SIEMENS-伺服驱动系统故障维修讲解
伺服系统的故障排除和维护
![伺服系统的故障排除和维护](https://img.taocdn.com/s3/m/b18790c885868762caaedd3383c4bb4cf6ecb76e.png)
伺服系统的故障排除和维护伺服系统是一种广泛应用于工业生产中的控制系统,用于控制伺服电机的运动。
伺服系统在应用时需要对其进行维护和故障排除,以确保其正常工作。
本文将介绍伺服系统的故障排除和维护方法。
一、维护1. 定期清洁伺服系统的设备在使用过程中会不可避免的受到污染,比如油污、灰尘等等。
这些污染会影响到设备的正常运行。
因此,在平时使用过程中,需要定期对伺服系统设备进行清洁维护,包括清洗设备表面、检查连接线路、检查系统中所有机械零部件等等,以保证设备的正常工作。
2. 更换损耗件伺服系统设备中会有大量的零部件,这些零部件在长时间的使用中会出现磨损、老化的情况。
为了保证设备正常运行,这些零部件需要进行更换。
一般情况下,定期更换一些易损耗的零部件,比如轴承、齿轮等,也是伺服系统维护中不可忽视的一部分。
3. 定期校准伺服系统是一种高精度的控制系统,因此,在使用前需要进行校准。
同时,在使用中,也要定期对伺服系统进行重新校准。
对于一些精度要求比较高的设备,建议每年进行一次校准,以确保设备的精度和稳定性。
二、故障排除伺服系统设备出现故障时,需要及时进行排除,否则将会影响到设备的正常工作。
1. 故障预警伺服系统设备通常会设有故障指示灯,当设备出现故障时,这些指示灯会发出相应的信号。
在使用时,需要留意这些指示灯的信号,及时排除故障。
2. 检查连接有些故障是由于连接不当引起的,因此,在排除故障时,需要仔细检查设备的各项连接,在确认连接无误后再进行其他的排除故障操作。
3. 软件排除伺服系统设备使用软件进行控制,在排除故障时,需要检查伺服系统软件设置是否正确,是否存在软件故障等等。
4. 更换零部件在排除故障时,如果发现故障是由设备中的某个零部件引起的,需要及时更换这个零部件,以确保设备正常运行。
总之,对于伺服系统设备,维护和故障排除都是非常重要的。
只有在科学进行设备的维护和故障排除,才能保证设备的正常运行。
SIEMENS SIMODRIVE 611 伺服驱动系统故障诊断说明1
![SIEMENS SIMODRIVE 611 伺服驱动系统故障诊断说明1](https://img.taocdn.com/s3/m/4544014ef01dc281e53af0b8.png)
SIEMENS SIMODRIVE 611 伺服驱动系统故障诊断说明1★下列故障与警告的说明对于“SIMODRIVE 611 universal”的所有软件版本都有效。
001 驱动器没有操作系统原因:存储模块内没有驱动器操作系统排除:-通过SimoCom U加载器操作系统-插装带有驱动器操作系统的存储模块确认:接通电源反应:停止、STOPⅡ(SRM,SLM) STOPⅠ(ARM)002 计时溢出,:\%X原因:驱动处理器的时间计算不能再充分满足选用功能规定的循环时间。
补充信息:仅限于西门子系统内部错误的诊断。
排除:不使用如下大量费时的功能:-可变通讯功能(P1620)-追踪功能-以FFT方式启动或分析步进响应-速度前馈控制(P0203)-最小/最大存储(P1650.0)-DAC 输出(最多1个频道)增加循环时间:-电流控制器循环(P1000)-速度控制器循环(P1001)—位置控制器循环(P1009)-嵌入循环(P1010)确认:接通电源反应:停止、STOPⅡ(SRM,SLM) STOPⅠ(ARM)003 NMI预期监控,Suppl. info:\%X原因:控制模块上的监控计时器已经期满,其原因是控制模块在时间基准方面的硬件错误所导致。
补充信息:仅限于西门子系统内部错误的诊断。
排除:更换闭环控制模块。
确认:接通电源反应:停止、STOPⅡ(SRM,SLM) STOPⅠ(ARM)004 堆栈溢出。
:\%X原因:违反了内部处理器硬件堆栈的限制或数据存储在软件堆栈的限制,其原因很可能是控制模块的硬件错误所导致。
补充信息:仅限于西门子系统内部错误的诊断。
排除:—驱动模块断电后通电—更换控制模块。
确认:接通电源反应:停止、STOPⅡ(SRM,SLM) STOPⅠ(ARM)005 非法操作程序编码、非法扫描,SWI,NMI(DSP)。
:\%X原因:处理器在程序存储器中发现非法命令。
补充信息:仅限于西门子系统内部错误的诊断。
驱动器故障引起X跟随误差超差报警维修——西门子数控伺服驱动系统
