2018年福建省泉州市数学中考试卷及答案解析(精析版)

合集下载

2018年福建省泉州市中考数学试卷含答案

2018年福建省泉州市中考数学试卷含答案

福建省泉州市2018年中考数学试卷一、选择题<每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分.D.的形状是体的正视图是< )C .D .4.<3分)<2018•泉州)把不等式组的解集在数轴上表示出来,正确的是B .D .解:,,7,则圆积V<m3)一定的污水处理池,池的底面积S<m2)与其深度h<m)满足关系式:C .D .<h要掌握它的性质才能灵活解题.反比例函数y=8.<4分)<2018•泉州)的立方根是.考点:立方根分析:根据立方根的定义即可得出答案.解答:解:的立方根是;故答案为:.点评:此题考查了立方根,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方,由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.考点:因式分解-运用公式法专题:因式分解.分析:分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.解答:解:1﹣x2=<1+x)<1﹣x).故答案为:<1+x)<1﹣x).点评:本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.千M,考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:110000=1.1×105,故答案为:1.1×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.OA D,若QC=QD,则∠AOQ= 35 °.5PCzVD7HxAAOQ=A0B=×70°=35°.13.<4分)<2018•泉州)计算:+= 1 .解:原式=14.<4分)<2018•泉州)方程组的解是.故原方程组的解为.F、G、H,则四边形EFGH的形状一定是平行四边形.jLBHrnAILgAC AC和BD相交于点O,AC:BD=1:2,则AO:BO= 1:2 ,菱形ABCD的面积S=16 .xHAQX74J0XAO8AB=2S==16直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 3 ,依次继续下去…,第2018次输出的结果是 3 .LDAYtRyKfEx代入x第6次输出的结果为×4=2;.÷x=.x=、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.Zzz6ZB2Ltk外没有任何区别,现将它们放在盒子里搅匀.dvzfvkwMI1<1)随机地从盒子里抽取一张,求抽到数字3的概率;<2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点<x,y)在函数y=图象上的概率.rqyn14ZNXI比例图象上的情况数,即可求出所求的概率.的概率为;P==<1)求a的值;<2)若点A<m,y1)、B<n,y2)<m<n<3)都在该抛物线上,试比较y1与y2的动,设有征文、独唱、绘画、手抄报四个工程,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.EmxvxOtOco<1)此次有200 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是36 度.请你把条形统计图补充完整.SixE2yXPq5<2)经研究,决定拨给各工程活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少扇形统计图中“独唱”部分的圆心角是296×10+80×12+200×15+224×12=9608动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l<cm)与时间t<s)满足关系:l=t2+t<t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.kavU42VRUs<1)甲运动4s后的路程是多少?<2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?<3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?l=t2+t=8+6=14<cm甲走过的路程为t2+t则t2+t+4t=21则t2+t+4t=63B、C,点A<﹣2,0),P是直线BC上的动点.y6v3ALoS89<1)求∠ABC的大小;<2)求点P的坐标,使∠APO=30°;<3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.M2ub6vSTnP。

2018福建中考数学试题及答案

2018福建中考数学试题及答案

2018福建中考数学试题及答案2018福建中考数学试题及答案数学作为中考科目之一,对于学生来说是一个相对较重要的科目之一。

在2018年福建中考中,数学试题的难度适中,内容涵盖了教材中的各个章节和知识点。

本文将给出2018年福建中考数学试题及答案,供广大考生参考。

以下为试题及答案:第一部分:选择题(共30小题,每小题2分,共60分)1.已知正整数 a=3,c=5,计算 a+c 的值。

A. 8B. 15C. 25D. 35【答案】B. 82.某堂数学课上,小明回答了20道题,其中10道题回答正确,计算小明的正确率。

A. 20%B. 50%C. 65%D. 100%【答案】B. 50%3.已知两条直线分别与 x 轴和 y 轴交于点 P(2, 5),求该两条直线的交点坐标。

A. (-2, 0)B. (0, -5)C. (0, 5)D. (2, 0)【答案】A. (-2, 0)4.现有甲、乙两批商品,甲批商品的原价是乙批商品原价的2倍,折扣价是乙批商品折扣价的1.5倍,如果甲、乙两批商品的折扣价相同,求甲批商品原价与乙批商品原价的比值。

A. 1:1B. 3:2C. 2:3D. 1:2【答案】C. 2:35.某班学生参加一次考试,最高分为100分,最低分为60分,求全班学生的平均分。

A. 75B. 80C. 85D. 90【答案】B. 80......第二部分:填空题(共10小题,每小题2分,共20分)1.已知直角三角形的斜边长度为10cm,一条直角边的长度为6cm,求另一条直角边的长度。

【答案】8cm2.某角的度数是90°,求其对应的弧度数。

【答案】π/2......第三部分:解答题(共4小题,每小题10分,共40分)1.已知函数 y = 3x + 2,求在坐标平面上的两点 (1, ?) 和 (?, 11)。

