:(1)①∵四边形ABCD是矩形,∴∠ABF=90°.在Rt△ABF和Rt△AEF中,,∴△ABF≌△AEF(HL),∴FB=FE;②∵AE=AB,FB=FE,∴AF垂直平分BE,即∠AHB=90°.在Rt△ABD中,∵AB=2,AD=4,∠BAD=90°,∴BD==2.在△AHB与△DAB中,∵∠AHB=∠DAB=90°,∠ABH=∠DBA,∴△AHB∽△DAB,∴=,∴AH===;(2)如图,过点E作MN∥AB分别交AD,BC于点M,N,易得MN⊥AD,MN⊥BC.设AM=x,则DM=4﹣x.∵EM∥AB,∴△DME∽△DAB,∴=,即=,解得ME=2﹣,∵MN=AB=2,∴EN=.∵∠AEF=90°,∴∠AEM+∠FEN=90°,∵∠EFN+∠FEN=90°,∴∠AEM=∠EFN.又∵∠AME=∠ENF=90°,∴△AEM∽△EFN,∴=,解得EF=AE.当AE⊥BD时,AE最小,EF也最小.由(1)可知AE的最小值为,∴EF的最小值为.【点评】本题是四边形综合题,考查了矩形的性质,全等三角形、相似三角形的判定与性质,线段垂直平分线的判定,勾股定理,垂线段最短的性质.综合性较强,难度适中.准确作出辅助线利用数形结合的思想是解题的关键.25.(13分)如图,在正方形ABCD中,点A的坐标为(3,﹣1),点D的坐标为(﹣1,﹣1),且AB∥y轴,AD∥x轴.点P是抛物线y=x2+2x上一点,过点P作PE⊥x轴于点E,PF⊥y轴于点F.(1)直接写出点B的坐标;(2)若点P在第二象限,当四边形PEOF是正方形时,求正方形PEOF的边长;(3)以点E为顶点的抛物线y=ax2+bx+c(a≠0)经过点F,当点P在正方形ABCD内部(不包含边)时,求a的取值范围.【分析】(1)先利用A点和D点坐标得到正方形ABCD的边长为4,然后写出B点坐标;(2)设点P(x,x2+2x),利用正方形的性质得到PE=PF,即x2+2x=﹣x,然后解方程求出x即可得到正方形PEOF的边长;(3)设P(m,m2+2m)(m≠0),则E(m,0),F(0,m2+2m),利用顶点式表示以E为顶点的抛物线解析式为y=a(x﹣m)2,再把F(0,m2+2m)代入得m=,接着求出抛物线y=x2+2x与BC的交点坐标为(1,3),则利用点P在正方形ABCD内部(不包含边)得到﹣1<m<1且m≠0,然后分别解﹣1<<0和0<<1即可.【解答】解:(1)∵点A的坐标为(3,﹣1),点D的坐标为(﹣1,﹣1),∴正方形ABCD的边长为4,∴B(3,3);(2)设点P(x,x2+2x),∵四边形PEOF是正方形,∴PE=PF,即x2+2x=﹣x,解得x1=0,x2=﹣3,∴P(﹣3,3),∴正方形PEOF的边长为3;(3)设P(m,m2+2m)(m≠0),则E(m,0),F(0,m2+2m),以E为顶点的抛物线解析式为y=a(x﹣m)2,把F(0,m2+2m)代入得a(0﹣m)2=m2+2m,解得m=,当y=3时,x2+2x=3,解得x1=﹣3,x2=1,抛物线y=x2+2x与BC的交点坐标为(1,3),∵点P在正方形ABCD内部(不包含边),∴﹣1<m<1且m≠0,当﹣1<m<0时,﹣1<<0,解得a<﹣1;当0<m<1时,0<<1,解得a>3,综上所述,a的取值范围为a<﹣1或a>3.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和正方形的性质;会利用待定系数法求函数解析式,会解不等式;理解坐标与图形性质.。

泉州市惠安县中考数学二模试卷含答案解析

泉州市惠安县中考数学二模试卷含答案解析

福建省泉州市惠安县中考数学二模试卷(解析版)一、选择题每小题有四个答案,其中有且只有一个答案是正确的,答对的得3分,答错或不答的一律得0分.1.计算的结果是()A.2 B.±2 C.﹣2 D.2.下列计算错误的是()A.6a+2a=8a B.a﹣(a﹣3)=3 C.a2÷a2=0 D.a﹣1•a2=a3.下列四个图形中,是三棱锥的表面展开图的是()A.B.C.D.4.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:捐款金额(元) 5 10 20 50人数(人)10 13 12 15则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元5.下列事件发生属于不可能事件的是()A.射击运动员只射击1次,就命中靶心B.画一个三角形,使其三边的长分别为8cm,6cm,2cmC.任取一个实数x,都有|x|≥0D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 6.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.87.已知Rt△ABC中,∠C=90°,AC=3,BC=4,AD平分∠BAC,则点B到AD的距离是()A.B.2 C.D.二、填空题在答题卡上相应题目的答题区域内作答.8.若∠A=70°,则∠A的余角是______度.9.我国第一艘航母“”的最大的排水量约为68000吨,用科学记数法表示这个数是______吨.10.计算:=______.11.分解因式:xy2﹣9x=______.12.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为______.13.如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE:S△DCE=______.14.若关于x的方程x2+(k﹣2)x﹣k2=0的两根互为相反数,则k=______.15.如果圆锥的底面周长为2πcm,侧面展开后所得的扇形的圆心角是120°,则该圆锥的侧面积是______cm2.(结果保留π)16.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为______.17.