多项式乘以多项式的两个基本方法

合集下载

多项式乘多项式运算法则

多项式乘多项式运算法则

多项式乘多项式运算法则一、分配律例子:设A(x) = a0 + a1x + a2x^2 + ... + anx^n,B(x) = b0 + b1x + b2x^2 + ... + bnx^n其中a0, a1, a2, ..., an为系数,b0, b1, b2, ..., bn为系数。

那么,A(x) * B(x) = (a0 + a1x + a2x^2 + ... + anx^n) * (b0 + b1x + b2x^2 + ... + bnx^n)= a0 * (b0 + b1x + b2x^2 + ... + bnx^n) + a1x * (b0 + b1x + b2x^2 + ... + bnx^n) + a2x^2 * (b0 + b1x + b2x^2 + ... + bnx^n) + ... + anx^n * (b0 + b1x + b2x^2 + ... + bnx^n)= (a0b0 + a1b0x + a2b0x^2 + ... + anb0x^n) + (a0b1x +a1b1x^2 + a2b1x^3 + ... + anb1x^n+1) + (a0b2x^2 + a1b2x^3 +a2b2x^4 + ... + anb2x^n+2) + ... + (a0bnx^n + a1bnx^n+1 +a2bnx^n+2 + ... + anbnx^2n)简化公式为:A(x) * B(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 +a2b0)x^2 + ... + (anb0 + an-1b1 + an-2b2 + ... + a0bn)x^n + ... + anx^2n二、乘法运算规则1.指数相加:两个多项式相乘时,指数相加。

例如,(ax^m)(bx^n) = abx^(m+n)这里的a和b是系数,m和n是指数。

2.系数相乘:两个多项式相乘时,对应项系数相乘。

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标:1. 让学生理解多项式乘以多项式的概念和意义。

2. 让学生掌握多项式乘以多项式的计算方法和步骤。

3. 培养学生运用多项式乘以多项式解决实际问题的能力。

二、教学内容:1. 多项式乘以多项式的概念和意义。

2. 多项式乘以多项式的计算方法和步骤。

3. 多项式乘以多项式在实际问题中的应用。

三、教学重点与难点:1. 教学重点:多项式乘以多项式的计算方法和步骤。

2. 教学难点:多项式乘以多项式在实际问题中的应用。

四、教学方法:1. 采用讲解法,让学生理解多项式乘以多项式的概念和意义。

2. 采用演示法,让学生掌握多项式乘以多项式的计算方法和步骤。

3. 采用案例分析法,培养学生运用多项式乘以多项式解决实际问题的能力。

五、教学过程:1. 引入新课:通过复习多项式的基本概念,引导学生进入多项式乘以多项式的新课。

2. 讲解多项式乘以多项式的概念和意义:解释多项式乘以多项式的定义,让学生理解其意义。

3. 演示多项式乘以多项式的计算方法和步骤:通过示例,让学生掌握多项式乘以多项式的计算方法。

4. 练习与巩固:布置一些练习题,让学生运用所学知识进行计算,巩固所学内容。

5. 案例分析:给出一些实际问题,让学生运用多项式乘以多项式的方法进行解决,培养学生的应用能力。

6. 小结与总结:对本节课的内容进行总结,强调多项式乘以多项式的计算方法和实际应用。

7. 作业布置:布置一些课后作业,巩固所学知识。

六、教学评价:1. 通过课堂讲解和练习,评估学生对多项式乘以多项式的概念和意义的理解程度。

2. 通过计算练习题,评估学生对多项式乘以多项式的计算方法和步骤的掌握情况。

3. 通过案例分析,评估学生运用多项式乘以多项式解决实际问题的能力。

七、教学资源:1. 多项式乘以多项式的教材和教学指导书。

2. 多媒体教学设备,如投影仪和白板。

3. 练习题和案例分析题的资料。

八、教学进度安排:1. 第1周:讲解多项式乘以多项式的概念和意义。

4 整式乘法 第3课 多项式乘以多项式

4 整式乘法  第3课 多项式乘以多项式

2.4 多项式乘以多项式第1课【学习目标】理解多项式乘多项式法则并能熟练运算【学习重点】多项式的乘法运算【学习难点】多项式的乘法的灵活运用和综合运用【学习过程】一、学习准备多项式乘多项式的法则:多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。

由多项式乘多项式法则可以得到(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd例1、计算 (x+3y+4)(2x-y);例2、解方程3x(x+2)+(x+1)(x-1)=4(x2+8)解:原式=2x2-xy+6xy-3y2+8x-4y 去括号得,3x2+6x+x2-1=4x2+32=2x2+5xy+8x-3y2-4y 移项得,3x2+6x+x2-4x2=32+1,合并同类项得,6x=33,系数化为1,得x=5.5例3、若(x2+mx-8) (x2-3x+n)的展开式中不含x2和x3项,求m和n的值解:原式=x4+(m-3)x3+(n-3m+8)x2+(mn-24)x+8n,根据展开式中不含x2和x3项得:m−3=0n−3m+8=0解得:m=3n=12.5 平方差公式第1课时【教学目标】1.让学生经历探索平方差公式的过程,发展其符号感.2.能够运用公式进行简单计算【学习重点】应用公式进行简单、快速的计算【学习难点】对公式中a,b的认识,分清公式结构【学习过程】一、学习准备:1、快速计算①(x+2)(x-2)= x2_-4__________ ②(1+3a)(1-3a)=_1-_9a2______③(x+5y)(x-5y)=_ x2_-25y2_________ ④(y+3z)(y-3z)=_y2_-9z2______2、平方差公式的推导(代数法)( a+b)(a-b)=a2-ab+ab+b2语言表述:两数和与这两数差的积,等于它们平方的差。

= a2-b2公式特点:⑴左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反数的平方差,⑵公式中的a、b 可以是数、单项式、多项式,⑶公式可顺用,也可逆用。

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生理解多项式乘以多项式的概念和意义。

2. 培养学生掌握多项式乘以多项式的运算方法和技巧。

3. 提高学生解决实际问题的能力,培养学生的数学思维。

二、教学内容1. 多项式乘以多项式的定义和性质。

2. 多项式乘以多项式的运算规则。

3. 多项式乘以多项式的例题解析和练习。

三、教学重点与难点1. 重点:多项式乘以多项式的运算方法和技巧。

2. 难点:理解多项式乘以多项式的概念和运算规则。

四、教学方法1. 采用讲解法,引导学生理解多项式乘以多项式的概念和意义。

2. 采用示例法,展示多项式乘以多项式的运算过程,让学生直观感受。

3. 采用练习法,让学生通过多做例题和练习题,巩固所学知识。

五、教学过程1. 导入:通过简单的数学问题,引入多项式乘以多项式的概念。

2. 新课讲解:讲解多项式乘以多项式的定义、性质和运算规则。

3. 示例解析:分析并解答几个多项式乘以多项式的例题。

4. 课堂练习:让学生独立完成一些多项式乘以多项式的练习题。

六、教学评价1. 通过课堂提问,检查学生对多项式乘以多项式的概念和运算规则的理解程度。

2. 通过课后作业和练习题,评估学生掌握多项式乘以多项式的运算方法和技巧的情况。

3. 结合学生的课堂表现和练习情况,综合评价学生的学习效果。

七、教学资源1. 教学PPT:制作多媒体教学课件,展示多项式乘以多项式的定义、性质和运算规则。

2. 练习题库:准备一批多项式乘以多项式的练习题,包括基础题和提高题。

3. 教学辅导书:提供相关的教学辅导书籍,供学生自主学习和复习。

八、教学进度安排1. 第一课时:讲解多项式乘以多项式的定义和性质。

2. 第二课时:讲解多项式乘以多项式的运算规则,示例解析。

3. 第三课时:课堂练习,学生独立完成练习题。

九、课后作业1. 完成课后练习题,巩固多项式乘以多项式的运算方法和技巧。

2. 选择一些提高题,挑战自己的极限,提高解决问题的能力。

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生掌握多项式乘以多项式的运算法则。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的数学思维能力和团队协作能力。