![驱动器故障引起X跟随误差超差报警维修——西门子数控伺服驱动系统](https://img.taocdn.com/s3/m/6b64f1c627fff705cc1755270722192e4536580c.png)
驱动器故障引起X跟随误差超差报警维修——西门子数控伺服驱动系统
故障现象:一台配套SIEMENS 850系统、6RA26**系列直流伺服驱动系统的进口卧式加工中心,在开机后,手动移动X轴,机床X轴工作台不运动,CNC出现X跟随误差超差报警。
分析与处理过程:由于机床其他坐标轴工作正常,X轴驱动器无报警,全部状态指示灯指示无故障,为了确定故障部位,考虑到6RA26**系列直流伺服驱动器的速度/电流调节板A2相同,维修时将X轴驱动器的A2板与Y 轴驱动器的A2板进行了对调试验。
经试验发现,X轴可以正常工作,但Y轴出现跟随超差报警。
根据这一现象,可以得出X轴驱动器的速度/电流调节器板不良的结论。
根据SIEMENS 6RA26**系列直流伺服驱动器原理图,测量检查发现,当少量移动X轴时驱动器的速度给定输入端57与69端子间有模拟量输入,测量驱动器检测端B1,速度模拟量电压正确,但速度比例调节器N4(LM301)的6脚输出始终为0V。
对照原理图逐一检查速度调节器LM301的反馈电阻R25、R27、R21,偏移调节电阻R10、R12、R13、R15、R14、R12,以及LM301的输入保护二极管V1、V2,给定滤波环节R1、C1、R20、V14,速度反馈滤波环节的R27、R28、R8、R3、C5、R4等外围元器件,确认全部元器件均无故障。
因此,确认故障原因是由于LM301集成运放不良引起的;更换LM301后,机床恢复正常工作,故障排除。
伺服电机系统常见故障及维修
![伺服电机系统常见故障及维修](https://img.taocdn.com/s3/m/d3885b2fa55177232f60ddccda38376baf1fe0bb.png)
伺服电机系统常见故障及维修一、电机不转或转动无力的故障可能原因及维修方法1.1 电机供电异常电机供电异常可能是由于电源线路的接触不良或电源开关故障引起的。
首先,检查电源线路是否插好,是否存在破损或接触不良的情况,若有问题,重新连接或更换电源线路。
同时,检查电源开关是否正常工作,如有问题,及时维修或更换。
1.2 控制器故障控制器故障可能导致电机无法正常工作。
检查控制器的指示灯是否点亮,若无亮灯提示,说明可能存在控制器故障。
此时应先尝试重新启动控制器,如果问题仍然存在,需要检查控制器的电路板和连接线路是否损坏,如有损坏,可尝试修复或更换。
1.3 电机零部件损坏电机零部件损坏也会导致电机无法正常转动或转动无力。
常见的损坏部件包括电刷、轴承和绕组等。
若发现电刷磨损、轴承磨损或绕组烧毁等情况,需要及时更换损坏部件。
二、电机发热过高的故障可能原因及维修方法2.1 过载工作过载工作是导致电机发热过高的常见原因之一。
检查电机负载是否超过额定工作范围,如果超载,则需要减小负载或更换功率较大的电机。
2.2 电机通风不良电机通风不良会导致散热不畅,进而引发过热问题。
检查电机周围是否存在堵塞物或灰尘等,清除堵塞物并保持通风良好。
2.3 绕组短路或接触不良绕组短路或接触不良会导致电流过大,进而使电机发热过高。
检查电机绕组是否存在损坏或接触不良的情况,如有问题,需重新绝缘或修复绕组。
三、电机震动较大的故障可能原因及维修方法3.1 电机不平衡电机不平衡是导致震动的常见原因之一。
检查电机固定是否牢固,如发现松动,需重新固定电机。
3.2 机械部件损坏机械部件损坏也会导致电机震动较大。
检查电机的传动装置,如发现齿轮磨损、轴承松动等情况,应及时更换损坏部件。
3.3 电机负载不均衡电机负载不均衡也可能导致电机震动。
检查负载的均衡性,如需要,调整或重新安装负载,以平衡电机负载。
综上所述,伺服电机系统常见故障主要包括电机不转或转动无力、电机发热过高和电机震动较大等问题。
SIEMENS伺服系统维修实例
![SIEMENS伺服系统维修实例](https://img.taocdn.com/s3/m/137676e64afe04a1b071de40.png)
参数设定的允许误差范围 ,导致 D C转换的输 出值超过 了参数 A N ~ 28 设定的范围。在手动时出现此报警通常与伺服驱动 C MD 6 0
系统 的工 作状 态有关 。检 查 C C与 驱动 器的连 接 , N 测量后 确认 在 移 动 轴 时 , 动 器 的速度 给定 输入 有 电压 , 实 际 轴 电机 未 驱 但 转动 , 因此 , 故 障是 由于驱 动 器引 起 的 。经查 , 现 驱动 器 的 确认 发
2分析 处 理 .