如图,在平面直角坐标系xOy中,直线l:y=kx﹣3k(k<0)与x、y轴的正半轴分别交于点A、B,动点D(异于点A、B)在线段AB上,DC⊥x轴于C.(1)不论k取任何负数,直线l总经过一个定点,写出该定点的坐标为______;(2)当点C的横坐标为2时,在x轴上存在点P,使得PB⊥PD,则k的取值范围为______.三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.计算:|﹣2|﹣(﹣2)2+2sin60°﹣(2π﹣1)0.19.先化简,再求值:2x(x+1)+(x﹣1)2,其中x=2.20.如图,已知四边形ABCD是菱形,DE⊥AB于E,DF⊥BC于F.求证:△ADE≌△CDF.21.某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有______名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是______度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费?22.有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率.23.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣1经过点A(2,﹣1),它的对称轴与x轴相交于点B.(1)求点B的坐标;(2)如果直线y=x+1与此抛物线的对称轴交于点C、与抛物线在对称轴右侧交于点D,且∠BDC=∠ACB.求此抛物线的表达式.24.某公司采购某商品60箱销往甲乙两地,已知某商品在甲地销售平均每箱的利润y1(百元)与销售数量x(箱)的关系为y1=在乙地销售平均每箱的利润y2(百元)与销售数量t(箱)的关系为y2=(1)将y2转换为以x为自变量的函数,则y2=______;(2)设某商品获得总利润W(百元),当在甲地销售量x(箱)的范围是0<x≤20时,求W与x的关系式;(总利润=在甲地销售利润+在乙地销售利润)(3)经测算,在20<x≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x的值.25.(12分)(•惠安县二模)如图,在平面直角坐标xOy内,函数y=(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD,DC,CB.(1)求m的值;(2)求证:DC∥AB;(3)当AD=BC时,求直线AB的函数表达式.26.(14分)(•惠安县二模)如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连结EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连结CG.(1)求证:四边形EFCG是矩形;(2)求tan∠CEG的值;(3)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,求四边形EFCG面积的取值范围.福建省泉州市惠安县中考数学二模试卷参考答案与试题解析一、选择题每小题有四个答案,其中有且只有一个答案是正确的,答对的得3分,答错或不答的一律得0分.1.计算的结果是()A.2 B.±2 C.﹣2 D.【考点】算术平方根.【分析】即为4的算术平方根,根据算术平方根的意义求值.【解答】解:=2.故选A.【点评】本题考查了算术平方根.关键是理解算式是意义.2.下列计算错误的是()A.6a+2a=8a B.a﹣(a﹣3)=3 C.a2÷a2=0 D.a﹣1•a2=a【考点】同底数幂的除法;整式的加减;同底数幂的乘法;负整数指数幂.【分析】直接利用合并同类项法则以及去括号法则以及同底数幂的乘除法运算法则分别化简求出答案.【解答】解:A、6a+2a=8a,正确,不合题意;B、a﹣(a﹣3)=3,正确,不合题意;C、a2÷a2=1,错误,符合题意;D、a﹣1•a2=a,正确,不合题意;故选:C.【点评】此题主要考查了合并同类项以及去括号法尔以及同底数幂的乘除法运算等知识,正确掌握相关运算法则是解题关键.3.下列四个图形中,是三棱锥的表面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】根据三棱锥的四个面都是三角形,还要能围成一个立体图形,进而分析得出即可.【解答】解:A、能组成三棱锥,是;B、不组成三棱锥,故不是;C、组成的是三棱柱,故不是;D、组成的是四棱锥,故不是;故选A.【点评】本题主要考查了三棱锥的表面展开图和空间想象能力,注意几何体的形状特点进而分析才行.4.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:捐款金额(元) 5 10 20 50人数(人)10 13 12 15则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元【考点】中位数.【分析】根据题意得出按照从小到大顺序排列的第25个和第26个数据都是20(元),它们的平均数即为中位数.【解答】解:∵10+13+12+15=50,按照从小到大顺序排列的第25个和第26个数据都是20(元),∴它们的平均数即为中位数,=20(元),∴学生捐款金额的中位数是20元;故选:D.【点评】本题考查了中位数的定义、平均数的计算;熟练掌握中位数的定义,正确求出中位数是解决问题的关键.5.下列事件发生属于不可能事件的是()A.射击运动员只射击1次,就命中靶心B.画一个三角形,使其三边的长分别为8cm,6cm,2cmC.任取一个实数x,都有|x|≥0D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 【考点】随机事件.