二、教学内容1. 多项式乘以多项式的定义和运算法则。

2. 多项式乘以多项式的计算方法。

3. 多项式乘以多项式在实际问题中的应用。

三、教学重点与难点1. 教学重点:多项式乘以多项式的运算法则和计算方法。

2. 教学难点:多项式乘以多项式在实际问题中的应用。

四、教学方法1. 采用讲解法、演示法、练习法、讨论法等教学方法。

2. 利用多媒体课件辅助教学,提高学生的学习兴趣。

3. 分组讨论,培养学生的团队协作能力。

五、教学步骤1. 导入新课:通过复习单项式乘以单项式的运算法则,引出多项式乘以多项式的概念。

2. 讲解多项式乘以多项式的运算法则,并用多媒体课件展示计算过程。

3. 举例讲解多项式乘以多项式的计算方法,让学生跟随老师一起动手操作。

4. 进行课堂练习,让学生独立完成多项式乘以多项式的计算。

5. 组织学生进行分组讨论,探讨多项式乘以多项式在实际问题中的应用。

6. 总结本节课所学内容,强调多项式乘以多项式的运算法则和计算方法。

7. 布置课后作业,巩固所学知识。

六、教学评价1. 通过课堂讲解、练习和讨论,评价学生对多项式乘以多项式的理解和掌握程度。

2. 评估学生在解决实际问题时,运用多项式乘以多项式的能力。

3. 观察学生在课堂上的参与程度、提问回答和小组合作情况,评价其数学思维能力和团队协作能力。

七、教学资源1. 多媒体课件:用于展示多项式乘以多项式的计算过程和实际应用案例。

2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。

3. 小组讨论工具:如白板、彩笔等,用于小组内讨论和展示。

八、教学进度安排1. 第1周:导入多项式乘以多项式的概念,讲解运算法则。

2. 第2周:讲解多项式乘以多项式的计算方法,进行课堂练习。

3. 第3周:探讨多项式乘以多项式在实际问题中的应用,进行小组讨论。

多项式乘以多项式法则

多项式乘以多项式法则

多项式乘以多项式法则
多项式乘以多项式法则是数学中的一个基本法则,用于计算两个多项式相乘的结果。

这个法则基于代数的基本性质和多项式的定义,可以推广到任意两个多项式的乘法运算中。

多项式乘以多项式法则的基本步骤是:将第一个多项式的每一项分别与第二个多项式的每一项相乘,然后将得到的所有乘积相加。

这样,我们就得到了两个多项式相乘的结果。

例如,考虑两个多项式 A(x) = 2x^2 + 3x + 1 和 B(x) = x^3 - x^2 + 1。

根据多项式乘以多项式法则,我们可以这样计算它们的乘积:
A(x) × B(x) = (2x^2 + 3x + 1) × (x^3 - x^2 + 1)
= 2x^2 × x^3 + 2x^2 × (-x^2) + 2x^2 × 1 + 3x × x^3 + 3x × (-x^2) + 3x ×1 + 1 × x^3 + 1 × (-x^2) + 1 × 1
= 2x^5 - 2x^4 + 2x^2 + 3x^4 - 3x^3 + 3x + x^3 - x^2 + 1
= 2x^5 - 2x^4 + 3x^4 - x^3 - 3x^3 + x^2 - x^2 + 3x + 1
= 2x^5 + x^4 - 4x^3 + 3x + 1
这就是 A(x) 和 B(x) 的乘积。

多项式乘以多项式法则在数学中有广泛的应用,例如在解方程、求函数的值、计算多项式的根等方面都会用到这个法则。

掌握这个法则对于理解和学习更高级的数学概念和方法非常重要。

多项式乘以多项式的两个基本方法

多项式乘以多项式的两个基本方法

多项式乘以多项式的两个基本方法
◎杨大为
多项式的乘法不仅是本节的重点内容,也是前面所学知识的综合运用,多项式与多项式相乘时,如何做到不重、不漏,简便易行呢?下面给同学们介绍两种常用的方法.
一、普遍乘:箭头法
两个多项式相乘,可根据箭头指示并结合原式计算,即先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.
例1 计算:(a-2b)(-a-3b)
.
=-a2-3ab+2ab+6b2
=-a2-ab+6b2.
评注:利用箭头法计算,要防止出现漏项,检查有无漏项的方法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.多项式是单项式的和,每一项都包括前面的符号.在计算时,可根据有理数的乘法法则“两数相乘,同号得正,异号得负”直接来确定积中各项的符号.
二、整体乘:整体法
两个多项式相乘时,我们可以把其中的一个多项式看成一个“整体”,先按单项式与多项式相乘的法则来计算,然后再进一步求解.
例2 计算:(2m-3)(m2+3m).
(2m-3)(m2+3m)
=2m(m2+3m)-3(m2+3m)
=2m3+6m2-3m2-9m
=2m3+3m2-9m.
评注:依据转化思想,多项式的乘法可转化为单项式与多项式相乘,进而再转化为单项式与单项式相乘.。

《第2课时 多项式与多项式相乘》教案 (公开课)2022年湘教版数学

《第2课时 多项式与多项式相乘》教案 (公开课)2022年湘教版数学

第2课时多项式与多项式相乘1.理解多项式乘以多项式的运算法那么,能够按多项式乘法步骤进行简单的乘法运算;(重点)2.掌握多项式与多项式的乘法法那么的应用.(难点)一、情境导入某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积.学生积极思考,教师引导学生分析,学生发现:这块林区现在长为(m+n)米,宽为(a+b)米,因而面积为(m+n)(a+b)平方米.另外:如图,这块地由四小块组成,它们的面积分别为ma平方米,mb平方米、na平方米,nb平方米,故这块地的面积为(ma+mb+na+nb)平方米.由此可得(m+n)(a+b)=ma+mb+na+nb.今天我们就学习多项式乘以多项式.二、合作探究探究点一:多项式乘以多项式【类型一】直接利用多项式乘以多项式法那么进行计算计算:(1)(3x+2)(x+2);(2)(4y-1)(5-y).解析:利用多项式乘以多项式法那么计算,即可得到结果.解:(1)原式=3x2+6x+2x+4=3x2+8x+4;(2)原式=20y-4y2-5+y=-4y2+21y-5.方法总结:多项式乘以多项式,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.【类型二】混合运算计算:(3a+1)(2a-3)-(6a-5)(a-4).解析:根据整式混合运算的顺序和法那么分别进行计算,再把所得结果合并即可.解:(3a+1)(2a-3)-(6a-5)(a-4)=6a2-9a+2a-3-6a2+24a+5a-20=22a-23.方法总结:在计算时要注意混合运算的顺序和法那么以及运算结果的符号.探究点二:多项式乘以多项式的化简求值及应用【类型一】化简求值先化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中a=-1,b=1.解析:先将式子利用整式乘法展开,合并同类项化简,再代入计算.解:(a -2b )(a 2+2ab +4b 2)-a (a -5b )(a +3b )=a 3-8b 3-(a 2-5ab )(a +3b )=a 3-8b 3-a 3-3a 2b +5a 2b +15ab 2=-8b 3+2a 2b +15ab 2.当a =-1,b =1时,原式=-8+2-15=-21.方法总结:化简求值是整式运算中常见的题型,一定要注意先化简,再求值,不能先代值,再计算.【类型二】 多项式乘以多项式与方程的综合解方程:(x -3)(x -2)=(x +9)(x +1)+4.解析:方程两边利用多项式乘以多项式法那么计算,移项、合并同类项,将x 系数化为1,即可求出解.解:去括号,得x 2-5x +6=x 2+10x +9+4,移项、合并同类项,得-15x =7,解得x =-715. 方法总结:解答此题就是利用多项式的乘法,将原方程转化为已学过的方程解答.【类型三】 多项式乘以多项式的实际应用千年古镇杨家滩的某小区的内坝是一块长为(3a +b )米,宽为(2a +b )米的长方形地块,物业部门方案将内坝进行绿化(如图阴影局部),中间局部将修建一仿古小景点(如图中间的正方形),那么绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.解析:根据长方形的面积公式,可得内坝、景点的面积,根据面积的和差,可得答案. 解:由题意,得(3a +b )(2a +b )-(a +b )2=6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab ,当a =3,b =2时,5a 2+3ab =5×32+3×3×2=63,故绿化的面积是63m 2.方法总结:用代数式表示图形的长和宽,再利用面积(或体积)公式求面积(或体积)是解决问题的关键.【类型四】 多项式乘以单项式后,不含某一项,求字母系数的值ax 2+bx +1(a ≠0)与3x -2的积不含x 2项,也不含x 项,求系数a 、b 的值.解析:首先利用多项式乘法法那么计算出(ax 2+bx +1)(3x -2),再根据积不含x 2的项,也不含x 的项,可得含x 2的项和含x 的项的系数等于零,即可求出a 与b 的值.解:(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2,∵积不含x 2的项,也不含x的项,∴-2a +3b =0,-2b +3=0,解得b =32,a =94.∴系数a 、b 的值分别是94,32. 方法总结:解决此类问题首先要利用多项式乘法法那么计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计多项式与多项式相乘多项式与多项式相乘的法那么:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法那么,教学中一定要精讲精练,让学生从练习中再次体会法那么的内容,为以后的学习奠定根底4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