地利的 B R 贝加莱) L & ( P C机 , 控制器各有特点。 两种
B C HO F ( 福 )控 制 系 统 是一 台 P EK F 倍 C机 ,采 用英 特 尔
8 5 V主板 , P 4G C U赛扬 20 Hz硬盘易拓 J0 0 8 G , .G , 8 8 0 B 存储器 26 D — A 光 电耦合 器光纤通信连接 , 5 MB D R R M, 下接 4 5个子 ~ 站, 子站包括光 电耦合器 、O点模块 、 I / 模拟量模块和电源模块 。 模块之间专 门设计 了公母槽相互咬合 固定在卡轨上 ,每个模块 上都有通信连接片。模块 的l作 电压 D 4 I 厂 C 2V, O点的输出是 /
从故障现象看 , 此故障属 主轴转速与进给不 匹配。 当主轴与 进给 同步配合加工时 ,要依靠 主轴上的脉 冲编码器检测反馈 信 息, 若脉冲编码器或连接电缆线有 问题 , 会引起上述故障。通过
调用 I / 态 数 据 ,观 察 编 码 器 信 号线 的通 断 状 态 ,发 现 不 正 0状
复 正 常工 作 。 工作 几 天 后 , 但 同样 的故 障 再 度 发生 , 明机 器 存 说
为1 7英寸触摸式 , n o sX Widw P系统 , 以用 It 可 n l和 M d进行 e o 远程 控 制 , 采用 U S开关 进 行 电源 保 护 。 并 P
SIEMSIMODRIVE 611 伺服驱动系统故障诊断说明(2)
![SIEMSIMODRIVE 611 伺服驱动系统故障诊断说明(2)](https://img.taocdn.com/s3/m/2de95302e87101f69e3195b7.png)
SIEMENS SIMODRIVE 611 伺服驱动系统故障诊断说明(160-505) 2012-02-04 13:21:56楼主160 基准轨迹未能实现原因:在开始寻基准点后,坐标轴在P0170运动过程中未能发现基准轨迹。
排除:—检查“基准轨迹”信号—检查P0170—如果坐标轴没有基准轨迹,则设置P0173至1确认:故障存储器重新置位。
反应:停止、STOP Ⅴ161 基准轨迹太短原因:当坐标轴向基准轨迹运动而且没有达到轨迹的停滞点时,错误被提示,i.e.基准轨迹太短。
排除:—设置P0163(寻基准点的速度)至较低值—增加P0104(最大制动值)—使用更长的基准轨迹确认:故障存储器重新置位。
反应:停止、STOP Ⅴ162 无零基准脉冲原因:当脱开基准轨迹后,坐标轴在P0171(基准轨迹与零脉冲之间的最大距离)运动过程中未能发现零脉冲。
排除:—检查带以零标记为基准的编码器—设置P0171至较高值确认:故障存储器重新置位。
反应:停止、STOP Ⅴ163 无编码运行和运行模式不匹配原因:无编码运行被参数化(P1006)并且“定位”或“位置基准值”运行模式设置。
排除:设置运行模式“速度/转矩设置”(P0700=1)确认:接通电源反应:停止、STOP Ⅴ165 绝对定位块不合理原因:带绝对定位数据的往复运动块在坐标轴连接运动时未被允许。
排除:修正往复运动块确认:故障存储器重新置位。
反应:停止、STOP Ⅳ166 连接不成功原因:在实际运行状态中,连接未能建立。
排除:—设置角度编码器界面(P0890,P0891)—检查连接结构(P0410)确认:故障存储器重新置位。
反应:停止、STOP Ⅵ167 启动连接信号原因:“启动连接”输入信号有效,输入信号对于启动连接是必要的。
排除:重置“启动连接”输入信号,确认故障,再设置输入信号并用开关接通连接。
确认:故障存储器重新置位。
反应:停止、STOP Ⅱ168 过流,缓冲存储原因:带有排队功能的连接发生,最大16个位置被保存在P0425∶16。
611UUe系列数字式交流伺服驱动系统的故障诊断与维修
![611UUe系列数字式交流伺服驱动系统的故障诊断与维修](https://img.taocdn.com/s3/m/6756d203b52acfc789ebc990.png)
611U/Ue系列数字式交流伺服驱动系统的故障诊断与维修1.611U/Ue数字式交流伺服驱动系统基本组成SIEMENS 611U/Ue是目前SIEMENS常用的交流数字式伺服驱动系统,其基本结构与611A相似,采用模块化安装方式,主轴与各伺服驱动单元共用电源。
用于进给驱动的伺服驱动模块有单轴与双轴两种结构型式,带有PROFIBUS DP总线接口。
驱动器内部带有FEPROM(non-volatile data memory,非易失可擦写存储器),用于存储系统软件与用户数据,驱动器的调整、动态优化可以在W1NDOWS环境下,通过SimoComU软件自动进行,安装、调整十分方便。
驱动器由整流电抗器(或伺服变压器)、电源模块(NE module)、功率模块(Power module)、611控制模块等组成:电源模块自成单元,功率模块、611控制模块、PROFIBUS DP总线接口模块组成轴驱动单元。
各驱动器单元间共用611直流母线与控制总线,并通过PROFIBUS DP总线,与SIEMENS 802D/810D/840D系统相连接,组成数控机床的伺服驱动系统。
2.611U/Ue数字式交流伺服驱动器的状态显示(1)电源模块的状态显示与61lA驱动器相似,611U/Ue系列数字伺服驱动器电源模块(UE或I/R)设有6个状态指示灯(LED),其相对位置及其含义如下: V1-OO-V2 V1:DCl5V控制电源故障。
V3-OO-V4 V2:DC5V控制电源故障。
V5-OO-V6 V3:电源模块未“使能”。
V4:电源模块已“使能”,直流母线己充电。
V5:进线电源故障。
V6:直流母线电压过高。