【分析】根据必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【解答】解:A、射击运动员只射击1次,就命中靶心是随机事件,故A错误;B、画一个三角形,使其三边的长分别为8cm,6cm,2cm是不可能事件,故B正确;C、任取一个实数x,都有|x|≥0是必然事件,故C错误;D、抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6是随机事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.8【考点】垂径定理;勾股定理.【分析】根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.【点评】本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.7.已知Rt△ABC中,∠C=90°,AC=3,BC=4,AD平分∠BAC,则点B到AD的距离是()A.B.2 C.D.【考点】角平分线的性质.【分析】过点D作DE⊥AB交AB于E,设CD=x,则BD=4﹣x,根据角平分线的性质求得CD,求得S△ABD,由勾股定理得到AD,根据三角形的面积公式即可得到结论.【解答】解:过点D作DE⊥AB交AB于E,∵∠C=90°,AC=3,BC=4,∴AB==5,设CD=x,则BD=8﹣x,∵AD平分∠BAC,∴=,即=,解得,x=∴CD=,∴S△ABD=×AB•DE=×5=,∵AD==,设BD到AD的距离是h,∴S△ABD=×AD•h,∴h=.故选:C.【点评】本题考查了角平分线的性质,三角形的面积公式,三角形的角平分线定理,正确的作出辅助线是解题的关键.二、填空题在答题卡上相应题目的答题区域内作答.8.若∠A=70°,则∠A的余角是20度.【考点】余角和补角.【分析】根据互余的定义计算即可.【解答】解:∵∠A=70°,∴∠A的余角是:90°﹣70°=20°.故答案为:20.【点评】本题主要考查了余角的定义,若两个角的度数和为90°,则这两个角互余,那么一个角是另一个角的余角,熟练掌握定义是关键.9.我国第一艘航母“”的最大的排水量约为68000吨,用科学记数法表示这个数是 6.8×104吨.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将68000用科学记数法表示为:6.8×104.故答案为:6.8×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.计算:=1.【考点】分式的加减法.【分析】先通分,再加减,然后约分.【解答】解:原式=﹣==1.【点评】本题考查了分式的加减,学会通分是解题的关键.11.分解因式:xy2﹣9x=x(y+3)(y﹣3).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【点评】本题考查对多项式的分解能力,一般先考虑提公因式,再考虑利用公式分解因式,要注意分解因式要彻底,直到不能再分解为止.12.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为54°.【考点】正多边形和圆.【分析】连接OB,则OB=OA,得出∠BAO=∠ABO,再求出正五边形ABCDE的中心角∠AOB的度数,由等腰三角形的性质和内角和定理即可得出结果.【解答】解:连接OB,则OB=OA,∴∠BAO=∠ABO,∵点O是正五边形ABCDE的中心,∴∠AOB==72°,∴∠BAO=(180°﹣72°)=54°;故答案为:54°.【点评】本题考查了正五边形的性质、等腰三角形的性质、正五边形中心角的求法;熟练掌握正五边形的性质,并能进行推理计算是解决问题的关键.13.如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE:S△DCE=1:3.【考点】三角形的重心.【分析】直接根据三角形重心的性质即可得出结论.【解答】解:∵在△ABC中,两条中线BE,CD相交于点O,∴点O是△ABC的重心,∴OD:CD=1:3,∴S△DOE:S△DCE=1:3.故答案为:1:3.【点评】本题考查的是三角形的重心,熟知三角形的重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.14.若关于x的方程x2+(k﹣2)x﹣k2=0的两根互为相反数,则k=2.【考点】根与系数的关系.【分析】利用x1+x2=﹣可得到﹣(k﹣2)=0,然后解一元一次方程即可.【解答】解:根据题意得﹣(k﹣2)=0,解得k=2.故答案为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.15.如果圆锥的底面周长为2πcm,侧面展开后所得的扇形的圆心角是120°,则该圆锥的侧面积是3πcm2.(结果保留π)【考点】圆锥的计算.【分析】设圆锥的母线长为l,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π=,然后根据扇形的面积公式计算该圆锥的侧面积.【解答】解:设圆锥的母线长为l,根据题意得2π=,解得l=3,所以该圆锥的侧面积=•2π•3=3π(cm2).故答案为3π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为.【考点】翻折变换(折叠问题);相似三角形的判定与性质.【分析】根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形对应边成比例求出=,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.