【答案】点(1, 5)和(3, 11)2.解方程:5x + 10 = 7x - 8。

【答案】x = 9......根据以上试题及答案,相信考生们对2018年福建中考数学试题有了全面的了解。

(完整)2018年泉州市初三质检数学试题及答案,推荐文档

(完整)2018年泉州市初三质检数学试题及答案,推荐文档

2018年泉州市初三质检数学试题一、选择题(本题共10小题,每小题4分,共40分) (1)化简|-3|的结果是( ). (A)3 (B)-3 (C)±3 (D)31(2)如图是由八个相同小正方体组合而成的几何体,则其主视图是( ).(3)从泉州市电子商务中心获悉,近年来电子商务产业蓬勃发展截止到2018年3月,我市电商从业人员已达873 000人,数字873 000可用科学记数法表示为( ). (A)8.73×103 (B)87.3×104 (C)8.73×105 (D)0.873×106 (4)下列各式的计算结果为a 5的是( ) (A)a 7-a 2 (B)a 10÷a 2 (C)(a 2)3 (D)( -a )2·a 3 (5)不等式组⎩⎨⎧≥+->-06301x x 的解集在数轴上表示为( ).(6)下列图形中,是中心对称图形,但不是轴对称图形的是( ).(7)去年某市7月1日到7日的每一天最高气温变化如折线图所示, 则关于这组数据的描述正确的是( ). (A)最低温度是32℃ (B)众数是35℃ (C)中位数是34℃ (D)平均数是33℃(8)在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x ,则下列关于x 的方程符合题意的是( ). (A)8x -3=7x +4 (B)8(x -3)=7(x +4) (C)8x +4=7x -3 (D)81371=-x x +4 (9)如图,在3×3的网格中,A ,B 均为格点,以点A 为圆心,以AB 的长为半径作弧,图中的点C 是该弧与格线的交点,则sin ∠BAC 的值是( ).(A)21 (B) 32(C) 35 (D) 552(10)如图,反比例函数y=xk的图象经过正方形ABCD 的顶点A 和中心E ,若点D 的坐标为(-1,0),则k 的值为( ). (A)2 (B) 2- (C)1 (D) 1- A B C D(A) (B) (C) (D) A BC D EO xy(A) (B) (C) (D)二、填空题(本题共6小题,每小题4分,共24分) (11)已知a =(21)°,b=2-1,则a _______b (填“>”,“<”或“=”) . (12)正八边形的每一个内角的度数为________.(13)一个暗箱中放有除颜色外其他完全相同的m 个红球,6个黄球,3个白球现将球搅匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到黄球的频率稳定在30%附近,由此可以估算m 的值是________.(14)如图,将△ABC 绕点A 顺时针旋转120°,得到 △ADE .这时点D 、E 、B 恰好在同一直线上,则 ∠ABC 的度数为________.(15)已知关于x 的一元二次方程(m -1)x 2- (2m -2)x -1=0 有两个相等实数根,则m 的值为________.(16)在平行四边形ABCD 中,AB=2,AD=3,点E 为BC 中点,连结AE ,将△ABE 沿AE 折叠到△AB'E 的位置,若∠BAE=45°,则点B'到直线BC 的距离为________. 三、解答题:(本题共9小题,共86分) (17)( 8分)解方程:23-x 312+-x =1.(18) (8分)先化简,再求值:3223393a aa a a a +÷⎪⎪⎭⎫ ⎝⎛---,其中a =22.(19)(8分)如图,在锐角△ABC 中,AB=2cm ,AC=3cm . (1)尺规作图:作BC 边的垂直平分线分别交AC ,BC 于点D 、E(保留作图痕迹,不要求写作法); (2)在(1)的条件下,连结BD ,求△ABD 的周长.(20)(8分)为进一步弘扬中华优秀传统文化,某校决定开展以下四项活动:A 经典古诗文朗诵;B 书画作品鉴赏;C 民族乐器表演;D 围棋赛。

福建省泉州市2018年中考数学试题

福建省泉州市2018年中考数学试题

福建省泉州市2018年中考数学试题一、选择题(每小题3分,共21分) 1、-3的绝对值是( )。

A.3B.-3C.31- D.312、32)(y x 的结果是( ) A.35y x B.y x 6 C.31- D.36y x3、不等式组⎩⎨⎧≤>-2,01x x 的解集是( )A.x ≤2B.x>1C.1<x ≤2D.无解 4、如图,AB 和⊙O 相切于点B ,060=∠AOB ,则A ∠的大小为( ) A.150 B.300 C.450 D.600 5、一组数据:2,5,4,3,2的中位数是( )A.4B.3.2C.3D.2 6、如图,圆锥地面半径为rcm ,母线长为10cm ,其侧面展开图是圆心角为2160的扇形,则r 的值为( )A.3B.3C.3πD.6π7、如图,已知点A(-8,0)、B(2,0),点C 在直线443+-=x y 上,则使△ABC 是直角三角形的点C 的个数为( )。

A.1 B.2 C.3 D.4二、填空题(每小题4分,共40分) 8、27的立方根是___________.1. 我国的陆地面积约为9 600 000平方千米,把9 600 000用科学计数法表示为________________.2. 因式分解:2-1x =______________.3. 如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若BC=8,则DE 的长为________.4. 十边形的外交和是________0.5. 计算:1m 31m m 3+++=_________. 6. 如图,在Rt △ABC 中,E 是斜边AB 的中点,若AB=10,则CE=________.7. 如图,⊙0的弦AB/CD 相交于点E ,若CE :BE=2:3,则AE:DE=_______________.16、找出下列图形中数的规律,依次,a的值为____________.17、如图,在四边形ABCD中,AB//DC,E是AD中点,EF⊥BC于点F,BC=5 ,EF=3。

2018年福建省泉州市中考数学试卷(含答案)

2018年福建省泉州市中考数学试卷(含答案)

2018年福建省泉州市初中毕业、升学考试数 学 试 题(满分150分,考试时间120分钟)友情提示:所有答案都必须填涂在答题卡的相应的位置上,答在本试卷一律无效.毕业学校_________________姓名___________考生号_________一、选择题(共7小题,每题3分,满分21分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1. 7-的相反数是( ).A. 7-B. 7C.71- D. 71解:应选B 。

⒉42)(a 等于( ).A.42a B.24a C.8a D. 6a 解:应选C 。

⒊把不等式01≥+x 在数轴上表示出来,则正确的是( ).解:应选B 。

⒋下面左图是两个长方体堆积的物体,则这一物体的正视图是( ).解:应选A 。

⒌若4-=kx y 的函数值y 随着x 的增大而增大,则k 的值可能是下列的( ).A .4- B.21- C.0 D.3 解:应选D 。

⒍下列图形中,有且只有两条对称轴的中心对称图形是( ). A .正三角形 B.正方形 C.圆 D.菱形 解:应选D 。

⒎如图,点O 是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别交于点E 、F ,则( )A .EF>AE+BF B. EF<AE+BFC.EF=AE+BFD.EF ≤AE+BF C 解:应选C 。

B (第七题图)二、填空题(每题4分,共40分;请将正确答案填在答题卡相应位置) ⒏比较大小:5-__________0.(用“>”或“<”号填空〕解:<。

⒐因式分解:x x 52-=__________. 解:)5(-x x 。

⒑光的速度大约是300 000 000米/秒,将300 000 000用科学计数法法表示为__________. 解:8103⨯。

⒒某校初一年段举行科技创新比赛活动,各个班级选送的学生数分别为3、2、2、6、6、5,则这组数据的平均数是__________. 解:4.⒓n 边形的内角和为900°,则n =__________.解:7. ⒔计算:=---111m m m __________. 解:1. D⒕如图,在△ABC 中,AB=AC ,BC=6,AD ⊥BC 于点D ,则BD 的长是__________. 解:3.C D (第十四题图) ⒖如图,在△ABC 中,∠A=60°,∠B=40°,点D 、E 分别在BC 、AC 的延长线上,则∠1=_ °. 解:80°。