(2)标准进给驱动模块的状态显示611U/Ue系列数字伺服驱动单元的状态显示,可以通过驱动控制板上的6只数码管进行,它可以详细显示驱动器的状态与报警号。
6只数码管显示的基本作用如下:口口口口口口1:显示“E”,表示驱动器报警↑↑↑↑↑↑2:显示“-”,表示驱动器有一个报警。
SIEMENSSIMODRIVE611伺服驱动系统故障诊断说明1
![SIEMENSSIMODRIVE611伺服驱动系统故障诊断说明1](https://img.taocdn.com/s3/m/5dcde701876fb84ae45c3b3567ec102de2bddf9f.png)
SIEMENSSIMODRIVE611伺服驱动系统故障诊断说明1★下列故障与警告的说明对于“SIMODRIVE 611 universal”的所有软件版本都有效。
001 驱动器没有操作系统原因:存储模块内没有驱动器操作系统排除:-通过SimoCom U加载器操作系统 -插装带有驱动器操作系统的存储模块确认:接通电源反应:停止、STOPⅡ(SRM,SLM) STOPⅠ(ARM)002 计时溢出,:\%X原因:驱动处理器的时间计算不能再充分满足选用功能规定的循环时间。
补充信息:仅限于西门子系统内部错误的诊断。
排除:不使用如下大量费时的功能: -可变通讯功能(P1620)-追踪功能 -以FFT方式启动或分析步进响应 -速度前馈控制(P0203)-最小/最大存储(P1650.0)-DAC输出(最多1个频道) 增加循环时间: -电流控制器循环(P1000)-速度控制器循环( P1001)—位置控制器循环(P1009)-嵌入循环(P1010)确认:接通电源反应:停止、STOPⅡ(SRM,SLM) STOPⅠ(ARM)003 NMI预期监控,Suppl. info:\%X原因:控制模块上的监控计时器已经期满,其原因是控制模块在时间基准方面的硬件错误所导致。
补充信息:仅限于西门子系统内部错误的诊断。
排除:更换闭环控制模块。
确认:接通电源反应:停止、STOPⅡ(SRM,SLM) STOPⅠ(ARM)004 堆栈溢出。
:\%X原因:违反了内部处理器硬件堆栈的限制或数据存储在软件堆栈的限制,其原因很可能是控制模块的硬件错误所导致。
补充信息:仅限于西门子系统内部错误的诊断。
排除:—驱动模块断电后通电—更换控制模块。
确认:接通电源反应:停止、STOPⅡ(SRM,SLM) STOPⅠ(ARM)005 非法操作程序编码、非法扫描,SWI,NMI(DSP)。
:\%X原因:处理器在程序存储器中发现非法命令。
补充信息:仅限于西门子系统内部错误的诊断。
611UUe系列数字式交流伺服驱动系统的故障诊断与维修
![611UUe系列数字式交流伺服驱动系统的故障诊断与维修](https://img.taocdn.com/s3/m/6756d203b52acfc789ebc990.png)
611U/Ue系列数字式交流伺服驱动系统的故障诊断与维修1.611U/Ue数字式交流伺服驱动系统基本组成SIEMENS 611U/Ue是目前SIEMENS常用的交流数字式伺服驱动系统,其基本结构与611A相似,采用模块化安装方式,主轴与各伺服驱动单元共用电源。
用于进给驱动的伺服驱动模块有单轴与双轴两种结构型式,带有PROFIBUS DP总线接口。
驱动器内部带有FEPROM(non-volatile data memory,非易失可擦写存储器),用于存储系统软件与用户数据,驱动器的调整、动态优化可以在W1NDOWS环境下,通过SimoComU软件自动进行,安装、调整十分方便。
驱动器由整流电抗器(或伺服变压器)、电源模块(NE module)、功率模块(Power module)、611控制模块等组成:电源模块自成单元,功率模块、611控制模块、PROFIBUS DP总线接口模块组成轴驱动单元。
各驱动器单元间共用611直流母线与控制总线,并通过PROFIBUS DP总线,与SIEMENS 802D/810D/840D系统相连接,组成数控机床的伺服驱动系统。
2.611U/Ue数字式交流伺服驱动器的状态显示(1)电源模块的状态显示与61lA驱动器相似,611U/Ue系列数字伺服驱动器电源模块(UE或I/R)设有6个状态指示灯(LED),其相对位置及其含义如下: V1-OO-V2 V1:DCl5V控制电源故障。
V3-OO-V4 V2:DC5V控制电源故障。
V5-OO-V6 V3:电源模块未“使能”。
V4:电源模块已“使能”,直流母线己充电。
V5:进线电源故障。
V6:直流母线电压过高。
(2)标准进给驱动模块的状态显示611U/Ue系列数字伺服驱动单元的状态显示,可以通过驱动控制板上的6只数码管进行,它可以详细显示驱动器的状态与报警号。
6只数码管显示的基本作用如下:口口口口口口1:显示“E”,表示驱动器报警↑↑↑↑↑↑2:显示“-”,表示驱动器有一个报警。
伺服驱动器常见故障维修方法
![伺服驱动器常见故障维修方法](https://img.taocdn.com/s3/m/90484d3c4b7302768e9951e79b89680203d86ba0.png)
伺服驱动器常见故障维修方法伺服驱动器是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。
一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。
那么对伺服驱动器如何测试检修,以下是一些方法:1、示波器检查驱动器的电流监控输出端时,发现它全为噪声,无法读出故障原因:电流监控输出端没有与交流电源相隔离(变压器)。
处理方法:可以用直流电压表检测观察。
2、电机在一个方向上比另一个方向跑得快故障原因:无刷电机的相位搞错。
处理方法:检测或查出正确的相位。
