基础化学-07章_统计热力学基础a
第七章 统计热力学基础

第七章统计热力学基础一、选择题1、统计热力学主要研究()。
(A) 平衡体系(B)单个粒子的行为案(C) 非平衡体系(D) 耗散结构2、能量零点的不同选择,在下面诸结论中哪一种说法是错误的:( )(A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值(C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值3、最低能量零点选择不同,对哪些热力学函数值无影响:( )(A) U (B) S (C) G (D) H4、统计热力学研究的主要对象是:()(A) 微观粒子的各种变化规律(B) 宏观体系的各种性质(C) 微观粒子的运动规律(D) 宏观系统的平衡性质5、对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:()(A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理6、以0到9这十个数字组成不重复的三位数共有()(A) 648个(B) 720个(C) 504个(D) 495个7、各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:()(A) t > r > v > e(B) t < r < v < e(C) e > v > t > r(D) v > e > t > r8、在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:()(A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系(C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系9、对于定域子体系分布X所拥有的微观状态t x为:()(A) (B)(C) (D)10、当体系的U,N,V确定后,则:()(A) 每个粒子的能级 1, 2, ....., i一定,但简并度g1, g2, ....., g i及总微观状态数 不确定。
第7章统计热力学基础

第 0-6 章绪论第1章:第零定律与物态方程第2章:热力学第一定律第3章:热力学第二定律第4章:多组份体系的热力学第5章:相平衡及相图第6章:化学平衡热力学第 7-13 章第7章:统计热力学基础第8章:反应速率与机理第9章:动力学统计理论第10章:特殊性质反应动力学第11章:电化学第12章:界面现象第13章:胶体各章导航1 第零定律与物态方程1 第零定律与物态方程2 热力学第一定律2 热力学第一定律3 热力学第二定律3 热力学第二定律4 多组份体系的热力学4 多组份体系的热力学5 相平衡及相图5 相平衡及相图6 化学平衡热力学6 化学平衡热力学7 统计热力学基础7 统计热力学基础8 化学动力学8 化学动力学9 化学动力学的统计理论9 化学动力学的统计理论10 特殊性质反应动力学10 特殊性质反应动力学11 电化学11 电化学12 界面现象12 界面现象13 胶体13 胶体学习向导章节内容相关资源知识点检索课程介绍使用帮助当前位置: 10 特殊性质反应动力学练习1.实验表明 C2H6→C2H4+H2为一级反应。
有人认为此反应是一链反应,并提出可能的机理如下:链引发链传递链中止试用稳态法原理,证明此链反应速率的最后结果是与 C2H6浓度的一次方成正比。
并表明一级反应速率常数k与上述五个基元步骤的速率常数之间的关系。
提示解2.如果由过氧化物 A 分解为两个自由基引发某个聚合反应,该聚合反应又由链转移到溶剂 B 而中止,假定对自由基作稳态处理,试导出体系内单体消耗的速率公式。
提示答案:3.甲醇蒸气在空气中的爆炸低限和高限分别是 7.3% 和 36%(体积百分数),已知甲醇饱和蒸气压p/Pa 与温度T/K的关系为:工业上以甲醇和空气为原料制备甲醛。
(1)当用银作催化剂时,混合气总压力为 107600Pa,反应器在甲醇过量的条件下操作,即在爆炸高限以上工作,试问反应开始点火时,甲醇蒸发器的温度不得低于多少度?(2)当用铁钼催化剂时,混合气总压力为 760mm Hg,是在甲醇不足而空气过量的条件下操作,即在爆炸低限以下工作,试问点火时,甲醇蒸发器的温度不得高于多少度?提示答案:〔(1) 42.5℃、(2) 10.4℃〕4.试估算室温下,碘原子在已烷中进行原子复合反应的速率常数。