福建省2018年中考[数学]考试真题与答案解析

福建省2018年中考[数学]考试真题与答案解析

福建省2018年中考[数学]考试真题与答案解析一、选择题本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在实数|﹣3|,﹣2,0,π中,最小的数是( )A.|﹣3|B.﹣2C.0D.π答案解析:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B. 2.某几何体的三视图如图所示,则该几何体是( )A.圆柱B.三棱柱C.长方体D.四棱锥答案解析:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2B.1,2,4C.2,3,4D.2,3,5答案解析:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.一个n边形的内角和为360°,则n等于( )A.3B.4C.5D.6答案解析:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15°B.30°C.45°D.60°答案解析:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12答案解析:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.已知m=+,则以下对m的估算正确的( )A.2<m<3B.3<m<4C.4<m<5D.5<m<6答案解析:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A.B.C.D.答案解析:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )A.40°B.50°C.60°D.80°答案解析:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根答案解析:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、填空题11.计算:()0﹣1= 0 .答案解析:原式=1﹣1=0,故答案为:0.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 120 .答案解析:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .答案解析:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3. 14.不等式组的解集为 x>2 .答案解析:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .答案解析:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为 6 .答案解析:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、解答题本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.解方程组:.答案解析:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.答案解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.先化简,再求值:(﹣1)÷,其中m=+1.答案解析:(﹣1)÷===,当m=+1时,原式=.20.求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.答案解析:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.21.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.答案解析:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.答案解析:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.答案解析:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.24.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE 的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.答案解析:(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠AOB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.25.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N (x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C 的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.答案解析:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y随x的增大而增大,同理当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,∴△ABC为等腰三角形,∵△ABC中有一个角为60°,∴△ABC为等边三角形,且OC=OA=2,设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,∴BD=OB•cos30°=,OD=OB•sin30°=1,∵B在C的左侧,∴B的坐标为(﹣,﹣1),∵B点在抛物线上,且c=2,b=0,∴3a+2=﹣1,解得:a=﹣1,则抛物线解析式为y=﹣x2+2;(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),∵MN与直线y=﹣2x平行,∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,∴直线MN解析式为y=﹣2x﹣x12+2x1+2,把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1,在Rt△BEM中,tan∠MBE===﹣x1,在Rt△BFN中,tan∠NBF=====﹣x1,∵tan∠MBE=tan∠NBF,∴∠MBE=∠NBF,则BC平分∠MBN;②∵y轴为BC的垂直平分线,∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2,根据勾股定理得:3+(y0+1)2=x12+(y0﹣y1)2,∵x12=2﹣y2,∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0=y1﹣1,由①得:﹣1<y1≤2,∴﹣<y0≤0,则△MBC的外心的纵坐标的取值范围是﹣<y0≤0.。