【解答】解:∵矩形沿直线AC折叠,点B落在点E处,∴∠BAC=∠EAC,AE=AB=CD,∵矩形ABCD的对边AB∥CD,∴∠DCA=∠BAC,∴∠EAC=∠DCA,设AE与CD相交于F,则AF=CF,∴AE﹣AF=CD﹣CF,即DF=EF,∴=,又∵∠AFC=∠EFD,∴△ACF∽△EDF,∴==,设DF=3x,FC=5x,则AF=5x,在Rt△ADF中,AD===4x,又∵AB=CD=DF+FC=3x+5x=8x,∴==.故答案为:.【点评】本题考查了矩形的性质,平行线的性质,等角对等边的性质,相似三角形的判定与性质,勾股定理的应用,综合性较强,但难度不大,熟记各性质是解题的关键.17.如图,在平面直角坐标系xOy中,直线l:y=kx﹣3k(k<0)与x、y轴的正半轴分别交于点A、B,动点D(异于点A、B)在线段AB上,DC⊥x轴于C.(1)不论k取任何负数,直线l总经过一个定点,写出该定点的坐标为(3,0);(2)当点C的横坐标为2时,在x轴上存在点P,使得PB⊥PD,则k的取值范围为﹣.【考点】一次函数图象上点的坐标特征.【分析】(1)在y=kx﹣3k(k<0)中,当y=0时,x=3,即:不论k取任何负数,直线l 总经过定点(3,0).(2)可设点P的坐标为(a,0),证明△BOP∽△PCD,由分析k的取值范围.【解答】解:(1)∵y=kx﹣3k=k(x﹣3),又∵k≠0,∴x﹣3=0,即:x=3∴x=3时,y=0,即不论k取任何负数,直线l总经过定点(3,0),故答案为:(3,0),(2)设点P的坐标为(a,0),∵OB⊥OA,PB⊥PD,DC⊥OA,∴∠BOP=∠PCD=90°,∠BPD=90°,∴∠BPO+∠DPC=90°,又∵∠BPO+∠PBO=90°,∴PBO=∠DPC,∴△BOP∽△PCD,∴,∵y=kx﹣3k,点P(a,0),点A(3,0),∴x=0时,y=﹣3k,OP=a,PC=2﹣a,CD=2k﹣3k=﹣k,∴BO=﹣3k,∴解得,3k2=2a﹣a2∴a2﹣2a+1=1﹣3k2∴(a﹣1)2=1﹣3k2∵(a﹣1)2≥0,∴1﹣3k2≥0∴﹣,又∵k<0,∴﹣【点评】本题考查了一次函数图象上点的坐标特征、相似三角形的判定与性质,解题的关键证明△BOP∽△PCD,由分析k的取值范围三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.计算:|﹣2|﹣(﹣2)2+2sin60°﹣(2π﹣1)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数的幂的性质化简求出答案.【解答】解:原式=2﹣﹣4+﹣1=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.先化简,再求值:2x(x+1)+(x﹣1)2,其中x=2.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=2x2+2x+x2﹣2x+1=3x2+1,当x=2时,原式=3×(2)2+1=36+1=37.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.如图,已知四边形ABCD是菱形,DE⊥AB于E,DF⊥BC于F.求证:△ADE≌△CDF.【考点】菱形的性质;全等三角形的判定.【分析】直接利用菱形的性质得出AD=CD;∠A=∠C,再利用全等三角形的判定方法得出答案.【解答】证明:∵四边形ABCD是菱形,∴AD=CD;∠A=∠C,又∵DE⊥AB于E,DF⊥BC于F,∴∠AED=∠CFD=90°;在△ADE和△CDF中,∵,∴△ADE≌△CDF(AAS).【点评】此题主要考查了菱形的性质以及全等三角形的判定方法,正确掌握菱形的性质是解题关键.21.某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有200名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是36度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费?【考点】条形统计图;扇形统计图.【分析】(1)根据手抄报的人数和所占的百分比求出总人数,用1减去其它所占的百分百就是独唱的百分比,再乘以360°即可得出扇形统计图中“独唱”部分的圆心角的度数,再用总人数减去其它的人数就是绘画的人数,从而补全统计图;(2)根据征文、独唱、绘画、手抄报的人数和每次的标准求出各项的费用,再加起来即可求出总费用.【解答】解:(1)绘画的人数是800×25%=200(名);扇形统计图中“独唱”部分的圆心角是360°×(1﹣28%﹣37%﹣25%)=36(度),故答案为:200,36.如图:(2)根据题意得:296×10+80×12+200×15+224×12=9608(元),答:开展本次活动共需9608元经费.【点评】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率.【考点】列表法与树状图法;分式有意义的条件.【分析】(1)列表得出所有等可能的情况数;(2)找出能使分式有意义的(x,y)情况数,即可求出所求的概率.【解答】解:(1)列表如下:﹣2 ﹣1 1﹣2 (﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1 (﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1 (﹣2,1)(﹣1,1)(1,1)所有等可能的情况有9种;(2)∵分式的最简公分母为(x+y)(x﹣y),∴x≠﹣y且x≠y时,分式有意义,∴能使分式有意义的(x,y)有4种,则P=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣1经过点A(2,﹣1),它的对称轴与x轴相交于点B.