整式的乘除——整式的乘法(多项式乘以多项式)课件

整式的乘除——整式的乘法(多项式乘以多项式)课件
多项式与多项式相乘,先用一个多 项式的每一项乘另一个多项式的每一 项,再把所得的积相加。
用字母表示如下:
(m+b)(n+a)=mn + ma+ bn+ ba
【例1】计算: (1)(1−x)(0.6−x);
解: (1) (1−x)(0.6−x)
=0.6 - x -0.6 • x+ x• x = 0.6-1.6x+x2
课堂小结:
1、多项式与多项式相乘:先用一个多项式 的每一项乘另一个多项式的每一项,再把所 得的积相加。 2、运用多项式乘法法则,要有序地逐项相 乘,不要漏乘,并注意项的符号。 3、最后的计算结果一定要化简。
谢谢你的陪伴!
第一章 整式的乘法(北师大版七下) 1.4.3 多项式与多项式相乘
学习目标 1、会利用法则进行简单的多项式乘法运算。 2、理解多项式与多项式相乘运算的算理。
认识多项式与多项式相乘的式子:
(m+a) (n+b)
(1-x) (2-x)
(2x+3)(-x-1)
(2a-3b)(2b+3a)
多项式与多项式乘法法则:
两项相乘时,先定符号最后的结果要合并同类项.
(2)(2x + y)(x−y)。
解:原式=2x•x-2x•y+y•x-y•Y
=2x2-x•y-y2
随堂练习
(1)(2n +5)(n−3)
(2)(ax+b)(cxƻ5•n-5×3 解:原式=ax•cx+ax•d+b•cx+b•d
=2n2-6n+5n-15
=acx2+adx+bcx+bd
=2n2-n-15

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生理解多项式乘以多项式的概念和意义。

2. 引导学生掌握多项式乘以多项式的计算方法和步骤。

3. 培养学生运用多项式乘以多项式解决实际问题的能力。

二、教学内容1. 多项式乘以多项式的定义和性质。

2. 多项式乘以多项式的计算方法。

3. 多项式乘以多项式的应用。

三、教学重点与难点1. 重点:多项式乘以多项式的计算方法。

2. 难点:多项式乘以多项式的计算过程和应用。

四、教学方法1. 采用讲解法,引导学生理解多项式乘以多项式的概念和计算方法。

2. 采用示例法,演示多项式乘以多项式的计算过程。

3. 采用练习法,让学生通过练习巩固所学知识。

五、教学过程1. 导入:回顾多项式的基本概念,引导学生思考多项式乘以多项式的意义。

2. 讲解:讲解多项式乘以多项式的定义、性质和计算方法。

3. 示例:展示多个多项式乘以多项式的例子,让学生跟随步骤进行计算。

4. 练习:布置练习题,让学生独立完成,巩固所学知识。

5. 总结:对本节课的内容进行总结,强调多项式乘以多项式的计算方法和应用。

6. 作业:布置课后作业,让学生进一步巩固所学知识。

六、教学评价1. 评价目标:通过课堂表现、练习完成情况和课后作业,评价学生对多项式乘以多项式的理解程度和运用能力。

2. 评价方法:a) 课堂参与度:观察学生在课堂上的参与情况,包括提问、回答问题和互动等。

b) 练习正确性:检查学生练习题的完成情况,评估其计算的正确性和步骤的完整性。

c) 作业质量:评估学生课后作业的质量,包括答案的正确性、解题思路的清晰性和书写的规范性。

七、教学反思1. 反思内容:a) 教学方法的有效性:思考所采用的教学方法是否有助于学生的理解和掌握。

b) 学生反馈:根据学生的课堂表现和作业情况,反思教学内容是否适合学生的水平。

c) 教学进度:评估教学进度是否适宜,是否需要调整以满足学生的学习需求。

八、教学拓展1. 拓展内容:a) 多项式乘以多项式的推广:介绍多项式乘以多项式在其他数学领域的应用,如代数方程的求解等。

人教版八年级上册数学14.1.4多项式乘以多项式说课稿

人教版八年级上册数学14.1.4多项式乘以多项式说课稿
2.小组讨论:针对一些具有挑战性的题目,组织学生进行小组讨论,共同解决问题,提高合作能力。
3.实际应用:让学生利用所学知识解决实际问题,如计算复杂图形的面积、体积等,培养学以致用的能力。
(四)总结反馈
在总结反馈阶段,我将采取以下方式引导学生自我评价并提供有效的反馈和建议:
1.学生自评:让学生回顾本节课的学习过程,总结自己的优点和不足,培养自我反思的习惯。
本节课的主要知识点包括:
1.多项式乘以多项式的定义及运算法则。
2.两种多项式相乘时,各项系数的对应关系。
3.通过具体例题,掌握多项式乘以多项式的计算步骤。
(二)教学目标
知识与技能:
1.理练地将两个多项式相乘,正确写出结果。
3.能够运用多项式乘以多项式的知识解决实际问题。
4.利用多媒体教学资源,如动画、图表等,形象直观地展示多项式乘以多项式的运算过程,增强学生的理解和记忆。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括启发式教学、探究式学习和小组合作学习。启发式教学能够引导学生主动思考,通过问题驱动激发学生的探究欲望,这符合建构主义学习理论,即学生通过自主探究构建知识体系。探究式学习鼓励学生在实践中发现问题、解决问题,有助于培养学生的创新能力和解决问题的能力。小组合作学习则能促进学生之间的交流与合作,提高他们的团队意识和沟通能力,这基于社会建构主义理论,即知识是在社会互动中构建的。
人教版八年级上册数学14.1.4多项式乘以多项式说课稿
一、教材分析
(一)内容概述
本节课为人教版八年级上册数学第14章第1节第4部分,主要内容为多项式乘以多项式的运算法则。这部分内容在整章中起着承上启下的作用,既是前面单项式乘以多项式的拓展,也为后面学习多项式除法打下基础。通过本节课的学习,学生可以更加熟练地掌握多项式的运算规律,为解决实际问题提供有力工具。

多项式乘多项式的法则

多项式乘多项式的法则

1、多项式与多项式相乘的法则
(1)多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

(2)两个多项式相乘时。

要防止“漏项”。

(3)多项式是单项式的和,每一项都包括前面的符号,运算过程中要注意确定积中各项的符号。

2、单项式与单项式相乘的法则
(1)单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

(2)单项式与单项式相乘的运算步骤
①把它们的系数相乘,包括符号的计算;
②同底数幂相乘;
③只在一个单项式里含有的字母及其指数不变。

将这三部分的乘积作为计算的结果。

数学项式法则
多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。

由多项式乘多项式法则可以得到(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd
上面的运算过程,也可以表示为(a+b)(c+d)=ac+ad+bc+bd
多项式乘以多项式就是利用乘法分配律法则得出的。

设P(x)和Q(x)为关于x的多项式函数,其中P(x) = ∑a_nx^n
Q(x) = ∑b_nx^n
则有
P(x)Q(x) = ∑(a*b)_nx^n
其中 * 表示卷积运算。