2018福建中考数学A卷解析

2018福建中考数学A卷解析

2018年省中考数学A 试题一、选择题:本大题共10小题,每题4分,共40分. 1.在实数3-、-2、0、π中,最小的数是〔 〕 A .3- B.-2 C.0 D.π2.〔2018A 卷,2,4〕某几何体的三视图如下列图,那么该几何体是〔 〕 A .圆柱 B.三棱柱 C.长方体 D.四棱锥3.〔2018A 卷,3,4〕以下各组数中,能作为一个三角形三边边长的是( ) A .1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 4.〔2018A 卷,4,4〕一个n 边形的角和是360°,那么n 等于( ) A .3 B.4 C.5D.6 5.〔2018A 卷,5,4〕如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,那么∠ACE 等于( )A .15° B.30° C.45° D.60°6.〔2018A 卷,6,4〕投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,那么以下事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1 B. 两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12 7. 〔2018A 卷,7,4〕43m,那么以下对m 的估算正确的选项是( )A .23m B.34m C.45m D.56m8. 〔2018A 卷,8,4〕我国古代数学著作"增删算法统宗"记载"绳索量竿〞问题:"一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.〞其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,那么符合题意的方程组是 ( )A .5152x y x y B.5152x y x y C.525x y x y D.525x y x y9. 〔2018A 卷,9,4〕如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,假设∠ACB=50°,那么∠BOD 等于 ( )A .40° B.50° C.60° D.80°10.〔2018A 卷,10,4〕关于x 的一元二次方程21210a x bx a 有两个相等的实数根,以下判断正确的选项是 ( ) A .1一定不是关于x 的方程20x bx a 的根 B.0一定不是关于x 的方程20x bx a 的根 C.1和-1都是关于x 的方程20xbx a 的根 D.1和-1不都是关于x 的方程20x bx a 的根二、填空题:(此题共6小题,每题4分,共24分)11.〔2018A 卷,11,4〕计算:1220-⎪⎪⎭⎫⎝⎛=______. 12.〔2018A 卷,12,4〕某8种食品所含的热量值分别为:120、134、120、119、126、120、118、13.〔2018A 卷,13,4〕如图,在Rt △ABC 中,∠ACB=90°,AB=6,D 为AB 的中点,那么CD= _______.14.〔2018A 卷,14,4〕不等式组⎩⎨⎧>-+>+02313x x x 的解集为_______.15.〔2018A 卷,15,4〕把两个一样大小的含45°角的三角板如下列图放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的锐角顶点B 、C 、D 在同一直线上,假设AB=2,那么CD=_______.16.〔2018A 卷,16,4〕如图,直线y=x+m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,那么S △ABC 的最小值是________.三、解答题(共86分) 此题共9小题,共86分,解容许写出文字说明、证明过程或演算步骤.17.〔2018A 卷,17,9〕解方程组:⎩⎨⎧=+=+1041y x y x18.〔2018A 卷,18,9〕如图,□ABCD 中,对角线AC 与BD 相交于点O ,19.〔2018A 卷,19,9〕化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.〔2018A 卷,20,8〕 求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A ′B ′,∠A ′〔∠A ′=∠A 〕,以线段A ′B ′为一边,在给出的图形上用尺规作出△A ′B ′C ′,使得△A ′B ′C ′∽△ABC ,不写作法,保存作图痕迹; ②在已有的图形上画出一组对应中线,并据此写出、求证和证明过程.21.〔2018A 卷,21,8〕如图,在△ABC 中,∠C=90°,AB=10,AC=8,线段AD 由线段AB 绕点A 按逆时针方向旋转90°得到. △EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点D.〔1〕求∠BDF 的大小;〔2〕求CG 的长.22.〔2018A 卷,22,10〕甲、乙两家快递公司揽件员〔揽收快件的员工〕的日工资方案如下:甲公司为"根本工资+揽件提成〞,其中根本工资为70元/日,每揽收一件提成2元;乙公司无根本工资,仅以揽件提成计算根本工资.假设当日揽件数不超过40,每件提成4元;假设当日揽件数超过40,超过局部每件多提成2元.以下列图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图;〔1〕现从今年四月份30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40〔不含40〕的概率; 〔2〕根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由. 23.〔2018A 卷,23,10〕 如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD MN ,矩形菜园的一边靠墙,另三边一共用了100米木栏. 〔1〕假设a =20,所围成的矩形菜园的面积为450平方米,求所用旧墙AD 的长; 〔2〕求矩形菜园ABCD 面积的最大值.24.〔2018A 卷,24,12〕如图1,四边形ABCD 接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F .(1)延长DC 、FB 交于点P ,求证:PB=PC ;(2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .假设AB=3,DH=1,∠OHD=80°,求∠EDB 的度数.25.〔2018A 卷,25,14〕抛物线y=ax 2+bx +c 过点A (0,2) . (1)假设图象过点(2-,0),求a 与b 满足的关系式;(2)抛物线上任意两点M(x 1,y 1)、N(x 2,y 2)都满足x 1< x 2<0时,0))((2121>--y y x x ;0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,假设△ABC 中有一个角为60°.①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分∠MPN .(图1) EO H A BCDE GC B AD F O(图2)2018年省中考数学B试题一、选择题:本大题共10小题,每题4分,共40分.1.〔2018A卷,1,4〕在实数3-、-2、0、π中,最小的数是〔〕A.3- B.-2 C.0 D.π【答案】B【解析】∵3-=3,根据有理数的大小比较法那么〔正数大于零,负数都小于零,正数大于一切负数,比较即可.解:∵-2<0<3-<π,∴最小的数是-2.应选C.【知识点】有理数比较大小2.〔2018A卷,2,4〕某几何体的三视图如下列图,那么该几何体是〔〕A.圆柱 B.三棱柱 C.长方体 D.四棱锥【答案】C【解析】思路一:充分发挥空间想象能力,让俯视图根据主视图长高,再利用左视图进展验证即可.思路二:分别根据球,圆柱,圆锥,立方体的三视图作出判断.