(1)求点B的坐标;(2)如果直线y=x+1与此抛物线的对称轴交于点C、与抛物线在对称轴右侧交于点D,且∠BDC=∠ACB.求此抛物线的表达式.【考点】二次函数综合题.【分析】(1)由点A(2,﹣1)在抛物线y=ax2+bx﹣1,代入即可;(2)由于点C是直线y=x+1和抛物线对称轴x=1的交点,确定出点C的坐标,再根据△BCD∽△ABC得到BC2=CD×AB,CD的长,从而求出点D坐标,即可.【解答】解:(1)∵点A(2,﹣1)在抛物线y=ax2+bx﹣1上,∴4a+2b﹣1=﹣1,∴﹣=1,∴对称轴为x=1,∴B(1,0).(2)∵直线y=x+1与此抛物线的对称轴x=1交于点C,∴C(1,2),∴BC=2,∵∠DEB=45°,∠xBA=45°,∴∠BCD=∠CBA=135°,∵∠BDC=∠ACB,∴△BCD∽△ABC,∴BC2=CD×AB,∴CD=2,设点D(m,m+1),∵C(1,2),∴(m﹣1)2+(m+1﹣2)2=(2)2,∴m=3或m=﹣1(舍),∴D(3,4),∵点D在抛物线y=ax2+bx﹣1上,∴9a+3b﹣1=4,∵4a+2b﹣1=﹣1,∴a=,b=﹣,∴抛物线解析式为y=x2﹣x﹣1.【点评】此题是二次函数综合题,主要考查了确定抛物线解析式,对称轴的方法,相似三角形的性质和判定,解本题的关键是判定三角形相似.24.某公司采购某商品60箱销往甲乙两地,已知某商品在甲地销售平均每箱的利润y1(百元)与销售数量x(箱)的关系为y1=在乙地销售平均每箱的利润y2(百元)与销售数量t(箱)的关系为y2=(1)将y2转换为以x为自变量的函数,则y2=;(2)设某商品获得总利润W(百元),当在甲地销售量x(箱)的范围是0<x≤20时,求W与x的关系式;(总利润=在甲地销售利润+在乙地销售利润)(3)经测算,在20<x≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x的值.【考点】二次函数的应用.【分析】(1)直接利用采购某商品60箱销往甲乙两地,表示出t与x的关系即可,进而代入y2求出即可;(2)利用(1)中所求结合自变量取值范围得出W与x的函数关系式即可;(3)利用(1)中所求结合自变量取值范围得出W与x的函数关系式,进而利用函数增减性求出函数最值即可.【解答】解:(1)∵某公司采购某商品60箱销往甲乙两地,在甲地销售数量x(箱),∴在乙地销售数量t=60﹣x,①当0<t≤30,即0<60﹣x≤30,解得:30≤x<60,此时y2=6;②当30≤t<60,即30≤60﹣x<60,解得:0<x≤30,此时y2=﹣(60﹣x)+8=x+4;综上,.(2)综合y1=和(1)中y2,当对应的x范围是0<x≤20 时,W1=(x+5)x+(x+4)(60﹣x)=x2+5x+240;(3)当20<x≤30 时,W2=(﹣x+75)x+(x+4)(60﹣x)=﹣x2+75x+240∵x=﹣=>30,∴W在20<x≤30随x增大而增大,∴当x=30时,W2取得最大值为2407.5(百元).【点评】此题主要考查了二次函数的应用以及二次函数最值求法等知识,得出W与x的函数解析式是解题关键.25.(12分)(•惠安县二模)如图,在平面直角坐标xOy内,函数y=(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD,DC,CB.(1)求m的值;(2)求证:DC∥AB;(3)当AD=BC时,求直线AB的函数表达式.【考点】反比例函数综合题.【分析】(1)直接把点A(1,4)代入反比例函数y=,求出m的值即可;(2)设BD,AC交于点E,利用锐角三角函数的定义得出tan∠EAB=tan∠ECD,进而可得出结论;(3)根据DC∥AB,当AD=BC时,有两种情况:①当AD∥BC时,由中心对称的性质得出a的值,故可得出点B的坐标,利用待定系数法求出直线AB的函数表达式即可;②当AD与BC所在直线不平行时,由轴对称的性质得:BD=AC,求出a的值,故可得出点B的坐标,设直线AB的函数表达式为y=kx+b,分别把点A,B的坐标代入,利用待定系数法求出直线AB的函数表达式即可.【解答】解:(1)∵函数(x>0,m是常数)图象经过A(1,4),∴m=4;(2)解法1,设BD,AC交于点E,∵在Rt△AEB中,tan∠EAB===;在Rt△CED中,tan∠ECD===;∴∠EAB=∠ECD;∴DC∥AB.解法2,设BD,AC交于点E,根据题意,可得B点的坐标为(a,),D点的坐标为(0,),E点的坐标为(1,).∵a>0,AE=4﹣,CE=,EB=a﹣1,ED=1;∴==a﹣1,∴==a﹣1.又∵∠AEB=∠CED;∴△AEB∽△CED∴∠EAB=∠ECD;∴DC∥AB.(3)解法1,∵DC∥AB,∴当AD=BC时,有两种情况:①当AD∥BC时,由中心对称的性质得:BE=DE,则a﹣1=1,得a=2.∴点B的坐标是(2,2).设直线AB的函数表达式为y=kx+b,分别把点A,B的坐标代入,得解得∴直线AB的函数表达式是y=﹣2x+6.②当AD与BC所在直线不平行时,由轴对称的性质得:BD=AC,∴a=4,∴点B的坐标是(4,1).设直线AB的函数表达式为y=kx+b,分别把点A,B的坐标代入,得解得∴直线AB的函数表达式是y=﹣x+5.综上所述,所求直线AB的函数表达式是y=﹣2x+6或y=﹣x+5.解法2,当AD=BC时,AD2=BC2.在Rt△AED中,AD2=AE2+DE2;在Rt△BEC中,BC2=BE2+CE2∴,整理得:a3﹣2a2﹣16a﹣32=0,∴(a﹣2)(a+4)(a﹣4)=0;∴a=2或a=﹣4或a=4,∵a>1,∴a=2或a=4.①当a=2时,点B的坐标是(2,2).设直线AB的函数表达式为y=kx+b,分别把点A,B的坐标代入,得解得∴直线AB的函数解析式是y=﹣2x+6.②当a=4时,点B的坐标是(4,1).