14.1.4 多项式与多项式相乘

14.1.4 多项式与多项式相乘

第 14 单元课题名称14.1整式的乘法14.1.4 多项式乘多项式总课时数 5 第(5)课时教材及学情分析1.教材分析:多项式与多项式相乘是在前面同底数幂相乘,幂的乘方,积的乘方乘法法则的基础理论上的一个综合使用,学生已经具备了做单项式与单项式的乘法能力2.学情分析习惯表现:认真积极,自觉性强;能力表现:数学思维能力,语言表达能力有待于进一步加强.教学目标1.探究并掌握多项式与多项式的乘法运算法则.2.能够灵活运用多项式与多项式的乘法运算法则进行计算.教学重点探究并掌握多项式与多项式的乘法运算法则.教学难点能够灵活运用多项式与多项式的乘法运算法则进行计算教法学法教法:讲练结合法、讨论法、观察法、多媒体电化教学法学法:自主探索与合作交流相结合教学资源课前准备PPT、多媒体教学环节教学过程设计二次备课一、复习巩固1.口述单项式乘以单项式、单项式乘以多项式的乘法法则.2.计算2x(3x2+1),正确的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x3.计算:(1)-x(2x+3x2-2)=___________;(2)-2ab(a b-3ab2-1)=____________.二、新知探究探究点1:多项式乘以多项式问题1:某地区在退耕还林期间,有一块原长m米,宽为a米的长方形林区,长增加了n米,宽增加了b米,请你计算这块林区现在的面积?你能用不同的形式表示所拼图的面积吗?方法一:_________________________________;方法二:_________________________________;方法三:_________________________________.根据以上式子,你能得出哪些等式?想一想:如何计算多项式乘以多项式?1.计算(m+n)X=___________________;2.若X=a+b,则(m+n)X=(m+n)(a+b)=____________+____________=_____________________.议一议:根据以上计算,讨论多项式乘以多项式的乘法法则.要点归纳:多项式与多项式相乘,先用一个多项式的每一项分别________另一个多项式的每一项,再把所得的积________.典例精析例1:先化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中a=-1,b=1.方法总结:在进行多项式乘以多项式的计算时,需要注意的三个问题:(1)漏乘;(2)符号问题;(3)最后结果应化成最简形式.例2:已知ax2+bx+1(a≠0)与3x-2的积不含x2项,也不含x项,求系数a、b 的值.方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.练一练:计算(1)(x+2)(x+3)=__________;(2)(x-4)(x+1)=__________;(3)(y+4)(y-2)=__________;(4)(y-5)(y-3)=__________.由上面计算的结果找规律,观察填空:(x+p)(x+q)=___2+______x+_______.典例精析例3:已知等式(x+a)(x+b)= x2+mx+28,其中a、b、m均为正整数,你认为m可取哪些值?它与a、b的取值有关吗?请你写出所有满足题意的m的值.针对训练1.下列多项式相乘的结果为x 2+3x -18的是( )A .(x -2)(x +9)B .(x +2)(x -9)C .(x +3)(x -6)D .(x -3)(x +6)2.当x 取任意实数时,等式(x+2)(x-1)=x 2+mx+n 恒成立,则m+n 的值为( )A .1B .-2C .-1 D.23.李老师做了个长方形教具,其中一边长为2a+b ,另一边长为a-b ,则该长方形的面积为( )A .6a+bB .2a 2-ab-b 2C .3aD .10a-b4.计算:(1)(m +1)(2m -1); (2)(2a -3b)(3a +2b);(3)(y +1)2; (4)a(a -3)+(2-a)(2+a).5.先化简,再求值:(x -5)(x +2)-(x +1)(x -2),其中x =-4.三、课堂小结1.多项式乘以多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项分别________另一个多项式的每一项,再把所得的积________.2.注意事项:(1)漏乘;(2)符号问题;(3)最后结果应化成最简形式.四、当堂检测1.计算(x-1)(x-2)的结果为( )A .x 2+3x-2B .x 2-3x-2C .x 2+3x+2D .x 2-3x+22.下列多项式相乘,结果为x 2-4x-12的是( )A .(x-4)(x+3) B.(x-6)(x+2)C .(x-4)(x-3) D.(x+6)(x-2)3.如果(x+a)(x+b)的结果中不含x 的一次项,那么a 、b 满足( )A .a=bB .a=0C .a=-bD .b=04.判别下列解法是否正确,若错,请说出理由. 21(23)(2)(1);x x x ----() 22(23)(2)(1);x x x ----()2246(1)(1)x x x x =-+--- )1(6342222--+--=x x x x22246(21)x x x x =-+--+ 167222+-+-=x x x2224621x x x x =-+-+- 277.x x =-+225;x x =-+5.计算:(1)(x −3y)(x+7y); (2)(2x + 5y)(3x −2y).。

1.4整式的乘法-多项式乘以多项式(教案)

1.4整式的乘法-多项式乘以多项式(教案)
(1)求解具体算式,如(x+y)(x+y)和(x+y)(x-y);
(2)将多项式乘以多项式应用于解决实际问题,如计算长方形面积等。
二、核心素养目标
1.培养学生的逻辑推理能力:通过多项式乘以多项式的运算,使学生理解并掌握整式乘法的基本原理,提高他们的逻辑推理能力和数学思维水平。
2.培养学生的数学运算能力:使学生能够熟练运用多项式乘以多项式的运算法则,解决实际问题,增强数学运算的准确性和速度。
学生小组讨论环节,我尝试作为一个引导者,鼓励学生们提出自己的观点和想法。这一环节让我发现,学生们其实有着很强的创新意识和解决问题的能力。但在讨论过程中,我也注意到,有些同学在表达自己的观点时不够自信,这可能与他们在课堂上的参与度有关。因此,我需要不断改进教学方法,提高学生在课堂上的积极性。
1.加强对学生的个别辅导,关注他们在学习中的薄弱环节,提高他们的运算能力。
(3)实际问题的转换:学生需要学会如何将实际问题抽象为数学表达式,以便应用多项式乘以多项式的运算法则。
举例:在求解长方形面积时,若长方形的长为(x+y)米,宽为(x-y)米,学生需要将长方形面积表示为(x+y)(x-y),然后进行计算。
(4)混合运算的顺序:在遇到包含多项式乘法和其他运算(如加法、减法)的复合题目时,学生需要明确运算顺序,先进行乘法运算,再进行其他运算。
3.培养学生的空间想象力和实际问题解决能力:通过将多项式乘法应用于解决几何问题,如长方形面积计算等,激发学生的空间想象力,提高他们解决实际问题的能力。
4.培养学生的团队协作能力:在小组讨论和互动中,培养学生互相交流、合作解决问题的能力,增强团队协作意识。
三、教学难点与重点
1.教学重点
(1)多项式乘以多项式的运算法则:熟练掌握将一个多项式与另一个多项式中的每一项分别相乘,然后将结果相加的方法。

《多项式乘多项式》课件

《多项式乘多项式》课件
A.ab-bc+ac-c2 B.ab-bc-ac+c2 C.ab-ac-bc D.ab-ac-bc-c2
8.方程(x-1)(2x+1)=(2x-1)(x+2)的解为__x_=_14___. 9.商店经营一种产品,定价为12元/件,每天能售出8件,而每降价x 元,则每天多售出(x+2)件,则降价x元后每天的销售总收入是 __(-__x_2_+__2_x_+__1_2_0_)_元.
18.甲、乙二人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄 错了第一个多项式中 a 的符号,得到的结果为 6x2+11x-10;由于乙漏 抄了第二个多项式中 x 的系数,得到的结果为 2x2-9x+10.
(1)你能知道式子中 a,b 的值各是多少吗? (2)请你计算出正确结果. 解:(1)由题意,得(2x-a)(3x+b)=6x2-(3a-2b)x-ab=6x2+11x - 10 , (2x + a)(x + b) = 2x2 + (a + 2b)x + ab = 2x2 - 9x + 10 , 则 有 -a+(23ba=--2b9),=11,解得ab==--52, (2)(2x-5)(3x-2)=6x2-19x+10
3.若(x+2)(x-1)=x2+mx+n,则m+n=( C ) A.1 B.-2 C.-1 D.2 4.下列计算结果是x2-5x-6的是( B ) A.(x+6)(x-1) B.(x-6)(x+1) C.(x-2)(x+3) D.(x-3)(x+2)
5.(习题5变式)计算: (1)(x+1)(2x-1); 解:原式=2x2+x-1
10.若M=(x-3)(x-5),N=(x-2)(x-6),则M与N的关系为( B ) A.M=N B.M>N C.M<N D.M与N的大小由x的取值而定 11.若(x2-mx-1)(x-2)的积中,x的二次项系数为0,则m的值是

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生理解多项式乘以多项式的概念和意义。

2. 引导学生掌握多项式乘以多项式的计算方法和步骤。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容1. 多项式乘以多项式的概念和意义。