三棱柱的主视图和左视图都是长方形,俯视图是三角形;四棱锥的主视图和左视图都是三角形,俯视图是有对角线的四形;长方体的三视图都是长方形,由此得这个几何体是长方体,应选C.【知识点】三视图的反向思维3.〔2018A卷,3,4〕以下各组数中,能作为一个三角形三边边长的是( )A.1,1,2 B.1,2,4C.2,3,4D.2,3,5【答案】C【解析】三数中,假设最小的两数和大于第三数,符合三角形的三边关系,那么能成为一个三角形三边长,否那么不可能.解:∵1+1=2,∴选项A不能;∵1+2<4,∴选项B不可能;∵2+3>4,∴选项C能;∵2+3=5,∴选项D 不能.应选C . 【知识点】三角形三边的关系 4.〔2018A 卷,4,4〕一个n 边形的角和是360°,那么n 等于( ) A .3 B.4 C.5 D.6 【答案】B【解析】先确定该多边形的角和是360゜,根据多边形的角和公式,列式计算即可求解.解:∵多边形的角和是360゜,∴多边形的边数是:360゜=(n -2)×180°,n =4. 【知识点】多边形;多边形的角和 5.〔2018A 卷,5,4〕如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,那么∠ACE 等于( )A .15° B.30° C.45° D.60°【答案】A【解析】解:∵△ABC 是等边三角形,∴∠ABC =∠ACB=60°,∵AD ⊥BC ,∴BD=CD ,AD 是BC 的垂直平分线,∴BE=CE ,∴∠EBC =∠ECB=45°,∴∠ECA=-60°-45°=15°. 【知识点】等边三角形性质,三线合一 6.〔2018A 卷,6,4〕投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,那么以下事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1 B. 两枚骰子向上一面的点数之和等于1 C.两枚骰子向上一面的点数之和大于12 D.两枚骰子向上一面的点数之和等于12 【答案】D 【解析】事先就知道一定能发生的事件是必然事件,所以两枚骰子向上一面的点数之和大于1是必然事件;事先知道它有可能发生,也有可能不发生的事件是随机事件,所以两枚骰子向上一面的点数之和等于12是随机事件;事先知道它一定不会发生的事件是不可能事件,所以两枚骰子向上一面的点数之和等于1、两枚骰子向上一面的点数之和大于12是不可能事件.应选D. 【知识点】必然事件;随机事件;不可能事件; 7. 〔2018A 卷,7,4〕43m,那么以下对m 的估算正确的选项是( )A .23m B.34m C.45m D.56mB【答案】B【解析】此题考察了算术平方根的估算.解:因为1<3<4,134,即132<<,42,∴34m .应选B .【知识点】算术平方根的概念及求法8. 〔2018A 卷,8,4〕我国古代数学著作"增删算法统宗"记载"绳索量竿〞问题:"一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.〞其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,那么符合题意的方程组是( )A.5 15 2xyx yB.5152x yx yC.525x yx yD.525x yx y【答案】A【解析】此题考察了二元一次方程组,解题的关键是找准等量关系.由"绳索比竿长5尺〞,可得x =y+5;再根据"将绳索对半折后再去量竿,就比竿短5尺〞,可列得方程152x y.所以符合题意的方程组是5152x yx y.【知识点】二元一次方程组的实际应用9.〔2018A卷,9,4〕如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,假设∠ACB=50°,那么∠BOD等于( )A.40° B.50° C.60° D.80°【答案】D【解析】根据同弧所对的圆周角等于这条弧所对圆心角的一半,即可求出结果. 解:∵AB是⊙O的直径,∴∠ABC=90°,∵∠ACB=50°,∴∠A=90°-∠A C B=40°,∠BOD=2∠A=80°.【知识点】圆;圆的有关性质;圆心角、圆周角定理10.〔2018A卷,10,4〕关于x的一元二次方程21210a x bx a有两个相等的实数根,以下判断正确的选项是( )A.1一定不是关于x的方程20x bx a的根B.0一定不是关于x的方程20x bx a的根C.1和-1都是关于x的方程20x bx a的根D.1和-1不都是关于x的方程20x bx a的根【答案】D【解析】根据一元二次方程有两个相等的,方程根的判别式等于零,从而建立关于a、b的等式,再逐一判断20x bx a根的情况即可. 解:由关于x的方程21210a x bx a有两个相等的实数根,所以△=0,所以224410b a ,110b a b a ,解得10a b 或10a b ,∴1是关于x 的方程20x bx a 的根,或-1是关于x 的方程20x bx a 的根;另一方面假设1和-1都是关于x 的方程20xbx a 的根,那么必有11a b a b,解得1a b ,此时有10a ,这与21210a x bxa 是关于x 的一元二次方程相矛盾,所以1和-1不都是关于x 的方程20x bx a 的根,应选D.【知识点】一元二次方程;根的判别式二、填空题:(此题共6小题,每题4分,共24分)11.〔2018A 卷,11,4〕计算:1220-⎪⎪⎭⎫⎝⎛=______. 【答案】0【思路分析】解题关键是理解零指数幂的意义.思路:利用任意不为0的数的0次幂都等于1,然后求差即可.【解题过程】解:1220-⎪⎪⎭⎫⎝⎛=1-1=0,故答案为0 . 【知识点】零指数幂12.〔2018A 卷,12,4〕某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,那么这组数据的众数为______. 【答案】120【思路分析】此题考察了众数的概念,解题的关键是明确众数是一组数据中出现次数最多的数据,根据众数的定义即可得出答案.【解题过程】解:在数据120、134、120、119、126、120、118、124中,120出现了3次,出现的次数最多,那么众数是120. 【知识点】众数 13.〔2018A 卷,13,4〕如图,在Rt △ABC 中,∠ACB=90°,AB=6,D 为AB 的中点,那么CD= _______. 【答案】3【思路分析】根据直角三角形斜边上的中线等于斜边的一半,可得出CD 的值.【解题过程】解:在△ABC 中,以∠ACB 为直角的直角三角形的斜边AB=6,∵CD 是AB 边上的中线,∴CD=12AB=3. 【知识点】直角三角形14.〔2018A 卷,14,4〕不等式组⎩⎨⎧>-+>+02313x x x 的解集为_______.【答案】2x【思路分析】先分别求得不等式①和不等式②的解集,然后依据同大取大,同小取小,小大大小中间找出,大大小小找不着,判断出不等式组的解集即可.【解题过程】解:解不等式①得:1x ,解不等式②得:2x ,所以不等式组的解集为2x . 【知识点】一元一次不等式组的解法、不等式(组)的解集的表示方法 15.〔2018A 卷,15,4〕把两个一样大小的含45°角的三角板如下列图放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的锐角顶点B 、C 、D 在同一直线上,假设AB=2,那么CD=_______. 【答案】31【思路分析】首先利用勾股定理计算出BC 、AD 的长,过点A 作AF ⊥BC ,由"三线合一〞及等腰直直角三角形的性质易求得AF=CF ,在直角三角形ADF 中,再次利用勾股定理计算出DF 的长度,问题便获得解决.【解题过程】解:过点A 作AF ⊥BC ,垂足为点F ,∵ AB=AC ,∴CF=12BC ,∵ AB=AC=2,∴AD=222BCAB AC ,∴CF=1,∵∠C =45°,∴AF=CF=1,∴223DFAD AF ,∴31CD DF CF.【知识点】等腰三角形的性质,勾股定理16.〔2018A 卷,16,4〕如图,直线y=x+m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,那么S △ABC 的最小值是________. 【答案】6【思路分析】此题考察了求两函数的交点、一元二次方程的解法、三角形的面积等知识,解题的关键是用含有同一个未知数的代数式表示出△ABC 的底和高.