故障原因:在不用于测试时,测试/偏差开关打在测试位置。
处理方法:将测试/偏差开关打在偏差位置。
故障原因:偏差电位器位置不正确。
处理方法:重新设定。
••3、电机失速故障原因:速度反馈的极性搞错。
处理方法:a.如果可能,将位置反馈极性开关打到另一位置。
(某些驱动器上可以)b.如使用测速机,将驱动器上的TACH+和TACH-对调接入。
c.如使用编码器,将驱动器上的ENC A和ENC B对调接入。
d.如在HALL速度模式下,将驱动器上的HALL-1和HALL-3对调,再将Motor-A和Motor-B对调接好。
故障原因:编码器速度反馈时,编码器电源失电。
处理方法:检查连接5V编码器电源。
确保该电源能提供足够的电流。
如使用外部电源,确保该电压是对驱动器信号地的。
••4、LED灯是绿的,但是电机不动故障原因:一个或多个方向的电机禁止动作。
处理方法:检查+INHIBIT 和–INHIBIT 端口。
故障原因:命令信号不是对驱动器信号地的。
处理方法:将命令信号地和驱动器信号地相连。
••5、上电后,驱动器的LED灯不亮故障原因:供电电压太低,小于最小电压值要求。
处理方法:检查并提高供电电压。
6、当电机转动时, LED灯闪烁故障原因:HALL相位错误。
处理方法:检查电机相位设定开关(60º/120º)是否正确。
伺服系统的故障诊断和维修技巧
![伺服系统的故障诊断和维修技巧](https://img.taocdn.com/s3/m/6b471c2649d7c1c708a1284ac850ad02de800732.png)
伺服系统的故障诊断和维修技巧伺服系统是一种基于反馈控制原理的高精度、高可靠性电机控制系统,广泛应用于机床、自动化生产线、航空航天等领域。
在使用过程中,由于环境变化、零部件老化等原因,伺服系统可能会出现故障,如何进行准确的故障诊断和维修成为了一个重要的问题。
本文将从以下几个方面介绍伺服系统的故障诊断和维修技巧。
一、故障诊断前的准备工作在进行伺服系统的故障诊断前,需对系统的结构、工作原理、接口电路等进行充分了解,并进行相关的检修操作。
此外,还需对系统进行预防性检修,如清洁、紧固、润滑等,避免由于松动、缺油等原因引起的故障。
二、故障诊断的方法1. 观察法通过观察伺服系统的运行状态、指示灯等,初步判断故障的类型和位置。
此外,还可以通过检查接线端子、电源线、信号线等情况,找出接触不良、线路短路等问题。
2. 测量法通过仪器仪表对伺服系统进行各种信号、电气、机械、液压等方面的测量,如电压、电流、电阻、转速、振动、温度等,确定故障的具体位置。
3. 分离法对伺服系统的各个部分进行拆卸或分离,逐一进行检查,确定出现故障的具体组件。
在拆卸和安装过程中,需注意避免影响其他部件的正常工作,并将拆卸、安装过程中的零部件完好保存。
三、故障维修技巧1. 外部维修法指通过清洁、加润滑油、更换零件等方法,对伺服系统进行外部维修。
外部维修是一种低成本、高效率的维修方式,但对于内部故障无法起到作用。
2. 内部维修法指通过打开设备内部外壳,对故障组件进行检查、更换、修理等,进行内部维修。
内部维修需要具备一定的专业知识和技能,且可能导致设备的二次故障,需谨慎操作。
3. 更换法指直接更换故障组件的方式,即将故障部件直接更换为新的部件。
此方式成本较高,但对于严重的内部故障,更换法是一种较为有效的维修方式。
四、故障预防措施为了减少伺服系统出现故障的可能性,需在平时的使用过程中多注意以下几点:1. 定期清洁、润滑伺服系统,避免因灰尘、污垢、松动等原因引起故障。
驱动器故障引起跟随误差超差报警维修
![驱动器故障引起跟随误差超差报警维修](https://img.taocdn.com/s3/m/fa74132d0066f5335a8121aa.png)
驱动器故障引起跟随误差超差报警维修——西门子数控伺服驱动系统圈子类别:电源 (未知) 2009-2-12 16:48:00[我要评论] [加入收藏] [加入圈子] 驱动器故障引起跟随误差超差报警维修--西门子数控伺服驱动系统故障现象:某配套SIEMENS PRIMOS系统、6RA26**系列直流伺服驱动系统的数控滚齿机,开机后移动机床的Z轴,系统发生“ERR22跟随误差超差”报警。
分析与处理过程:数控机床发生跟随误差超过报警,其实质是实际机床不能到达指令的位置。
引起这一故障的原因通常是伺服系统故障或机床机械传动系统的故障。
由于机床伺服进给系统为全闭环结构,无法通过脱开电动机与机械部分的连接进行试验。
为了确认故障部位,维修时首先在机床断电、松开夹紧机构的情况下,手动转动Z轴丝杠,未发现机械传动系统的异常,初步判定故障是由伺服系统或数控装置不良引起的。
为了进一步确定故障部位,维修时在系统接通的情况下,利用手轮少量移动Z轴(移动距离应控制在系统设定的最大允许跟随误差以内,防止出现跟随误差报警),测量Z轴直流驱动器的速度给定电压,经检查发现速度给定有电压输入,其值大小与手轮移动的距离、方向有关。
由此可以确认数控装置工作正常,故障是由于伺服驱动器的不良引起的。
检查驱动器发现,驱动器本身状态指示灯无报警,基本上可以排除驱动器主回路的故障。
考虑到该机床X、Z轴驱动器型号相同,通过逐一交换驱动器的控制板确认故障部位在6RA26**直流驱动器的A2板。
根据SIEMENS 6RA26**系列直流伺服驱动器的原理图,逐一检查、测量各级信号,最后确认故障原因是由于A2板上的集成电压比较器N7(型号:LM348)不良引起的:更换后,机床恢复正常。
数控系统故障排除的一般方法圈子类别:机床 (未知) 2010-8-5 11:03:00[我要评论] [加入收藏] [加入圈子]数控系统故障排除的一般方法:当数控系统出现报警发生故障时,维修人员不要急于动手处理,而应多进行观察和试验。