2. 多项式乘以多项式的计算方法和步骤。

3. 多项式乘以多项式的应用举例。

三、教学重点与难点1. 教学重点:多项式乘以多项式的计算方法和步骤。

2. 教学难点:理解多项式乘以多项式的概念和意义。

四、教学方法1. 采用直观演示法,通过示例让学生直观地理解多项式乘以多项式的概念和意义。

2. 采用讲授法,讲解多项式乘以多项式的计算方法和步骤。

3. 采用练习法,让学生通过练习巩固所学知识。

五、教学过程1. 导入:通过复习单项式乘以多项式的知识,引出多项式乘以多项式的概念。

2. 新课讲解:讲解多项式乘以多项式的计算方法和步骤,示例演示。

3. 课堂练习:布置一些简单的多项式乘以多项式的题目,让学生独立完成。

4. 解答疑问:针对学生在练习中遇到的问题,进行讲解和解答。

5. 课堂小结:总结本节课所学内容,强调多项式乘以多项式的概念和意义。

6. 作业布置:布置一些多项式乘以多项式的题目,让学生课后巩固。

六、教学反思1. 教师对自己在本节课的教学过程进行反思,分析教学方法的适用性、学生的学习效果等。

2. 思考如何改进教学方法,以提高学生的学习兴趣和参与度。

3. 对学生学习情况进行分析,找出学生的优点和不足,为下一步教学提供参考。

七、课后作业1. 布置一些多项式乘以多项式的题目,让学生课后巩固所学知识。

2. 鼓励学生进行自主学习,尝试解决遇到的困难。

3. 提醒学生在完成作业时注意计算准确性和书写规范。

八、拓展与延伸1. 引导学生思考多项式乘以多项式在实际生活中的应用。

2. 介绍一些与多项式乘以多项式相关的数学知识,如多项式除法、因式分解等。

3. 鼓励学生进行探索学习,提高学生的数学素养。

九、评价与反馈1. 对学生在课堂表现、作业完成情况进行评价,及时给予反馈。

多项式与多项式相乘的运算法则

多项式与多项式相乘的运算法则

多项式与多项式相乘的运算法则多项式在数学中是指由一个或多个数字和一个或多个变量的乘积组成的数学表达式。

与单项式不同,多项式具有更多的变量和有限的项。

而多项式的相乘是指将两个或多个多项式乘以一起,形成一个新的多项式。

下面介绍多项式与多项式相乘的运算法则。

一、多项式与多项式相乘的基本运算规则1、相同项相乘多项式乘法的基本规则是,如果两个多项式有相同的系数和指数,那么这两个多项式的乘积就是,相乘后系数和指数相加的新多项式。

例如:2x^2*2x^2 = (2x^2)^2 = 4x^42、假设项相乘假设项相乘是指当多项式A和B有不同的系数和指数时,可将它们分别拆分成几个指数为1的项,并把它们相乘后再求和,使结果成为多项式。

例如:3x^3*4x^2 = (3*1)(1*4)(x^3)(x^2) = 12x^5二、多项式与多项式相乘的运算步骤1、将多项式拆分成几个指数为1的项将多项式A和B,分别拆分成多个指数为1的项,即系数和变量分别相乘,将其中的系数和指数分别称为a和m,即A = a1xm1 + a2xm2 + a3xm3 +… + anxmn,B = b1xn1 + b2xn2 + b3xn3 +… + bnxnn。

2、将拆分后的多项式相乘将多项式A和B拆分后,相乘后结果为:A*B = (a1*b1)(xm1*xn1) + (a1*b2)(xm1*xn2) + (a2*b1)(xm2*xn1) + (a2*b2)(xm2*xn2) +…+ (an*bn)(xmn*xnn)。

3、计算乘积将相乘后的多项式的系数和指数方面的积相加,即两个多项式的乘积为:A*B = (a1*b1 + a1*b2 + a2*b1 + a2*b2 +… + an*bn)x(m1*n1 + m1*n2 + m2*n1 + m2*n2 +… + mn*nn)。

三、多项式与多项式相乘的注意事项1、多项式乘法时,系数相乘,指数相加多项式乘法时,要注意系数相乘,指数相加,如果有多个统一指数,可先把系数求和,再乘以指数,即:(a1+a2+a3+…+an)xm。

多项式乘多项式(解析版)

多项式乘多项式(解析版)