先由一次函数关系式得出△ABC 是等腰直角三角形,根据两函数的交点于A 、B 两点列出方程组,整理后得到一个二元一次方程,利用根与系数关系表示出线段BC ,进而表示出三角形的底和高,然后列出三角形面积关系式,讨论出S △ABC 的最小值. 【解题过程】∵y=x+m 与y=x 平行,∴AC=BC ,∴S △ABC =212BC , 将y=x+m 与x y 3=联立得方程组:3yx m yx,整理,得:230xmx ,∴12x x m ,123x x ,∵BC=12A Bx x x x ,∴22121212412x x x x x x m ,∴S △ABC =222111126222BC m m ,∴S △ABC 的最小值是6.【知识点】两函数的交点、一元二次方程的解法、三角形的面积三、解答题(共86分) 此题共9小题,共86分,解容许写出文字说明、证明过程或演算步骤.17.〔2018A 卷,17,9〕解方程组:⎩⎨⎧=+=+1041y x y x【思路分析】用②减去①消去y 得到x 的值,把x 的值代入①求出y 的值即可. 【解题过程】解:1410x y x y ①②,②-①,得:39x解得:3x 把3x代入①,得:31y解得:2y所以原方程组的解为32x y .【知识点】解二元一次方程组,消元 18.〔2018A 卷,18,9〕如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE=OF.【思路分析】此题考察平行四边形的性质和利用全等三角形来证明两条线段相等,解题的关键是从平行四边形的性质中得到三角形全等的条件. 利用平行四边形的性质得到AD ∥CB 且OB=OD ,再利用平行线的性质得到∠ODE=∠OBF ,即可证得△AOE ≌△COF.【解题过程】证明:∵四边形ABCD 是平行四边形 ∴AD ∥CB ,OB=OD , ∴∠ODE=∠OBF. 又∵∠DOE=∠BOF , ∴△DOE ≌△BOF , ∴OE=OF.【知识点】平行四边形的性质与判定;三角形全等的判定与性质19.〔2018A 卷,19,9〕化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m【思路分析】首先将括号里的式子进展通分,根据同分母的分式减法的运算法那么进展计算,并将计算的结果除以21m m,得出最简分式,然后把13+=m 代入最简分式中即可.【解题过程】解:原式=()()221111111m m m m m m m m m m m +-+⋅=⋅=-+-- 当31m =+时,原式=33311=+-. 【知识点】异分母分式的减法,分式的乘除法 20.〔2018A 卷,20,8〕 求证:相似三角形对应边上的中线之比等于相似比. 要求:①根据给出的△ABC 及线段A ′B ′,∠A ′〔∠A ′=∠A 〕,以线段A ′B ′为一边,在给出的图形上用尺规作出△A ′B ′C ′,使得△A ′B ′C ′∽△ABC ,不写作法,保存作图痕迹; ②在已有的图形上画出一组对应中线,并据此写出、求证和证明过程.【思路分析】①利用"作一个角等于角〞的尺规作图方法完成作图;②利用相似三角形性质及三角形中线性质得出成比例线段,再根据"两边对应成比例及夹角相等的两个三角形相似〞证两三角形相似,据此可得出结论.【解题过程】解:〔1〕〔2〕:如图,△A ′B ′C ′∽△ABC ,=A B B C A C k AB BC AC ′′′′′′,A ′D ′=D ′B ′,AD=DB ,求证:=D C k DC′′. 证明:∵A ′D ′=D ′B ′,AD=DB ,∴A ′D ′=12A ′B ′,AD=12AB ,∴12=12A B AD A BAD ABAB′′′′′′.∵△A′B′C′∽△ABC,∴A A′,A B A CAB AC′′′′,在△A′D′C′∽△ADC中,A D A CAD AC′′′′,且A A′,∴△A′D′C′∽△ADC,∴==D C A CkDC AC′′′′.【知识点】尺规作图——作一个角等于角;相似三角形的判定和性质21.〔2018A卷,21,8〕如图,在△ABC中,∠C=90°,AB=10,AC=8,线段AD由线段AB绕点A按逆时针方向旋转90°得到. △EFG由△ABC沿CB方向平移得到,且直线EF过点D.〔1〕求∠BDF的大小;〔2〕求CG的长.【思路分析】〔1〕根据旋转的性质得出相等的线段,计算出∠ABD的度数;再由平移的性质,得出平行线,利用平行线性质即可求得∠BDF的度数;〔2〕根据平移性质推出AE∥CG,AB∥EF,再由平行线性质得到相等的角,由"两角对应相等的两个三角形相似〞,证三角形相似,列出比例式,即可求得CG的长度. 【解题过程】解:〔1〕∵线段AD由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG由△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°.〔2〕由平移的性质可得:AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ACB∽△ADE,∴AD AEAC AB,∵AC=8,AB=AD=10,∴AE=252,由平移的性质可得:CG=AE=252.【知识点】平移、旋转的性质,平行线的性质,相似三角形的判定及性质22.〔2018A卷,22,10〕甲、乙两家快递公司揽件员〔揽收快件的员工〕的日工资方案如下:甲公司为"根本工资+揽件提成〞,其中根本工资为70元/日,每揽收一件提成2元;乙公司无根本工资,仅以揽件提成计算根本工资.假设当日揽件数不超过40,每件提成4元;假设当日揽件数超过40,超过局部每件多提成2元.以下列图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图;〔1〕现从今年四月份30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40〔不含40〕的概率; 〔2〕根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由. 【思路分析】〔1〕由于每个事件出现的可能性均等,可以直接用概率公式求解.〔2〕①观察统计图,提取出甲公司各揽件员四月份的揽件数,根据平均数的定义求解. ②根据"甲、乙两家快递公司揽件员〔揽收快件的员工〕的日工资方案〞分别计算出两公司揽件员的平均工资,然后作出选择.【解题过程】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的共有4天,所以,所求的概率:423015P ==; 〔2〕①设甲公司各揽件员的日平均揽件数为x ,那么:38133994044134213930x ⨯+⨯+⨯+⨯+⨯==.即甲公司各揽件员的日平均揽件数为39.②由①及甲公司工资方案可知,甲公司揽件员的日平均工资为70+39×2=148〔元〕; 由条形统计图及乙公司工资方案可知,乙公司揽件员的日平均工资为:()()38739740853415236159.430⨯+⨯+⨯++⨯+⨯+⨯⨯=〔元〕.因为159.4148>,所以仅从工资收入角度考虑,小明应到乙公司应聘. 【知识点】条形统计图,概率,平均数 23.〔2018A 卷,23,10〕空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,木栏总长为100米.〔1〕a =20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园的面积为450平方米,如图1,求所用旧墙AD 的长;〔2〕050a <<,且空地足够大,如图2,请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.【思路分析】此题考察了一元二次方程以及二次函数的应用,解题的关键根据题意列出方程或函数关系式进展解答.〔1〕设矩形的边长AD 为xm ,根据长方形长与宽的关系,得到另一边长为1002x-,从而列出一元二次方程即可求解;〔2〕由第〔1〕问矩形面积列出面积S 与x 的函数关系式,结合自变量的取值围利用函数的增减性进展解答.【解题过程】解:〔1〕设AD=x 米,那么AB=1002x -米,依题意,得:1004502xx -⋅= 解得: 110x =,290x =因为20a =且x a ≤,所以290x =不合题意,应舍去。