西门子伺服电机维修超温报警故障
![西门子伺服电机维修超温报警故障](https://img.taocdn.com/s3/m/8485ffc669eae009591bec0e.png)
现场可以利用西门子840D数据伺服系统的诊断监控页面,对轴Z的工作情况进监测,轴Z在运动过程中,伺服电机维修检测发现平滑电流达到50%~60%,当轴Z处于静止状态时,电流在0~90%波动,而伺服电机温度则随着电流的增加逐渐升高,当温度升高到100℃,系统发300614轴Z驱动电机超温提示,接下来就为大家详细的讲解一下,希望对大家有所了解。
西门子伺服电机维修诊断要从两方面入手:电气方面诊断及维修和机械方面诊断与维修。
伺服电机维修中因电气上的原因造成电机超温报警的比较多、如电机或电缆绝缘不良、电机内部线圈短路,电机制动器失灵、驱动器故障、过负荷等。
1、服电机维修要依次检查功率模块、电缆电机的连接线、端子、插头是否接触良好,有无虚接情况.排除缺相的可能性。
2、轴Z电机电枢和电缆的绝缘情况。
利用ZC25B-3型500V兆欧表,对伺服电机维修检测电枢绕组与机壳之间的绝缘电阻,及电缆导线对地绝缘进行检査.绝缘性能良好用数字万用表測量电枢相间电阻值.阻值平衡。
3、电机维修检查驱动器参数增益是否适当。
备份现有NC、PLC数据,然后对轴Z系统参数MD32200位置环增益参数、MD32300轴的加速度参数、MD1000电流环时间常数、MD100速度环时间常数进行重新设置,故障现象无明显好转,再利用840D系统的自带的系统优化软件、对轴Z驱动器参数进行优化。
电机电流依然没有改善。
4、电机维修检查驱动器是否损坏。
由于轴Z与轴Y共用双轴功率驱动模块,两轴电机配置参数相近,于是将两轴的线路(包括电源电缆和反馈电缆)互换,通电以后,发现故障出现在轴Y上,从而可近一步判断,故障范围应该在轴Z电机及电机后侧所带的负荷上。
电机电流大,应该是存在过负荷的情况。
5、电机维修检查电机制动器。
检査电机制动器电源及控制部分,一切正常。
由于制动器位于电机内部,无法检查其工作状况。
6、控系统轴Z由全闭环切换到半闭环工作状态。
伺服电机与机械部分脱离后运行平稳,电流正常。
伺服系统的常见故障及处理方法
![伺服系统的常见故障及处理方法](https://img.taocdn.com/s3/m/2eacf995370cba1aa8114431b90d6c85ed3a884f.png)
伺服系统的常见故障及处理方法伺服系统是一种广泛应用于工业自动化领域的控制系统,它通过精确控制电机的速度和位置来实现对机械设备的精密控制。
然而,由于长时间使用、操作误差或环境影响等原因,伺服系统也会出现一些常见故障。
本文将介绍几种常见的伺服系统故障,并提供相应的处理方法。
一、电机运转异常1. 电机不转动或转动困难:处理方法:首先检查电机的电源连接是否正确,确认电源供应是否正常。
其次,检查是否存在电机线圈或转子损坏等机械故障。
最后,检查驱动器参数设置是否正确,如转速、转矩控制参数等。
2. 电机转速不稳定:处理方法:检查伺服系统的反馈装置,如编码器、脉冲计数器等,确保其正常工作。
同时,调整驱动器的速度环参数,提高伺服系统的控制精度。
另外,确保电机的供电电压稳定,避免电压波动对转速造成影响。
二、编码器信号异常1. 编码器信号丢失或不稳定:处理方法:检查编码器连接是否牢固,确保连接处没有松动。
同时,检查编码器接口的信号线是否受到干扰,如存在干扰源应及时消除。
另外,还可以通过更换编码器线缆、增加抗干扰滤波器等方式来提高信号的稳定性。
2. 编码器信号误码:处理方法:首先检查编码器光电栅片或磁栅片是否损坏,如果损坏应及时更换。
其次,调整编码器信号校正参数,以提高信号的准确性。
此外,检查编码器接口的连接是否正确,确保与驱动器的匹配性。
三、驱动器故障1. 电机震动:处理方法:检查驱动器的震动抑制功能是否开启,并适当调整其参数。
此外,检查电机的负载情况,是否超过了驱动器的额定输出能力。
2. 驱动器过热:处理方法:确保驱动器的散热设备正常工作,如风扇是否畅通,散热片是否清洁。
另外,调整驱动器的过载保护参数,避免超负荷工作导致过热。
四、控制系统故障1. 控制信号丢失或干扰:处理方法:检查控制信号的连接是否良好,避免控制线路与电源线路或高功率干扰源相交叉。
同时,增加控制系统的抗干扰设备,如光电隔离器、滤波电容等。
2. 控制系统响应慢或不灵敏:处理方法:检查控制器的采样周期是否设置合理,过大的采样周期会导致系统响应慢。
SIEMENS SIMODRIVE 611 伺服驱动系统故障诊断说明(8)
![SIEMENS SIMODRIVE 611 伺服驱动系统故障诊断说明(8)](https://img.taocdn.com/s3/m/bc647d8c680203d8ce2f248c.png)
SIEMENS SIMODRIVE 611 伺服驱动系统故障诊断说明(8) 2012-02-04 13:33:32楼主775 SSI 编码器不正确参数表示,辅助信息\%u原因:SSI 绝对值编码器的不正确参数。
补充信息=0ⅹ1,0ⅹ11(间接,直接测量系统):单线圈分辨率不能为零.补充信息=0×2,0×12(间接,直接测量系统): 参数化比特(bits)的数量大于电报长度(telegram length)补充信息=0×3,0×13(间接,直接测量系统): 线形编码器不能有多圈分辨率(multi-turnresolution)排除: 对补充信息1或11:检查P1022和P1032对补充信息2或12: 结合P1028检查P1021,P1022,P1027.12和P1027.14,结合P1041检查P1031,P1032,P1037.12和P1037.14。