9.3多项式乘多项式题型一:多项式乘以多项式计算【例题1】(2021·广西)计算:()()36x x -+. 【答案】x 2+3x -18【分析】根据多项式乘以多项式的计算方法进行计算即可. 【详解】解:(x -3)(x +6)=x 2+6x -3x -18 =x 2+3x -18.【点睛】本题考查多项式乘以多项式的计算方法,掌握多项式乘以多项式的计算法则,是解决问题的关键. 变式训练【变式1-1】(2021·陕西)计算:()()()241221x x x x +---. 【答案】92x -【分析】先根据多项式与多项式乘法及单项式与多项式的乘法法则计算,再去括号合并同类项即可. 【详解】解:()()()241221x x x x +--- =4x 2-x +8x -2-(4x 2-2x ) =4x 2-x +8x -2-4x 2+2x =92x -.【点睛】本题考查了整式的混合运算,熟练掌握运算顺序是解答本题的关键.混合运算的顺序是先算乘方,知识点管理 归类探究再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 【变式1-2】(2021·江西南昌·八年级期末)计算:(1)()()211x x x -++;(2)()()()321x x x x +---. 【答案】(1)31x -;(2)26x -【分析】根据多项式乘以多项式,单项式乘以多项式的法则计算即可. 【详解】(1)解:原式3221x x x x x =++---31x =-.(2)解:原式22236x x x x x =-+--+26x =-.【点睛】本题考查了整式的乘法,熟练掌握单项式乘以多项式,多项式乘以多项式法则是解题的关键. 【变式1-3】(2021·湖南七年级期中)计算: (1)222(35)a a b - (2)(53)(32)x y x y +-.【答案】(1)42610a a b -;(2)22156x xy y --【分析】(1)根据单项式乘多项式的计算方法及同底数幂的乘法运算直接计算; (2)根据多项式乘多项式的计算方法及同底数幂的乘法运算,合并同类项直接计算. 【详解】解:(1)22422(35)610a a b a a b -=-, (2)22(53)(32)151096x y x y x xy xy y +-=-+- 22156x xy y =--.【点睛】本题考查了单项式乘多项式、多项式乘多项式,解题的关键是掌握基本的运算法则. 题型二:(x+a)(x+b)型多项式相乘【例题2】(2021·福建省宁化县教师进修学校七年级月考)(Ⅰ)计算,将结果直接填在横线上: (1)(2)x x ++=______.(1)(2)x x --=______. (1)(2)x x -+=______.(1)(2)x x +-=______.(Ⅰ)认真观察(Ⅰ)中的算式与计算结果的特征,总结其中运算规律,用公式来表示这种运算规律(用a ,b 表示常数,).【答案】(1)x 2+3x +2,x 2−3x +2,x 2+x −2,x 2−x −2;(2)(x +a )(x +b )=x 2+(a +b )x +ab 【分析】(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(2)根据(1)计算的结果,式子的一般形式是(x +a )(x +b )=x 2+(a +b )x +ab . 【详解】解:(1)(x +1)(x +2)=x 2+3x +2, (x −1)(x −2)=x 2−3x +2, (x −1)(x +2)=x 2+x −2, (x +1)(x −2)=x 2−x −2.故答案是:x 2+3x +2,x 2−3x +2,x 2+x −2,x 2−x −2;(2)可以发现题(1)中,左右两边式子符合(x +a )(x +b )=x 2+(a +b )x +ab 结构. 【点睛】本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键. 变式训练【变式2-1】(2019·全国七年级单元测试)若(x +a )(x +2)=x 2-5x +b ,求a +b 的值. 【答案】-21.【分析】先根据多项式乘多项式法则把多项式的左边展开,合并同类项后再根据多项式两边相同字母的系数相等,列出方程,求出a ,b 的值即可.【详解】解:()()222225x a x x ax x a x x b ++=+++=-+,则252a a b +=-=,, 解得714.a b =-=-, 则21.a b +=-【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键. 【变式2-2】(2021·福建)阅读理解: (1)计算()()21232x x x x ++=++,()()12x x --=____________________, ()()12x x -+=_______________,()()12x x +-=___________________,()()()2x a x b x x ++=++_____________;( 2)应用已知a 、b 、m 均为整数,且()()212x a x b x mx ++=++,则m 的可能取值有_____________个.【答案】(1)232x x -+,22x x +-,22x x --;a b +,ab ;(2)6【分析】(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(2)根据(1)计算的结果,式子的一般形式是2()()()x p x q x p q x pq ++=+++,121122634(1)(12)(2)(6)(3)(4)=⨯=⨯=⨯=-⨯-=-⨯-=-⨯-,故m 的取值6个.【详解】解:(1)2(1)(2)32x x x x ++=++, 2(1)(2)32x x x x --=-+,2(1)(2)2x x x x -+=+-,2(1)(2)2x x x x +-=--;()()()2x a x b x a b x ab ++=+++(2)可以发现题(1)中,左右两边式子符合2()()()x p x q x p q x pq ++=+++结构,因为12可以分解以下6组数,112a b ⨯=⨯,26⨯,34⨯,(1)(12)-⨯-,(2)(6)-⨯-(3)(4)-⨯-,所以m a b =+应有6个值.【点睛】本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键.【变式2-3】(2020·厦门外国语学校海沧附属学校八年级期中)已知(x+a)(x+b)=x 2+mx+n (1)若a=1,b=2,则m=______,n=_______ (2)若a=6,b=-3,求2m+2n 的值 【答案】(1)m=3,n=2;(2)-28【分析】把已知式子展开,得出m ,n 和a ,b 的关系式,带入求解即可;【详解】Ⅰ()()()22x a x b x a b x ab x mx n ++=+++=++,Ⅰa b m +=,ab n =, (1)Ⅰa =1,b =2,Ⅰ123m =+=,122n =⨯=, 故答案是:3,2. (2)Ⅰa =6,b =-3,Ⅰ()633m =+-=,()6318n =⨯-=-,Ⅰ()322221883628m n +=+⨯-=-=-.【点睛】本题主要考查了代数式求值,准确利用整式乘法展开计算是解题的关键. 题型三:多项式乘以多项式化简求值【例题3】(2021·江苏鼓楼·七年级期中)先化简,再求值:(1)(2)3(3)2(2)(1)x x x x x x ---+++-,其中12x =. 【答案】102x --; 7-【分析】多项式乘以多项式,单项式乘以多项式展开,合并同类项对整式进行化简,然后再代值求解即可. 【详解】解:(1)(2)3(3)2(2)(1)x x x x x x ---+++-()2223239222x x x x x x x =-+--++--,222122224x x x x =--+++-, 102x =--,当12x =时,原式110272=-⨯-=-. 【点睛】本题主要考查整式的乘法运算,多项式乘以多项式,单项式乘以多项式展开,合并同类项代入求值,熟练掌握整式的乘法运算法则是解题的关键. 变式训练【变式3-1】(2021·江苏省江阴市第一中学七年级阶段练习)先化简,再求值:(3)(4)2(1)(5)y y y y +---+,其中2y =-【答案】292y y ---;12.【分析】利用多项式乘以多项式法则计算,去括号合并得到最简结果,把y 的值代入计算即可求出值. 【详解】解:(3)(4)2(1)(5)y y y y +---+22(12)2(45)y y y y =---+- 22122810y y y y =----+ 292y y =---,当2y =-时,原式()()22922=---⨯--12=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则,准确计算是解本题的关键.【变式3-2】(2021·浙江七年级期中)先化简,再求值:()222242(()3)m m m m m -++--,其中2m =-【答案】368m m -+-,12-【分析】先分别根据多项式乘多项式、单项式乘单项式计算,再合并同类项,最后代入2m =-即可求解. 【详解】解:原式322382++44622m m m m m m m ---+-=33826m m m -=-+368m m =-+-,当2m =-时,原式()()32628=--+⨯--8128=--12=-【点睛】本题考查整式的化简求值,解题的关键是熟练掌握多项式乘多项式、单项式乘单项式计算法则. 【变式3-3】(2020·江苏省盐城中学新洋分校七年级期中)先化简,再求值:(x+2)(x -1)-2x (x+3),其中x=-1.【答案】252x x ---,2.【分析】原式利用多项式乘以多项式、单项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式=222226x x x x x -+---, =252x x ---, 当x=-1时, 原式=-1+5-2=2.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 题型四:已知多项式乘积不含某项求字母的值【例题4】(2017·江苏·兴化市海河学校七年级阶段练习)若(x 2+ax +8)(x 2﹣3x +b )的乘积中不含x 2和x 3项,求a ,b 的值. 【答案】a =3,b =1【分析】直接利用多项式乘以多项式运算法则,进而利用合并同类项法则得出x 2和x 3项的系数为零进而得出答案.【详解】解:(x 2+ax +8)(x 2-3x +b ) =x 4-3x 3+bx 2+ax 3-3ax 2+abx +8x 2-24x +8b=x 4+(-3+a )x 3+(b -3a +8)x 2+(ab -24)x +8b , Ⅰ(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项, Ⅰ-3+a =0,b -3a +8=0, 解得:a =3,b =1.【点睛】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键. 变式训练【变式4-1】(2021·江苏·常熟市第一中学七年级阶段练习)若关于x 的多项式()2(3)x x m mx +-⋅-的展开式中不含2x 项,求4(1)(2)(25)(3)m m m m +--+-的值. 【答案】16【分析】将多项式展开,合并同类项,根据不含2x 项得到m 值,再代入计算.【详解】解:原式()2(3)x x m mx =+-⋅-3222333mx x mx x m x m =-+--+()322(3)33mx m x m x m =+--++由题意得30m -=, Ⅰ3m =,Ⅰ原式4(31)(32)(235)(33)16=⨯+⨯--⨯+⨯-=.【点睛】本题考查了整式的混合运算和求值,多项式的应用,解此题的关键是能根据整式的运算法则进行化简,难度不是很大.【变式4-2】(2021·江苏·昆山市第二中学七年级阶段练习)若()2(2)x x ax b -++的积中不含x 的二次项和一次项,求2(32)2a b ab -+的值. 【答案】20【分析】原式利用多项式乘多项式法则计算,由积中不含x 的二次项和一次项,求出a 与b 的值,再把a 、b 的值代入计算可得.【详解】解:(x -2)(x 2+ax +b )=x 3+ax 2+bx -2x 2-2ax -2b =x 3+(a -2)x 2+(b -2a )x -2b , Ⅰ(x -2)(x 2+ax +b )的积中不含x 的二次项和一次项, Ⅰa -2=0且b -2a =0, 解得:a =2、b =4,将a =2、b =4代入2(32)2a b ab -+=2(3224)224⨯-⨯+⨯⨯ =4+16 =20.【点睛】本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则. 【变式4-3】(2021·江苏省江阴市第一中学七年级阶段练习)若()2133x p x x q ⎛⎫+-+ ⎪⎝⎭的积中不含x 项与2x 项(1)求p 、q 的值; (2)求代数式20192020p q 的值 【答案】(1)13p =,3q =;(2)3 【分析】(1)先用多项式乘以多项式的运算法则展开求它们的积,并且把p 、q 看作常数合并关于x 的同类项,令x 2及x 的系数为0,分别求出p 、q 的值. (2)把p 、q 的值代入求解即可. 【详解】解:(1)21(3)()3x p x x q +-+=2321333x x qx px px pq -++-+=23131)(3+3()x p x q p x pq -+-+又Ⅰ式子展开式中不含x 2项和x 项, Ⅰ310p -=,13=03q p -解得,13p =,3q = (2)当13p =,3q =时,20192019201920201=()(3)31333p p q q q =⨯⨯=⨯= 【点睛】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.题型五:多项式乘以多项式面积问题【例题5】(2020·江苏·泰兴市实验初级中学七年级期中)如图是火箭模型截面图,上面是三角形,中间是长方形,下面是梯形.(1)用含有a 、b 的代数式表示该截面的面积S ;(需化简) (2)当a =8cm ,b =5cm 时,求这个截面图的面积.【答案】(1)S=2a 2+2ab ;(2)208【分析】(1)先算出上面三角形的面积,中间长方形的面积,下面梯形的面积,即可表示出横截面的面积; (2)把a ,b 代入(1)式中求解即可;【详解】(1)上面三角形的面积为12ab ,中间长方形的面积为22a ,下面梯形的面积为()13222a b b ab +=,则该截面的面积为221322222S ab a ab a ab =++=+; (2)当a =8cm ,b =5cm 时,22226428512880208S a ab =+=⨯+⨯⨯=+=.【点睛】本题主要考查了代数式求值,准确计算是解题的关键. 变式训练【变式5-1】(2021·江苏淮安·七年级期末)如图,某市有一块长(3)a b +米,宽为(2)a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间空白处将修建一座雕像.(1)求绿化的面积是多少平方米. (2)当2,1a b ==时求绿化面积. 【答案】(1)5a 2+3ab ;(2)26平方米【分析】(1)绿化面积=长方形的面积-正方形的面积; (2)把a =2,b =1代入(1)求出绿化面积.【详解】解:(1)S 绿化面积=(3a +b )(2a +b )-(a +b )2 =6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab ;答:绿化的面积是(5a 2+3ab )平方米; (2)当a =2,b =1时,绿化面积=5×22+3×2×1 =20+6 =26.答:当a =2,b =1时,绿化面积为26平方米.【点睛】本题考查了多项式乘多项式及代数式求值,看懂题图掌握多项式乘多项式法则是解决本题的关键. 【变式5-2】(2021·江苏滨湖·七年级期中)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解决下列问题.(1)在图4中,黑色瓷砖有 块,白色瓷砖有 块;(2)已知正方形白色瓷砖边长为1米,长方形黑色瓷砖长为1米,宽为0.5米.现准备按照此图案进行装修,瓷砖无需切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.请回答下列问题: Ⅰ铺设图2需要的总费用为 元;Ⅰ铺设图n 需要的总费用为多少元?(用含n 的代数式表示) 【答案】(1)20;20;(2)Ⅰ1380; Ⅰ2115345230n n ++.【分析】(1)通过观察发现规律得出,第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +,将4n =代入即可求解;(2)Ⅰ求得图2的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可;Ⅰ求得图n 的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可; 【详解】解:(1)通过观察图形可知,1n =时,黑色瓷砖的块数为8,白色瓷砖的块数为22n =时,黑色瓷砖的块数为12,白色瓷砖的块数为6 3n =时,黑色瓷砖的块数为16,白色瓷砖的块数为12则第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +当4n =时,黑色瓷砖的块数为20,白瓷砖的块数为20故答案为20,20(2)Ⅰ图2,黑色瓷砖的块数为12,白色瓷砖的块数为6,所占用的面积为1210.561112⨯⨯+⨯⨯=(平方米)所需的费用为1250610012151380⨯+⨯+⨯=(元)故答案为1380Ⅰ第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +占用的面积为4(1)10.5(1)112(1)(1)(1)(2)n n n n n n n n +⨯⨯++⨯⨯=+++=++所需的费用为24(1)50(1)10015(1)(2)115345230n n n n n n n +⨯++⨯+⨯++=++故答案为2115345230n n ++【点睛】此题考查了图形类规律的探索问题,涉及了列代数式,整式的乘法等运算,解题的关键是根据前面图形,找到规律.