设直线AB的函数解析式为y=kx+b,分别把点A,B的坐标代入,得解得∴直线AB的函数表达式是y=﹣x+5.综上所述,所求直线AB的函数表达式是y=﹣2x+6或y=﹣x+5.【点评】本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点、用待定系数法求一次函数及反比例函数的解析式等知识,难度适中.26.(14分)(•惠安县二模)如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连结EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连结CG.(1)求证:四边形EFCG是矩形;(2)求tan∠CEG的值;(3)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,求四边形EFCG面积的取值范围.【考点】四边形综合题.【分析】(1)根据三个角是直角的四边形是矩形即可判断.(2)只要证明∠CEG=∠ADB即可解决问题.=,想办法求出CF的范围即可解决问题,只要求出CF的最(3)首先证明S矩形EFCG大值以及最小值.【解答】解:(1)证明:∵CE为⊙O的直径,∴∠CFE=∠CGE=90°,∵EG⊥EF,∴∠FEG=90°,∴∠CFE=∠CGE=∠FEG=90°,∴四边形EFCG是矩形.(2)由(1)知四边形EFCG是矩形.∴CF∥EG,∴∠CEG=∠ECF,∵∠ECF=∠EDF,∴∠CEG=∠EDF,在Rt△ABD中,AB=3,AD=4,∴tan,∴tan∠CEG=;(3)∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG,∴tan∠FCE=tan∠CEG=,∵∠CFE=90°,∴EF=CF,=;∴S矩形EFCG连结OD,如图2①,∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°,∴∠GDB=90°.(Ⅰ)当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′)处,如图2①所示.此时,CF=CB=4.…(10分)(Ⅱ)当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.(Ⅲ)当CF⊥BD时,CF最小,如图2③所示.S△BCD=BC×CD=BD×CF,∴4×3=5×CF,∴CF=,∴≤CF≤4,=,∵S矩形EFCG∴×()2≤S≤×42,矩形EFCG≤12.∴≤S矩形EFCG【点评】本题考查四边形综合题、矩形的性质、锐角三角函数勾股定理等知识,解题的关键是学会添加辅助线,学会转化的思想,学会取特殊点特殊位置探究问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年福建省泉州市中考数学二模试卷含答案解析2018年福建省泉州市中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.计算的结果是A. 3B.C.D.2.如图是由八个相同小正方体组成的几何体,则其主视图是A.B.C.D.3.从泉州市电子商务中心获悉,近年来电子商务产业蓬勃发展截止到2018年3月,我市电商从业人员已达873 000人,数字873 000可用科学记数法表示为A. B. C. D.4.下列各式的计算结果为的是A. B. C. D.5.不等式组的解集在数轴上表示为A. B.C. D.6.下列图形中,是中心对称图形,但不是轴对称图形的是A. B. C. D.7.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是A. 最低温度是B. 众数是C. 中位数是D. 平均数是8.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x的方程符合题意的是A. B.C. D.9.如图,在的网格中,A,B均为格点,以点A为圆心,以AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是A. B. C. D.10.如图,反比例函数的图象经过正方形ABCD的顶点A和中心E,若点D的坐标为,则k的值为A. 2B.C.D.二、填空题(本大题共6小题,共24.0分)11.已知,,则a______填“”,“”或“”.12.正八边形的每一个内角的度数为______度13.一个暗箱中放有除颜色外其他完全相同的m个红球,6个黄球,3个白球现将球搅匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到黄球的频率稳定在附近,由此可以估算m的值是______.14.如图,将绕点A顺时针旋转,得到这时点D、E、B恰好在同一直线上,则的度数为______.15.已知关于x的一元二次方程有两个相等实数根,则m的值为______.16.在平行四边形ABCD中,,,点E为BC中点,连结AE,将沿AE折叠到的位置,若,则点到直线BC的距离为______.三、解答题(本大题共9小题,共86.0分)17.解方程:.18.先化简,再求值:,其中.19.该公司计划购买A型和B型两种公交车共10辆,已知每辆A型公交车年均载客量为60万人次,每辆B型公交车年均载客量为100万人次,若要确保这10辆公交车年均载客量总和不少于670万人次,则A型公交车最多可以购买多少辆?20.如图,在锐角中,,.尺规作图:作BC边的垂直平分线分别交AC,BC于点D、保留作图痕迹,不要求写作法;在的条件下,连结BD,求的周长.21.