华中科技大学物理化学-121-145 第七章 统计热力学基础

第柒章 统计热力学根底根本公式1. N 个定位粒子〔可别粒子〕壹种分布的微观状态数 !!iN i i i g t N N =∏总微观状态数 (),,!!iN i j i ig U V N N N Ω=∑∏2. N 个非定位粒子〔等同粒子〕壹种分布的微观状态数 !iN i i i g t N =∏总微观状态数 (),,!iN i j i i g U V N N Ω=∑∏3. Boltzman 分布在i,j 两个能级上粒子数之比 ()()exp /exp /j j i j i i g kT n n g kT εε⎡⎤-⎣⎦=-⎡⎤⎣⎦4. 能级公式平动 2222t 2228y xz n n n h m a b c ε⎛⎫=++ ⎪ ⎪⎝⎭转动 ()2r 218h J J Iεπ=+振动 v 12h ευυ⎛⎫=+ ⎪⎝⎭5.配分函数配分函数的别离 n t e r v q q q q q q =平动配分函数线型分子转动配分函数 2r 2r 8IkT Tq hπσσ==Θ 同核双原子分子σ=2,异核双原子分子σ=1.转动特征温度 2r 28h TkπΘ=非线性分子转动配分函数 ()()3/221/2r 382x y zkT q I I I h ππσ=双原子分子振动配分函数 ()()()()v v v exp /2exp /21exp /1exp /h kT T q T h kT υυ--Θ⎡⎤⎡⎤⎣⎦⎣⎦==--Θ--⎡⎤⎣⎦基态能量为零时振动特征温度 v /h k υΘ=电子配分函数假设只考虑基态,且将电子基态能量规定为零,则()v e,021q g J ==+,J 为电子总角动量量子数.核配分函数假设只考虑基态,且将核基态能量规定为零,则,S 为核自旋量量子数.单原子理想气体的热容 ,m 32V C R = 双原子理想气体的热容 ()(),m v ,m v 57=22V V C R T C RT=ΘΘ,单原子理想气体的内能 m 0,m 32U RT U =+ 双原子理想气体的内能 ()()m 0,m v m 0,mv 57=22U R U TU R U T=+Θ+Θ,平动熵〔Sackur -Tetrode 公式〕 转动熵 r,m r r =lnln T T S Nk Nk R R σσ+=+ΘΘ 振动熵 ()()v,m /ln 1exp exp /1h kT h S Nk RT h kT υυυ⎧⎫⎡-⎤⎪⎪⎛⎫=--+⎨⎬ ⎪⎢⎥-⎡⎤⎝⎭⎣⎦⎪⎪⎣⎦⎩⎭()()v v v /ln 1exp /exp /1T R T T ⎧⎫Θ⎪⎪=---Θ+⎡⎤⎨⎬⎣⎦Θ-⎪⎪⎩⎭电子运动熵 e,m e,0e,0ln ln S Nk g R g == Gibbs 自由能 m 0,m lnqG RT U L=-+8.自由能函数 9.热函函数 10.平衡常数对于D+E =G 的反响式中,f 为提出V 以后的配分函数,0ε∆为反响前后分子最低能级的差值.习题讲解1. 设有壹个由叁个定位的单维简谐振子组成的系统,这叁个振子分别在各自的位置上振动,系统的总能量为112h ν.试求系统全部可能的微观状态数. 解 振子的能量为 1ε(1,2,3,...)2h ννν⎛⎫=+= ⎪⎝⎭设系统中叁个单维简谐振子按以下能量方式分配至各能级:满足以上条件的分布有以下几种:(1) N 0=1, N 1=2微观状态数(2) N 0=1, N 1=1,N 3=1 微观状态数 236111t ==⨯⨯!!!!〔3〕N 0=2,N 4=1微观状态数 33321t ==⨯!!! 〔4〕N 1=2,N 2=1微观状态数 43321t ==⨯!!! 系统总的微观状态数2.假设有壹个热力学系统,当其熵值增加·K -1时,试求系统的微观状态的增加数占原有微观状态数的比值〔用1∆ΩΩ表示〕. 解 系统始态的熵 11ln S k =Ω 式中,k 就是Boltzmann 常数,2311.3810 J K k --=⨯⋅.系统终态的熵 22ln S k =Ω所以 21 ln ln 21S = S - S k k ∆=Ω-Ω代入数据 2320.4181.3810ln 1-Ω=⨯Ω 解得3102e 1⨯Ω=Ω系统微观状态数增加倍数为3102e 11⨯∆ΩΩ≈=ΩΩ 3.在海平面上大气的组成用体积分数可表示为:N 2(g)为0.78,O 2(g)为0.21,其他其他为0.01.