【变式5-3】(2021·江苏徐州·七年级期中)(1)探究:我们小学时学过乘法分配律a (b +c )=ab +ac . 下面我们用等积法证明乘法分配律:如图,方法一:长方形ABCD 的一边长为a ,另一边长为(b +c ),所以长方形ABCD 的面积为a (b +c );方法二,长方形ABFE 的面积为ab ,长方形CDEF 的面积为ac ,所以长方形ABCD 的面积为(ab +ac ),所以a (b +c )=ab +ac .我们把这种用两种不同的方式表示同一图形面积的方法称为等积法.(2)应用请你用等积法,画出图形,并仿照上面的说理方法证明:(a +b )(c +d )=ac +ad +bc +bd ;(3)拓展请直接写出(a +b )(c +d +e )= .【答案】(2)证明见解析;(3)ac ad ae bc bd be +++++【分析】(2)画出图形,并仿照(1)的说理方法证明即可;(3)根据(1)的方法画出图形,进行计算即可.【详解】(2)如图,方法一:长方形ABCD 的一边长为()a b +,另一边长为()c d +,所以长方形ABCD 的面积为()()a b c d ++; 方法二,长方形AGOE 的面积为ac ,长方形EODH 的面积为ad ,长方形GOFB 的面积为bc ,长方形OFCH 的面积为bd ,所以长方形ABCD 的面积为(ac ad bc bd +++),所以()()a b c d ac ad bc bd ++=+++.(3)如图,同理可得:方法一可得长方形ABCD 的面积为()()a b c d e +++,方法二可得长方形ABCD 的面积为ac ad ae bc bd be +++++∴()()a b c d e ac ad ae bc bd be +++=+++++故答案为:ac ad ae bc bd be +++++【点睛】本题考查了多项式乘法与图形面积的关系,数形结合是解题的关键.题型六:多项式乘以多项式规律问题【例题6】(2021·常熟市第一中学七年级月考)观察下列各式:223324(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x -+=--++=--+++=-(1)根据以上的规律得:123(1)(1)_______m m m x x x x x ----+++++=(m 为正整数)(2) 请你利用上面的结论,完成下面两题的计算:Ⅰ23468691222222+++++++Ⅰ(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1【答案】(1)x m -1;(2)Ⅰ7021-;Ⅰ51213+ 【分析】(1)归纳出一般规律可得;(2)Ⅰ原式乘(2-1),用规律即可得出结论;Ⅰ将原式变形为()()()()()5049481121222213++⎦⎡⎤-⨯---+--⋯+-+⎣,再依照所得规律计算即可. 【详解】解:(1)(x -1)(x m -1+x m -2+…+x +1)═x m -1(m 为正整数);(2)Ⅰ23468691222222+++++++ =()()2346869212222221+++++++- =7021-;Ⅰ()()()()50494822221---⋯++-+++ =()()()()()5049481121222213++⎦⎡⎤-⨯---+--⋯+-+⎣ =()511123⎡⎤--⨯-⎣⎦ =51213+ 【点睛】本题考查找规律解题,仔细观察,找出规律是求解本题的关键.变式训练【变式6-1】(2021·利辛县第四中学七年级期中)(1)计算:(1)(1)______a a -+=;2(1)(1)____a a a -++=;......猜想:9998972(1)(......1)_____a a a a a a -++++++=;(2)请你利用上式的结论,求199198212+2++2+2+1的值;(3)请直接写出202020192018213+3+3+3+3+1+的值.【答案】(1)231;1;a a --1001a -;(2)20021-;(3)20211(31)2⋅-. 【分析】(1)根据多项式乘多项式可进行求解;(2)由2-1=1及(1)中结论可直接进行求解;(3)根据(1)中结论可进行求解.【详解】解:(1)由题意得:2(1)(1)1a a a -+=-,23223(1)(1)11a a a a a a a a a -++=++---=-,……猜想:9998972100(1)(......1)1a a a a a a a -++++++=-;故答案为231,1,a a --1001a -;(2)由(1)可得:原式=()()19919819720021222......2121-+++++=- (3)由(1)的结论可得:原式=()()2020201928201210211)3+3+3131(31221+3+3+-+=⨯⨯⋅-. 【点睛】本题主要考查多项式乘多项式的应用,熟练掌握多项式乘多项式是解题的关键.【变式6-2】(2021·辽宁)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a +b )n (n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a +b )2=a 2+2ab +b 2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a +b )3=a 3+3a 2b +3ab 2+b 3展开式中各项的系数等等.(1)根据上面的规律,(a +b )4展开式的各项系数中最大的数为 ;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x ﹣1)2020=a 1x 2020+a 2x 2019+a 3x 2018+……+a 2019x 2+a 2020x +a 2021,求出a 1+a 2+a 3+……+a 2019+a 2020的值.【答案】(1)6;(2)﹣1;(3)﹣1【分析】(1)由“杨辉三角”构造方法判断即可确定出(a+b )4的展开式中各项系数最大的数;(2)将原式写成“杨辉三角”的展开式形式,即可的结果;(3)当x =0时,a 2021=1,当x =1时,得到a 1+a 2+a 3+……+a 2019+a 2020+a 2021=0,即可得到结论.【详解】解:(1)第五行即为1、 4、 6、 4 、1对应(a +b )4展开式中各项的系数,Ⅰ(a +b )4展开式的各项系数中最大的数为6,故答案为6;(2)Ⅰ(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,......根据展式中的2最大指数是5,首项a =2,末项b =-3,Ⅰ25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5=[2+(﹣3)]5=(2﹣3)5=﹣1;(3)Ⅰ(x ﹣1)2020=a 1x 2020+a 2x 2019+a 3x 2018+……+a 2019x 2+a 2020x +a 2021,Ⅰ当x =1时,(1﹣1)2020=a 1×12020+a 2×12019+a 3×12018+……+a 201912+a 2020×1+a 2021,即a 1+a 2+a 3+……+a 2019+a 2020+a 2021=0,当x =0时,(0﹣1)2020=a 1×02020+a 2×02019+a 3×02018+……+a 2019×02+a 2020×0+a 2021,即a 2021=1,Ⅰa 1+a 2+a 3+……+a 2019+a 2020= a 1+a 2+a 3+……+a 2019+a 2020+a 2021- a 2021=0﹣1=﹣1.【点睛】本题考查完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应a b n +()中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高. 【变式6-3】(2021·河南省淮滨县第一中学)好学的小东同学,在学习多项式乘以多项式时发现:14(25)(36)2x x x ⎛⎫++- ⎪⎝⎭的结果是一个多项式,并且最高次项为:312332x x x x ⋅⋅=,常数项为:45(6)120⨯⨯-=-,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:15(6)2(6)434532⨯⨯-+⨯-⨯+⨯⨯=-,即一次项为3x -. 请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算()()()23153x x x ++-所得多项式的一次项系数为______.(2)若计算()()2213(21)x x x x a x ++-+-所得多项式不含一次项,求a 的值;(3)若202120212020201901220202021(1)x a x a x a x a x a +=+++⋯++,则2020a =______.【答案】(1)-11;(2)3a =-;(3)2021.【分析】根据题意可得出结论多项式和多项式相乘所得结果的一次项系数是每个多项式的一次项系数分别乘以其他多项式的常数项后相加所得.(1)(2)(31)(53)x x x ++-中每个多项式的一次项系数分别是1、3、5,常数项分别是2、1、-3,再根据结论即可求出(2)(31)(53)x x x ++-所得多项式的一次项系数.(2)22(1)(3)(21)x x x x a x ++-+-中每个多项式的一次项系数分别是1、-3、2,常数项分别是1、a 、-1,再根据22(1)(3)(21)x x x x a x ++-+-所得多项式的一次项系数为0,结合结论即可列关于a 的一元一次方程,从而求出a .(3)2021(1)x +中每个多项式一次项系数为1,常数项系数也为1,2020a 为2021(1)x +所得多项式的一次项系数.所以根据结论2020a 为2121个11⨯相加,即可得出结果.【详解】(1)根据题意可知(2)(31)(53)x x x ++-的一次项系数为:()()11333252111⨯⨯-+⨯-⨯+⨯⨯=-.故答案为-11.(2)根据题意可知22(1)(3)(21)x x x x a x ++-+-的一次项系数为:()()()11311213a a a ⨯⨯-+-⨯⨯-+⨯⨯=+Ⅰ该多项式不含一次项,即一次项系数为0,Ⅰ30a +=解得3a =-.(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数.Ⅰ20202021(11111111)2021a =⨯+⨯+⨯++⨯=故答案为2021【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键.【真题1】(2019·江苏南京·中考真题)计算22()()x y x xy y +-+.【答案】33x y +【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn ,计算即可.【详解】解:()()22x y x xy y +-+322223x x y xy x y xy y =-++-+33x y =+.【点睛】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.【真题2】(2013·江苏南京·中考真题)计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫----++++------+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果是_______. 【答案】16【详解】设11112345x +++=, 则原式()111166x x x x ⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭= 22115666x x x x x +---+= 16= 【真题3】(2015·江苏连云港·中考真题)已知m +n =mn ,则(m -1)(n -1)=_______.【答案】1【详解】试题分析:根据乘法公式多项式乘以多项式,用第一个多项式的每一项乘以第二个多项式的每一项,可求(1)(1)m n --=mn -m -n+1=mn -(m+n )+1,直接代入m+n=mn 可求得(1)(1)m n --=1.考点:整体代入法【真题4】(2019·台湾·中考真题)计算()()2334xx +﹣的结果,与下列哪一个式子相同?( ) A .74x -+B .712x --C .2612x -D .2612x x --【答案】D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再链接中考把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得()()22233468912612x x x x x x x-+=+---=-.故选D.【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.【拓展1】(2021·江苏阜宁·七年级期中)如图,长方形的长为a,宽为b,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是___.【答案】2ab ac bc c--+【分析】先把阴影的为平行四边形的面积化为长方形的面积,然后经过平移得到空白部分的为长方形,长为a-c,宽为b-c,根据长方形面积公式列式计算即可求解即可求解.【详解】解:原图形可化为图1,将阴影部分平移得到图2,所以空白部分的面积为:()()2=a cbc ab ac bc c----+.故答案为:2ab ac bc c--+满分冲刺【点睛】本题考查了列代数式,平移,多项式乘以多项式等知识,根据题意,将平行四边形的面积转化为长方形的面积,进而进行平移,将空白部分面积转化为长方形的面积是解题关键.【拓展2】(2020·江苏徐州·七年级期中)阅读以下材料:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-; ()324(1)11x x x x x -+++=-(1)根据以上规律,()123(1)1n n n x x x x x ----+++++= ;(2)利用(1)的结论,求2345201820192000155555555+++++++++的值 【答案】(1)1nx -;(2)2021514- 【分析】(1)仔细观察上式就可以发现得数中x 的指数是式子中x 的最高指数减1,根据此规律就可求出本题.(2)不难看出所求式子是材料中等号左边式子的一个因式,将所求式子转化成()123(1)1n n n x x x x x ----+++++形式,即可利用(1)的结论进行求解.【详解】(1)()123(1)1n n n x xx x x ----+++++中最高次项为1n n x x x -•=, 所以()123(1)1n n n x x x x x ----+++++=n x -1;(2)2345201820192000155555555+++++++++ =14(5-1)(2345201820192000155555555+++++++++) =2021514- 【点睛】仔细观察式子,总结出运算规律,是解决此类题的关键.【拓展3】(2020·江苏·南通市八一中学八年级期中)阅读材料小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数.延续上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数,可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项223x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x ++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x +-+所得多项式的一次项系数为_____________.(3)若231x x -+是422x ax bx +++的一个因式,求a 、b 的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,根据三次项系数为0、二次项系数为a 、一次项系数为b 列出方程组求出a 、b 的值,可得答案.【详解】解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为19;(2)()()()13225x x x +-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1,故答案为1;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,则(x 2-3x+1)(x 2+mx+2)=x 4+ax 2+bx+2,13101211(3)321m m a m b ⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.。