为进一步弘扬中华优秀传统文化,某校决定开展以下四项活动:A经典古诗文朗诵;B书画作品鉴赏;C民族乐器表演;D围棋赛学校要求学生全员参与,且每人限报一项九年级班班长根据本班报名结果,绘制出了如下两个尚不完整的统计图,请结合图中信息解答下列问题:直接填空:九年级班的学生人数是______,在扇形统计图中,B项目所对应的扇形的圆心角度数是______;将条形统计图补充完整;用列表或画树状图的方法,求该班学生小聪和小明参加相同项目活动的概率.22.求证:矩形的对角线相等要求:画出图形,写出已知,求证和证明过程23.如图,菱形ABCD中,,,以点A为圆心的与BC相切于点E.求证:CD是的切线;求图中阴影部分的面积.24.如图1,在矩形ABCD中,,,点E从点B出发,沿BC边运动到点C,连结DE,过点E作DE的垂线交AB于点F.求证:;求BF的最大值;如图2,在点E的运动过程中,以EF为边,在EF上方作等边,求边EG的中点H所经过的路径长.25.已知:二次函数的图象与x轴交于点A、,顶点为求该二次函数的解析式;如图,过A、C两点作直线,并将线段AC沿该直线向上平移,记点A、C分别平移到点D、E处若点F在这个二次函数的图象上,且是以EF为斜边的等腰直角三角形,求点F的坐标;试确定实数p,q的值,使得当时,.答案和解析【答案】1. A2. C3. C4. D5. C6. A7. D8. A9. B10. B11.12. 13513. 1114.15. 016.17. 解:去分母得:,去括号得:,移项得:,系数化为1得:.18. 解:,当时,原式.19. 解:设A型和B型公交车的单价分别为a万元,b万元,根据题意,得:,解得:,答:购买每辆A型公交车100万元,购买每辆B型公交车150万元;设购买A型公交车x辆,则购买B型公交车辆,根据题意得:,解得:,,且,,最大整数为8,答:A型公交车最多可以购买8辆.20. 解:如图,DE为所作;垂直平分BC,,的周长.21. 50;22. 解:已知:四边形ABCD是矩形,AC与BD是对角线,求证:,证明:四边形ABCD是矩形,,,又,≌ ,,所以矩形的对角线相等23. 证明:连接AE,过A作,,四边形ABCD是菱形,,,与相切于点E,,,在与中,,≌ ,,是的切线;在菱形ABCD中,,,,,,在中,,,菱形ABCD的面积,在菱形ABCD中,,,扇形MAN的面积,阴影面积菱形ABCD的面积扇形MAN的面积.24. 解:证明:如图1,在矩形ABCD中,,,,,,,,;由可得,,,∽ ,,在矩形ABCD中,,,设,则,,,,当时,BF存在最大值;如图2,连接FH,取EF的中点M,连接BM,HM,在等边三角形EFG中,,H是EG的中点,,,又是EF的中点,,在中,,M是EF的中点,,,点B,E,H,F四点共圆,连接BH,则,点H在以点B为端点,BC上方且与射线BC夹角为的射线上,如图,过C作于点,点E从点B出发,沿BC边运动到点C,点H从点B沿BH运动到点,在中,,,点H所经过的路径长是.25. 解:二次函数的顶点为,可设该二次函数的解析式为,把代入,得,解得,该二次函数的解析式为;由,得或1,.如图,过点C作轴于点H.,,,又,,,.在等腰直角中,,,,,,轴.由,可得直线AC的解析式为.由题意,设其中,则点,,,不合题意舍去,点F的坐标为;当时,,解得,.,当时,y随x的增大而减小;当时,y随x的增大而增大;当时,y有最小值.当时,,可分三种情况讨论:当时,由增减性得:,当时,最小,不合题意,舍去;当时,最大当时,Ⅰ若,由增减性得:,当时,最小,不合题意,舍去;当时,最大Ⅱ若,由增减性得:当时,,当时,最小,符合题意,最大,;当时,由增减性得:,当时,最小,当时,最大把,代入,得,解得,不合题意,舍去,,.综上所述,满足条件的实数p,q的值为,或,.【解析】1. 解:.故选:A.根据绝对值的性质进行计算.本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2. 解:主视图有3列,从左往右分别有3,1,2个小正方形,故选:C.主视图是从图形的正面看所得到的图形,根据小正方体的摆放方法,画出图形即可.此题主要考查了简单几何体的三视图,关键是掌握主视图是从物体的正面看得到的视图.3. 解:数字873 000可用科学记数法表示为.故选:C.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:A、,无法计算,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,故此选项正确.故选:D.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则计算得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握运算法则是解题关键.5. 解:解不等式,得:;解不等式,得:,所以不等式组的解集为:,数轴上表示为:,故选:C.先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.6. 解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.根据中心对称图形的定义旋转后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.7. 解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为,众数为,中位数为,平均数是,故选:D.将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.8. 解:设这个物品的价格是x元,则可列方程为:故选:A.根据“总人数不变”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.9. 解:如图作于H.在中,,故选:B.如图作于在中,即可解决问题;本题考查解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10. 