设大气中各气体都符合Boltzmann 分布,假设大气柱在整个高度内的平均温度为220K.试求这叁类气体分别在海拔10 km 、60 km 和500 km 处的分压.已知道重力加速度为29.8 m s -⋅. 解 设大气再海平面的压力为p 0,在高度为h 处的压力为p ,则 式中,M 为气体的摩尔质量,g 为重力加速度.由气体的体积分数可得到各气体在海平面上的分压各气体的摩尔质量 ()()3131222810 kg mol ,O 3210 kg mol M N M ----=⨯⋅=⨯⋅ 假定其他气体全部为Ar,则()31Ar 39.94810 kg mol M --=⨯⋅在海拔10km 处可见,在海拔10 km 处,各气体的分压和摩尔分数和在海平面上的不相同.同理可得到在60 km 处,各气体的分压和摩尔分数 在500km 处,各气体的分压和摩尔分数4.对于双原子气体分子,设基态的振动能量为零,1x e x ≈+.试证明:〔1〕r U NkT =;〔2〕v U NkT =.证 双原子分子转动配分函数2r 28IkT q h πσ=双原子气体分子基态的振动能量为零时,振动配分函数5.设某分子的壹个能级的能量和简并度分别为-2111=6.110 J, 3g ε⨯=;另壹个能级的能量和简并度分别为-2122=8.410 J, 5g ε⨯=.请分别计算在300 K 和3 000 K 时,这两个能级上分布的粒子数之比12/N N .解 300 K 时[][]-21-21111112-232222exp /()36.1108.410exp exp 1.046exp /()5 1.3810300g kT N g N g kT g kT εεεε-⎛⎫-⨯-⨯⎛⎫==-=-= ⎪ ⎪-⨯⨯⎝⎭⎝⎭3 000K 时6.设有壹个由极大数目的叁维平动子组成的粒子系统,运动于边长为a 的立方容器内,系统的体积、粒子质量和温度的关系为220.108h kT ma =.现有两个能级的能量分别为221222927 , 48h h ma maεε==,试求处于这两个能级上粒子数的比值12N N . 解 叁维平动子的能级公式为只要满足222 18xy z n n n ++=,1ε值都相同,1ε能级的简并态 =1=14x y z n n n +=,,;=1=41x y z n n n +=,,;=4=11x y z n n n +=,,.简并度1=3g .只要满足222 27xy z n n n ++=,2ε值都相同,2ε能级的简并态 =1=15x y z n n n +=,,;=1=51x y z n n n +=,,;=5=11x y z n n n +=,,.简并度2=4g .根据Boltzmann 分布,粒子在两能级上的比值为7.将2(g)N 在电弧中加热,从光谱中观察到,处于振动量子数=1υ的第壹激发态上的分子数(=1)N υ,和处于振动量子数=0υ的基态上的分子数(=0)N υ之比为(=1)0.26(=0)N N υυ=.已知道2(g)N 的振动频率为1316.9910s -⨯.试计算:〔1〕2(g)N 的温度;〔2〕2(g)N 分子的平动、转动和振动能量;〔3〕振动能量在总能量中所占的分数.解 〔1〕量子数为υ的振子能量12h ευν⎛⎫=+ ⎪⎝⎭=0ν时 012h ευ==1υ时 032h ευ=即 3413236.62610 6.99100.26exp 1.3810/K T --⎛⎫⨯⨯⨯=- ⎪⨯⎝⎭2(g)N 的温度 2491.5 K T =〔2〕平动能 转动能 震动能将11342311318.3145 J mol K , 6.62610 J s , 1.3810 J K , 6.9910 s ,R h k v ------=⋅⋅=⨯⋅=⨯⋅=⨯ 2491.5 K T =,代入上式,得〔3〕振动能量在总能量中所占的分数8.设有壹个极大数目叁维平动子组成的粒子系统,运动于边长为a 的立方容器中,系统的体积,例子质量和温度的关系为试计算平动量子数为1,2,3和1,1,1两个状态上粒子分布数的比值.解 平动量子数为1,2,3时,其对应量子态有1,2,31,3,22,1,32,3,13,1,23,2,1,,,,,,ψψψψψψ即此能级的简并度16g =.此状态的能量为平动量子数为1,1,1时,其对应量子态只有1,1,1ψ,简并度为01g =,能量为所以,两个能级上的分布数之比为9.设某理想气体A,其分子的最低能级就是非兼并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级.