多项式乘法,分离系数法,换元法

多项式乘法,分离系数法,换元法

多项式乘法,分离系数法,换元法多项式乘以多项式,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,有公式(a+b)(m+n)=am+an+bm+bn这个公式只要根据乘法分配律把括号打开就能得到,如果刚开始不太熟练,可以整体考虑把m+n当成一个整体,例如设m+n=x,则有(a+b)x=ax+bx,再把x=m+n代入得ax+bx=a(m+n)+b(m+n)=am+an+bm+bn还有另一个常见的公式:(x+a)(x+b)=x²+(a+b)x+ab这两个基本的公式有着非常广泛的应用,一定自己动手去掉括号,然后深深的印在脑子里。

下面看一下它的基本应用,以及一些重要的方法。

例1:计算(3x²+3x-5)(2x²-x+2)即使项目比较多,也是逐项相乘(注意不重复,不遗漏),先用3x²与2x²,-x,2相乘,然后用3x与2x²,-x,2相乘,最后用-5与2x²,-x,2相乘,再合并同类项上式=6x^4-3x³+6x²+6x³-3x²+6x-10x²+5x-10=6x^4+3x³-7x²+11x-10熟练之后,可以心算把x的各次项按降幂逐一写出。

我们还会发现结果的最高次项是两个因式的最高次项的乘积,常数项是两个因式的常数项的乘积,而中间项可能经过合并同类项。

如果题中只涉及到最高次项和常数项,那么可以快速解答。

例2:已知对任意x,均有(ax²+3x-5)(2x²-x+b)=6x^4+3x³+3x²+11x-10 求a+b 的值。

根据上面的规律,可知6x^4=ax²•2x²=2ax^4 所以2a=6,解得a=3同理-10=-5b,解得b=2,所以a+b=5分离系数法:先按x降幂排列,只写出系数,缺项处补充以0,在最后的结果中填入x的适当方幂(从4开始,因为积的最高次项的次数是4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多项式乘以多项式的两个基本方法
◎杨大为
多项式的乘法不仅是本节的重点内容,也是前面所学知识的综合运用,多项式与多项式相乘时,如何做到不重、不漏,简便易行呢?下面给同学们介绍两种常用的方法.
一、普遍乘:箭头法
两个多项式相乘,可根据箭头指示并结合原式计算,即先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.
例1 计算:(a-2b)(-a-3b).
=-a2-3ab+2ab+6b2
=-a2-ab+6b2.
评注:利用箭头法计算,要防止出现漏项,检查有无漏项的方法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.多项式是单项式的和,每一项都包括前面的符号.在计算时,可根据有理数的乘法法则“两数相乘,同号得正,异号得负”直接来确定积中各项的符号.
二、整体乘:整体法
两个多项式相乘时,我们可以把其中的一个多项式看成一个“整体”,先按单项式与多项式相乘的法则来计算,然后再进一步求解.
例2 计算:(2m-3)(m2+3m).
(2m-3)(m2+3m)
=2m(m2+3m)-3(m2+3m)
=2m3+6m2-3m2-9m
=2m3+3m2-9m.
评注:依据转化思想,多项式的乘法可转化为单项式与多项式相乘,进而再转化为单项式与单项式相乘.。

相关文档
最新文档