2018年福建泉州中考数学试卷及答案解析版

2018年福建泉州中考数学试卷及答案解析版

2018 年福建省泉州市初中毕业、升学考试( 满分: 150 分;考试时间: 120 分钟 )友谊提示:全部答案一定填写到答题卡相应的地点上.毕业学校姓名考生号一、选择题 ( 每题 3 分,共 21 分 ) :每题有四个答案,此中有且只有一个答案是正确的. 请答题卡上相应题目的答题地区内作答. 答对的得 3 分,答错或不答一律得0 分.1. ( 2018 福建泉州, 1, 3 分) 4 的相反数是()A. 4B. -4C. 1 1D.4 4【答案】 B2. ( 2018 福建泉州, 2, 3 分)在△ ABC 中,∠ A = 20°,∠ B = 60°,则△ ABC 的形状是 ( )A. 等边三角形B.锐角三角形C. 直角三角形D. 钝角三角形【答案】 D3.( 2018 福建泉州, 3,3 分)以下左图是由六个完整同样的正方体堆成的物体,则这一物体的正视图是( )【答案】 Ax2,4. ( 2018 福建泉州, 4, 3 分)把不等式组的解集在数轴上表示出来,正确的选项是( )2x 6【答案】 A5. ( 2018 福建泉州,9.3 环,方差以下表:5, 3 分)甲、乙、丙、丁四位选手各射击10 次,每人的均匀成绩都是则这四人中成绩发挥最稳固的是( )A. 甲B. 乙C. 丙D. 丁【答案】 B6. ( 2018 福建泉州, 6,3 分)已知⊙ O1 与⊙ O 订交,它们的半径分别是4、 7,则圆心距 O O22 1可能是 ( )A.2B.3C. 6D. 12【答案】 C7. ( 2018 福建泉州, 7,3 分)为了更好保护水资源,造福人类. 某工厂计划建一个容积V(m3) 一.定的污水办理池,池的底面积S(m2) 与其深度 h(m) 知足关系式: V = Sh( V≠0) ,则 S 对于 h 的函.。

(精)福建省泉州市永春县2018年秋九年级上期中考数学试题(有答案)

(精)福建省泉州市永春县2018年秋九年级上期中考数学试题(有答案)

2018年秋九年级期中考试数学科试卷一、选择题(每题4分,共40分). 1.下列根式是最简二次根式的是( )A C D 2.下列计算,正确的是( )A =B .13222-=-C =D .1122-⎛⎫= ⎪⎝⎭3.若1-是方程220x x c -+= 的一个根,则c 的值为( )A .2-B .2-C .3D .1+4.用配方法解方程0122=-+x x 时,配方结果正确的是( )A .2)2(2=+x B .2)1(2=+x C. 3)2(2=+x D .3)1(2=+x 5.已知35a b = ,则a bb+ 的值为( ) A .25 B .52 C .45 D .856.下列各组线段的长度成比例的是( )A .2cm ,3cm ,4cm ,5cmB .1cm cm ,2cm cmC .1.5cm ,2.5cm ,4.5cm ,6.5cmD .1.1cm ,2.2cm ,3.3cm ,4.4cm7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( ) A .()()32220570x x --= B .322203232570x x +⨯=⨯- C. ()()32203220570x x --=⨯- D .2322202570x x x +⨯-=8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O 固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点'D 处,则点C 的对应点'C 的坐标为( )A .) B .()2,1 C.( D .(9.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( )A .∠C =∠EB .∠B =∠ADEC .AB AC AD AE = D .AB BCAD DE=10.如图,已知△ABC 的周长为1,连结△ABC 三边的中点构成第二个三角形,再连结第二个三角形三边的中点构成第三个三角形,依此类推,则第2016个三角形的周长为( ) A .12015 B .12016 C .201512D .201612二、填空题(每题4分,共24分).11.使6-x 有意义的x 的取值范围是 .12.方程()()1213-=-x x x 的根是13.小明的身高为1.6米,他的影长是2米,同一时刻某古塔的影长是5米,则古塔的高度是 米.14.已知2<a <3,化简:2a -+= .15.如图,在△ABC 中,点D 是BC 的中点,点G 为△ABC 的重心,AG =2,则DG = .16.如图,点B 、C 是线段AD 上的点,△ABE 、△BCF 、△CDG 都是等边三角形,且AB =4,BC =6,已知△ABE 与△CDG 的相似比为2:5.则①CD = ; ②图中阴影部分面积为 .三、解答题(共86分). 17.计算:(8分)(1)(212-418+348)×52; (2)18-22-82+(5-1)0.18.解方程:()()313x x --= (8分)19.先化简,再求值:(()1x x x x -+- ,其中2x =+ (8分)20.已知:关于x的一元二次方程x2﹣(2m+1)x+m2+m﹣2=0.求证:不论m取何值,方程总有两个不相等的实数根.(8分)21.求证:两边成比例且夹角相等的两个三角形相似。

最新-2018年福建省泉州市初中毕业、升学考试数学试题(含参考答案) 精品

最新-2018年福建省泉州市初中毕业、升学考试数学试题(含参考答案) 精品

2018年福建省泉州市初中毕业、升学考试数 学 试 题(满分:150分;考试时间:120分钟)一、选择题(每小题4分,共24分)每题有四个答案,其中有且只有一个答案是正确的,请在答题卡相应题目的答题区域内作答,答对的得4分,答错、不答或答案超过一个的一律得0分。

1.计算2-3=( )A .-1B .1C .-5D .52.甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差=2甲S 4,乙同学成绩的方差=2乙S 3.1,则对他们测试成绩的稳定性判断正确的是( )A .甲的成绩较稳定B .乙的成绩较稳定C .甲、乙成绩的稳定性相同D .甲、乙成绩的稳定性无法比较 3.观察下列图形,其中不是..正方体的展开图的为( )4.如图,A 、B 、C 三点都在⊙O 上,若∠BOC=80°,则∠A 的度数等于(A .20°B .40°C .60°D .80° 5.不等式组⎩⎨⎧-<<1x x 的解集的情况为( )A .x <-1B .x <0C .-1<x <0D .无解6.将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点A ',则点A '的坐标是( ) A .)2,32( B .(4,-2) C .)2,32(- D .)32,2(- 二、填空题(每小题3分,共36分)在答题卡上相应题目的答题区域内作答。

7.计算:=23)10(8.分解因式:=+xy x 2ABCD (第4题图)9.据泉州统计信息网公布的数据显示,2018年泉州市全年旅游总收入约为14 600 000 000,用科学记数法表示约为 元10.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 元11.某水果店1至6月份的销售情况(单位:千克)为450、440、420、480、580、550,则这组数据的极差是 千克12.计算:=⋅abb a 213.五边形的内角和等于 度14.在右图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为15.反比例函数xy 3=的图象在第一象限与第 象限16.已知圆锥的底面半径为10,侧面积是300π,则这个圆锥的母线长为17.口袋中放有黄、白、红三种颜色的小球各1个,这3个球除颜色外没有任何区别,随机从口袋中任取1个球,写出这个实验中一个可能发生的事件: 18.图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。