对补充信息3或13:检查P1021和P1031。
确认:接通电源反应:停止、STOPⅠ777 识别转子位置的电流太高原因:P1019参数化的电流大于电机和动力部分使用的电流。
排除:靠P1019降低电流。
确认:接通电源。
反应:停止、STOPⅡ(SRM,SLM)STOPⅠ(ARM)778 转子位置识别不允许的换流器频率原因:当选择转子位置识别(P1019)时,允许驱动换流器(P1100)频率为4或8kHz。
排除:改变驱动换流器频率或取消转子位置识别。
确认:接通电源。
反应:停止、STOPⅡ(SRM,SLM)STOPⅠ(ARM)779 电机惯性力矩,电机\%d 无效原因:电机惯性力矩(P1117)是不正确的(少于/等于零)。
排除:对使用的电机输入有效的惯性力矩,in P1117。
三组电机:电机数据表决定电机惯性力矩。
西门子电机:电机编码决定特性电机数据。
确认:故障存储器复位。
反应:停止、STOPⅡ(SRM,SLM)STOPⅠ(ARM)780 电机无负荷电流>电机额定电流(电机\%d)原因:参数化的电机无负荷电流(P1136)大于电机额定电流(P1103)。
伺服系统的故障分析与维修
![伺服系统的故障分析与维修](https://img.taocdn.com/s3/m/6db33894370cba1aa8114431b90d6c85ed3a8855.png)
伺服系统的故障分析与维修伺服系统是一种通过传感器和控制器来监测和调整机械运动的技术。
它广泛应用于工业自动化领域,如机械加工、装配线、印刷机械等。
然而,由于各种原因,伺服系统可能会出现故障。
本文将分析伺服系统的常见故障原因,并提供一些维修和排除故障的建议。
一、故障原因分析:1.电源问题:伺服系统需要稳定的电源供应才能正常工作。
如果电源电压不稳定或存在供电故障,伺服系统可能会失去反馈控制,导致运动失控或停止。
解决方法:检查电源线路是否连接正确,检查电压是否稳定。
如有必要,可以添加稳压器或备用电源。
2.传感器故障:伺服系统使用传感器来监测和反馈运动状态。
如果传感器损坏或出现连接问题,伺服系统将无法正常工作。
解决方法:检查传感器的连接是否牢固,检查传感器的工作状态。
如有必要,更换损坏的传感器。
3.控制器故障:伺服系统的控制器是核心部件,负责接收和处理传感器反馈信号,控制电机和执行器的运动。
解决方法:检查控制器的供电和通信线路是否正常。
如有必要,可以尝试重新启动控制器或更换故障的控制器。
4.电机故障:伺服系统的电机是实现机械运动的关键部件。
如果电机出现故障或损坏,伺服系统将无法正常工作。
解决方法:检查电机的供电线路和连接是否正常。
如有必要,可以检查电机的绝缘和转子,或者更换故障的电机。
5.机械故障:伺服系统的机械部件如传动装置和负载可能会出现故障或损坏,导致伺服系统无法正常运动。
解决方法:检查机械部件的连接和润滑情况。
如果发现故障或损坏的机械部件,及时修复或更换它们。
二、维修和排除故障建议:1.定期维护:定期检查和维护伺服系统,包括清洁机械部件、检查电源和传感器连接、校准控制器等,可以减少故障发生的可能性。
2.故障排除步骤:当伺服系统出现故障时,应按照以下步骤进行排除:(a)检查电源和供电线路的状态和连接;(b)检查传感器和控制器的连接和工作状态;(c)检查电机和负载的连接和工作状态;(d)检查机械部件的连接和润滑情况;(e)根据故障现象和排除步骤的结果,判断故障原因并采取适当的修复措施。
西门子V90伺服故障处理方法(含故障报警代码大全)
![西门子V90伺服故障处理方法(含故障报警代码大全)](https://img.taocdn.com/s3/m/adbc8df9cfc789eb162dc88a.png)
西门子V90伺服故障处理方法(含故障报警代码大全)目录•BOP面板上的LED灯状态•故障查询及常见故障•报警查询及常见报警•V90 PN 所有故障及报警【故障报警代码大全】•V90 PTI 所有故障及报警【故障报警代码大全】BOP面板上的LED灯状态V90 PTI面板指示灯状态两个LED 状态指示灯(RDY 和COM)可用来显示驱动状态。
两个LED 灯都为双色(绿色/红色)。
状态显示的详细信息见下表:BOP 数据显示:V90 PN面板指示灯状态两个LED 状态指示灯(RDY 和COM)可用来显示驱动状态。
两个LED 灯都为三色(绿色/红色/黄色)。
状态显示的详细信息见下表:V90 PN BOP 数据显示与V90 PTI的相同。
常问问题BOP指示灯不亮?检查24V供电电源,如果24V供电正常说明驱动器坏了。
故障查询及常见故障驱动器在运行时会出现故障,有可能导致停机,应根据出现的故障代码来确认原因。
故障的属性:–故障表示为Fxxxxx。
–会导致故障响应。
–在消除原因后必须应答。
–通过控制单元和LED RDY 显示状态信息。
–通过PROFINET 状态字ZSW1.3 显示状态。
–记录在故障缓冲器中。
如何查找故障信息?(1) 通过BOP面板查看故障代码。
(2) 通过调试软件查看。
PLC如何获得驱动的故障状态?通过PROFINET 状态字ZSW1.3 显示故障状态。
如何对V90 PN报警信息类型进行更改?从固件Fw1.02开始,可以通过P2118、P2119参数对V90 PN报警信息类型进行更改。
在P2118中输入故障号,在P2119相对应的下标中选择此信息的类型(1: Fault (F),2: Alarm (A),3: No message (N)),这两个参数各有20个下标,最多可以对20个信息进行配置。
例如对F8501进行屏蔽时可进行如下设置:P2118[0]=8501P2119=3F07452?跟随误差是轴定位期间位置设定值和实际值之间的偏差,跟随误差过大时,超出P2546设置的公差范围,V90会输出故障F07452。