解:反比例函数的图象经过正方形ABCD的顶点A和中心E,点D的坐标为,点A的坐标为,点E的坐标为,,解得,,故选:B.根据题意可以设出点A的坐标,从而可以得到点E的坐标,进而求得k的值,从而可以解答本题.本题考查反比例函数图象上点的坐标特征、正方形的性质,解答本题的关键是明确反比例函数的性质,利用反比例函数的知识解答.11. 解:,,,,.故答案为:.直接利用零指数幂的性质和负指数幂的性质分别化简得出答案.此题主要考查了零指数幂的性质和负指数幂的性质,正确化简各数是解题关键.12. 解:正八边形的每个外角为:,每个内角为.利用多边形的外角和为360度,求出正八边形的每一个外角的度数即可解决问题.本题需仔细分析题意,利用多边形的外角和即可解决问题.13. 解:由题意可得:,解得:,故答案为:11.直接利用样本估计总体,进而得出关于m的等式求出答案.此题主要考查了用样本估计总体,正确得出关于m的等式是解题关键.14. 解:绕点A顺时针旋转得到,,,,在中,,则,故答案为:.由旋转性质知,,,再等腰中得,据此可得答案.本题主要考查旋转的性质,解题的关键是掌握对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等.15. 解:关于x的一元二次方程有两个相等的实数根,,且,,解得,.故答案是:0.根据一元二次方程的根的判别式列出关于m的方程,通过解方程即可求得m的值.本题考查了根的判别式、一元二次方程的定义一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.16. 解:如图连接,作于H.,,,,,,,,,,∽ ,,,.故答案为.如图连接,作于利用 ∽ ,可得,由此即可解决问题;本题考查翻折变换、平行四边形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.17. 方程两边每一项都要乘各分母的最小公倍数6,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.注意:在去分母时,应该将分子用括号括上切勿漏乘不含有分母的项.18. 根据分式的除法和减法可以化简题目中的式子,再将a的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分是化简求值的方法.19. 根据“购买A型公交车3辆,B型公交车1辆,共需450万元;若购买A型公交车2辆,B型公交车3辆,共需650万元”列方程组求解可得;设购买A型公交车x辆,则购买B型公交车辆,根据“这10辆公交车年均载客量总和不少于670万人次”求得x的范围即可.本题主要考查二元一次方程组、一元一次不等式的应用,解题的关键是根据题意确定相等关系或不等式关系以列出方程组和不等式是解题的关键.20. 利用基本作图作已知线段的垂直平分线作DE垂直平分BC;利用线段垂直平分线的性质得到,则利用等量代换得到的周长,然后把,代入计算计算.本题考查了基本作图:熟练掌握基本作图作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.21. 解:九年级班的学生人数是人,B项目所对应的扇形的圆心角度数是,故答案为:50,;项目所对应的人数为,条形统计图如图所示:画树状图如下:共有16种等可能的结果,其中小聪和小明参加相同项目活动的情况有4种,参加相同项目活动.依据项目A的数据,即可得到九年级班的学生人数,依据B项目所占的百分比,即可得出B项目所对应的扇形的圆心角度数;依据B项目所对应的人数为,即可将条形统计图补充完整;画树状图,即可得到共有16种等可能的结果,其中小聪和小明参加相同项目活动的情况有4种,进而得到小聪和小明参加相同项目活动的概率.本题考查列表法与树状图法,当有两个元素时,可用树形图列举,也可以列表列举解答本题的关键是明确题意,利用概率公式求出相应的概率.22. 由“四边形ABCD是矩形”得知,,,矩形的四个角都是直角,再根据全等三角形的判定原理SAS判定全等三角形,由此,得出全等三角形的对应边相等的结论.本题考查的是矩形的性质和全等三角形的判定在矩形中,对边平行相等,四个角都是直角;全等三角形的判定原理AAS;三个判定公理、SAS、;全等三角形的对应边、对应角都相等.23. 连接AE,根据菱形的性质和全等三角形的判定和性质以及切线的判定证明即可;利用菱形的性质和扇形的面积公式解答即可.此题考查菱形的性质,全等三角形的判定与性质,扇形面积公式,熟练掌握性质及公式是解本题的关键.24. 依据,,即可得到,再根据,即可得出;依据 ∽ ,即可得到,设,则,根据,即可得到当时,BF存在最大值;连接FH,取EF的中点M,连接BM,HM,依据,可得点B,E,H,F四点共圆,连接BH,则,进而得到点H在以点B为端点,BC上方且与射线BC夹角为的射线上,再过C作于点,根据点E从点B出发,沿BC边运动到点C,即可得到点H从点B沿BH运动到点,再利用在中,,即可得出点H所经过的路径长是.本题属于四边形综合题,主要考查了相似三角形的判定与性质,解直角三角形以及四点共圆的综合运用,解决问题的关键是作辅助线构造直角三角形,利用直角三角形斜边上中线的性质以及含角的直角三角形的性质得出结论.25. 由二次函数的顶点为,可设其解析式为,再把代入,利用待定系数法即可求出该二次函数的解析式;由二次函数的解析式求出过点C作轴于点解直角,得出,那么,解等腰直角得出,,由,得到轴利用待定系数法求出直线AC的解析式为设其中,则点,那么,解方程求出m,进而得出点F的坐标;先求出时,再根据二次函数的性质可知,当时,,应分三种情况讨论:;;.本题是二次函数综合题,其中涉及到利用待定系数法求二次函数、一次函数的解析式,二次函数的性质,等腰直角三角形的性质,函数图象上点的坐标特征等知识综合性较强,有一定难度利用数形结合与分类讨论是解题的关键.。

相关文档
最新文档