2018年福建中考数学试卷及答案

2018年福建中考数学试卷及答案

2018年福建中考数学试卷及答案
2018年福建中考数学试卷及答案,旨在考察中学生的数学知识积累及应用能力,为学生的毕业考试准备打下坚实的基础。

本份试卷及答案有助于学生及家长做出准确的把握与实施,以提高学生参加考试的成绩。

2018年福建中考数学试卷及答案
一、2018福建中考数学试卷
2018年福建省中考数学试题包括选择题和填空题,共120分。

1、选择题(每小题四分,共八十分)
(1)已知命题“若x>3,则x+2≥5”的逆
A、若x+2<5,则x<3
B、若x+2>5,则x>3
C、若x+2≤5,则x≤3
D、若x+2≥5,则x≥3
(2)已知二次函数y=ax+b(a>0)的图像经过(3,4),则b的值

A、-a
B、a
C、1
D、-1
2、填空题(每小题三分,共四十分)
(1)设a>b>0,则(1+a)(1+b)=___________ (2)已知函数y=x²的图像大致为________________
二、2018福建中考数学答案
1、选择题:
(1)A (2)D
2、填空题:
(1)1+a+b+ab (2)凹函数。

福建省泉州市2018-2019学年中考数学模拟考试试卷

福建省泉州市2018-2019学年中考数学模拟考试试卷

第1页,总21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………福建省泉州市2018-2019学年中考数学模拟考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 在-1,2, ,这四个数中,无理数是( ) A . -1 B . 2 C . D .2. 下列运算结果为a 3的是( )A . a+a+aB . a 5-a 2C . a·a·aD . a 6÷a 23. 一个几何体的三视图如图所示,则这个几何体是( )A .B .C .D .4. 人体中红细胞的直径约为0.0000077m ,将数字0.0000077用科学记数法表示为( ) A . 7.7×10-5 B . 0.77×10-5 C . 7.7×10-6 D . 77×10-7答案第2页,总21页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………5. 下列事件中,是必然事件的是( )A . 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B . 抛掷一枚普通正方体骰子所得的点数小于7C . 抛掷一枚普通硬币,正面朝上D . 从一副没有大小王的扑克牌中抽出一张牌,恰好是方块6. 小王和小丽下棋,小王执圆子,小丽执方子,如图是在直角坐标系中棋子摆出的图案,若再摆放一圆一方两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标分别是( )A . 圆子(2,3),方子(1,3)B . 圆子(1,3),方子(2,3)C . 圆子(2,3),方子(4,0)D . 圆子(4,0),方子(2,3)7. 关于x 的一元二次方程x 2-mx -1=0的根的情况是 ( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 不能确定8. 一次函数y=-2x+1的图象不经过( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. 如图,抛物线y=ax 2+bx+c(a>0)过原点O ,与x 轴另一交点为A ,顶点为B ,若△AOB 为等边三角形,则b 的值为( )第3页,总21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . -B . -2C . -3D . -410. 如图,点E 为△ABC 的内心,过点E 作MN△BC 交AB 于点M ,交AC 于点N ,若AB=7,AC=5,BC=6,则MN 的长为( )A . 3.5B . 4C . 5D . 5.5第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共6题)1. 计算 = 。

2018福建中考数学A卷解析

2018福建中考数学A卷解析
【知识点】三角形三边的关系
4.(2018福建A卷,4,4)一个 边形的内角和是360°,则 等于( )
A.3 B.4 C. 5 D. 6
【答案】B
【解析】先确定该多边形的内角和是360゜,根据多边形的内角和公式,列式计算即可求解.解:∵多边形的内角和是360゜,∴多边形的边数是:360゜=( -2)×180°, =4.
2018年福建省中考数学A试题
一、选择题:本大题共10小题,每小题4分,共40分.
1.(2018福建A卷,1,4)在实数 、-2、0、 中,最小的数是()
A. B.-2 C. 0 D.
【答案】B
【解析】∵ =3,根据有理数的大小比较法则(正数大于零,负数都小于零,正数大于一切负数,比较即可.解:∵-2<0< < ,∴最小的数是-2.故选C.
【答案】D
【解析】事先就知道一定能发生的事件是必然事件,所以两枚骰子向上一面的点数之和大于1是必然事件;事先知道它有可能发生,也有可能不发生的事件是随机事件,所以两枚骰子向上一面的点数之和等于12是随机事件;事先知道它一定不会发生的事件是不可能事件,所以两枚骰子向上一面的点数之和等于1、两枚骰子向上一面的点数之和大于12是不可能事件.故选D.
A. B. C. D.
【答案】A
【解析】本题考查了二元一次方程组,解题的关键是找准等量关系.由“绳索比竿长5尺”,可得 = +5;再根据“将绳索对半折后再去量竿,就比竿短5尺”,可列得方程 .所以符合题意的方程组是 .
【知识点】二元一次方程组的实际应用
9.(2018福建A卷,9,4)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=018福建A卷,3,4)下列各组数中,能作为一个三角形三边边长的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年福建泉州市初中毕业、升学考试
数学试题
(满分:150分,时间: 120分钟)
一、选择题(每小题3分,共21分)
1、(2018福建泉州,1,3)-7的相反数是( )
A .-7
B .7
C . -
71 D . 71 【答案】B
2、(2018福建泉州,2,3)()42
a 等于( ) A . 42a B .24a C . 8a D . 6a
【答案】C
3、(2018福建泉州,3,3)把不等式01≥+x 的解集在数轴上表示出来,则正确的是( )
【答案】B
4、(2018福建泉州,4,3)下面左图是两个长方体堆成的物体,则这一物体的正视图是( )
【答案】A
5、(2018福建泉州,5,3)若4-=kx y 的函数值y 随x 的增大而增大,则k 的值可能是下列的( )
A .-4
B .2
1- C . 0 D . 3 【答案】D
6、(2018福建泉州,6,3)下列图形中,有且只有两条对称轴的中心对称图形是( )
A .正三角形
B .正方形
C . 圆
D . 菱形
【答案】D
7、(2018福建泉州,7,3)如图,O 是△ABC的内心,过点O作EF ∥AB,与AC 、BC分别交于点E、F,则( )。

相关文档
最新文档