驱动器故障引起跟随误差超差报警维修
![驱动器故障引起跟随误差超差报警维修](https://img.taocdn.com/s3/m/fa74132d0066f5335a8121aa.png)
驱动器故障引起跟随误差超差报警维修——西门子数控伺服驱动系统圈子类别:电源 (未知) 2009-2-12 16:48:00[我要评论] [加入收藏] [加入圈子] 驱动器故障引起跟随误差超差报警维修--西门子数控伺服驱动系统故障现象:某配套SIEMENS PRIMOS系统、6RA26**系列直流伺服驱动系统的数控滚齿机,开机后移动机床的Z轴,系统发生“ERR22跟随误差超差”报警。
分析与处理过程:数控机床发生跟随误差超过报警,其实质是实际机床不能到达指令的位置。
引起这一故障的原因通常是伺服系统故障或机床机械传动系统的故障。
由于机床伺服进给系统为全闭环结构,无法通过脱开电动机与机械部分的连接进行试验。
为了确认故障部位,维修时首先在机床断电、松开夹紧机构的情况下,手动转动Z轴丝杠,未发现机械传动系统的异常,初步判定故障是由伺服系统或数控装置不良引起的。
为了进一步确定故障部位,维修时在系统接通的情况下,利用手轮少量移动Z轴(移动距离应控制在系统设定的最大允许跟随误差以内,防止出现跟随误差报警),测量Z轴直流驱动器的速度给定电压,经检查发现速度给定有电压输入,其值大小与手轮移动的距离、方向有关。
由此可以确认数控装置工作正常,故障是由于伺服驱动器的不良引起的。
检查驱动器发现,驱动器本身状态指示灯无报警,基本上可以排除驱动器主回路的故障。
考虑到该机床X、Z轴驱动器型号相同,通过逐一交换驱动器的控制板确认故障部位在6RA26**直流驱动器的A2板。
根据SIEMENS 6RA26**系列直流伺服驱动器的原理图,逐一检查、测量各级信号,最后确认故障原因是由于A2板上的集成电压比较器N7(型号:LM348)不良引起的:更换后,机床恢复正常。
数控系统故障排除的一般方法圈子类别:机床 (未知) 2010-8-5 11:03:00[我要评论] [加入收藏] [加入圈子]数控系统故障排除的一般方法:当数控系统出现报警发生故障时,维修人员不要急于动手处理,而应多进行观察和试验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SIEMENS 伺服驱动系统故障维修讲解
唐寅喜2015.11.16
例1.故障现象:某配套SIEMENS PRIMOS系统、6RA26**系列直流伺服驱动系统的数控滚齿机,开机后发生“ERR21,Y轴测量系统错误”报警。
分析与处理过程:数控系统发生测量系统报警的原因一般有如下几种:
1)数控装置的位置反馈信号接口电路不良。
2)数控装置与位置检测元器件的连接电缆不良。
3)位置测量系统本身不良。
由于本机床伺服驱动系统采用的是全闭环结构,检测系统使用的是HEIDENHAIN公司的光栅。
为了判定故障部位,维修时首先将数控装置输出的X、Y轴速度给定,将驱动使能以及X、Y轴的位置反馈进行了对调,使数控的X轴输出控制Y轴,Y轴输出控制X轴。
经对调后,操作数控系统,手动移动Y轴,机床X轴产生运动,且工作正常,证明数控装置的位置反馈信号接口电路无故障。
但操作数控系统,手动移动X轴,机床Y轴不运动,同时数控显示“ERR21,X轴测量系统错误”报警。
由此确认,报警是由位置测量系统不良引起的,与数控装置的接口电路无关。
检查测量系统电缆连接正确、可靠,排除了电缆连接的问题。
利用示波器检查位置测量系统的前置放大器EXE601/5-F的Ual和Ua2、*Ua1和Ua2输出波形,发现Ua1相无输出。
进一步检查光栅输出(前置放大器EXE601/5-F的输入)信号波形,发现Ie1无信号输入。
检查本机床光栅安装正确,确认故障是由于光栅不良引起的:更换光栅LS903后,机床恢复正常工作。
例2.故障现象:某配套SIEMENS PRIMOS系统、6RA26**系列直流伺服驱动系统的数控滚齿机,开机后发生“ERR21,X轴测量系统错误”报警。
分析与处理过程:故障分析过程同前例,但在本例中,利用示波器检查位置测量系统的前置放大器EXE601/5-F的Ual和Ua2、*Ual和*Ua2输出波形,发现同样Ual无输出。
进一步检查光栅输出(前置放大器EXE601/5-F的输入)信号波形,发现Ie1,信号输入正确,确认故障是由于前置放大器EXE601/5-F不良引起的。
根据EXE601/5-F的原理(详见后述)逐级测量前置放大器
EXE601/5-F的信号,发现其中的一只LM339集成电压比较器不良;更换后,机床恢复正常工作。
例3.驱动器未准备好的故障维修
故障现象:一台配套SIEMENS 850系统、6RA26**系列直流伺服驱动系统的卧式加工中心,在加工过程中突然停机,开机后面板上的“驱动故障”指示灯亮,机床无法正常起动。
分析与处理过程:根据面板上的“驱动故障”指示灯亮的现象,结合机床电气原理图与系统PLC程序分析,确认机床的故障原因为Y轴驱动器未准备好。
检查电柜内驱动器,测量6RA26**驱动器主回路电源输入,只有V 相有电压,进一步按机床电气原理图对照检查,发现6RA26**驱动器进线快速熔断器的U、W相熔断。
用万用表测量驱动器主回路进线端1U、1W,确认驱动器主回路内部存在短路。
由于6RA26**交流驱动器主回路进线直接与晶闸管相连,因此可以确认故障原因是由于晶闸管损坏引起的。
逐一测量主回路晶闸管V1-V6,确认V1、V2不良(己短路);更换同规格备件后,机床恢复正常。
由于驱动器其他部分均无故障,换上晶闸管模块后,机床恢复正常工作,分析原因可能是瞬间电压波动或负载波动引起的偶然故障。