〔1〕写出A 分子的总配分函数的表达式;〔2〕设kT ε=,求出相邻两能级上最概然分子数之比10/N N 的值;〔3〕设kT ε=,试计算在298K 时,1molA 分子气体的平均能量.解 〔1〕分子的基态能量00ε=,相邻的能级的能量1εε=,只考虑基态和相邻能级,忽略更高能级,分子的配分函数为 〔2〕()()()()1111000exp /2exp /20.73581exp 0exp /g kT kT kT N e N g kT εε---⎡⎤⎡⎤⎣⎦⎣⎦====⨯-⎡⎤⎣⎦〔3〕1mol 气体分子数为1010.7358,,10.7358L N N L N L +==+10.〔1〕某单原子理想气体的配位函数q 具有的函数形式为()q Vf T =,试导出理想气体的状态方程;〔2〕假设该单原子气体的配位函数q 的函数形式为3/222mkT q V h π⎛⎫= ⎪⎝⎭,试导出压力p 和热力学能U 的表达式,以及理想气体的状态方程.解 〔1〕()()(),,ln ln N T N TVf T f T q NkT q NkT NkT NkT V V Vf T V ⎧⎫∂⎡⎤∂⎪⎪⎛⎫⎣⎦====⎨⎬⎪∂∂⎝⎭⎪⎪⎩⎭ 上式即为理想气体的状态方程对1mol 理想气体,,N L Lk R ==则.m pV RT =〔2〕配分函数3/222mkT q V h π⎛⎫= ⎪⎝⎭,令()3/222mkT f T h π⎛⎫= ⎪⎝⎭,即()q Vf T =.所以即理想气体的状态方程.11.某气体的第壹电子激发态比基态能量高1400 kJ mol -⋅,试计算:〔1〕在300 K 时,第壹电子激发态所占的分数;〔2〕假设要使激发态分子所占的分数为10%,则这时的温度为多少. 解 〔1〕设基态能量为零,并忽略更高激发态,则 (2) 依题意,有由上式解出 42.1910 K T =⨯12.在300K 时,已知道F 原子的电子配分函数 4.288e q =,试求 〔1〕标准压力下的总配分函数〔忽略核配分函数的奉献〕;〔2〕标准压力下的摩尔熵值.已知道F 原子的摩尔质量为118.998 g mol M -=⋅. 解 〔1〕n e t q q q q =,忽略核配分函数n q ,电子配分函数 4.288e q =,平均配分函数 式中,m 为F 原子的质量,V 为体积.将231341.3810 J K , 6.62610 J S k h ---=⨯⋅=⨯⋅及m 、T 、m V 等数据代入平动配分函数表达式即得 总配分函数 〔2〕m t,m e,m S S S =+ 根据Sack -Tetrode 公式()3/2325ln 2mkT S Nk V Nh π⎧⎫⎡⎤⎪⎪=+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭23123134/,/, 6.02210 mol , 1.3810 J K , 6.62610 J S,m m M L V RT p N L k h ----====⨯=⨯⋅=⨯⋅18.3145 J K ,R -=⋅代入上式化简得摩尔平动熵表达式将53110 Pa,18.99810 kg mol ,300 K p p M T --===⨯⋅=代入上式得电子运动熵标准摩尔熵 13. 零族元素氩〔Ar 〕可看做理想气体,相对分子质量为40,取分子的基态〔设其简并度为1〕作为能量零点,第壹激发态和基态的能量差为∈,忽略其他高能级.〔1〕写出Ar 分子的总配分函数表达式;〔2〕设5kT ∈=,求在第壹激发态上最概然分布的分子数占总分子数的分数;〔3〕计算1mol Ar(g)在标准状态下的统计熵值.设Ar 分子的核和电子的简并度均等于1. 解 〔1〕[]()()0011exp /()exp /exp /i i iq g kT g kT g kT =-∈=-∈+-∈⎡⎤⎡⎤⎣⎦⎣⎦∑(2)()()()111exp /2exp 5 1.3312exp 5g kT N N q -∈⎡⎤-⎣⎦===+-% (3)Sack -Tetrode 公式对于1 mol 理想气体,粒子数,/,/,m N L m M L V RT p ===代入上式得将23123134116.02210 mol , 1.3810 J K , 6.62610 J s,8.3145 J mol K L k h R ------=⨯=⨯⋅=⨯⋅=⋅⋅等有关常数代入上述表达式,化简得()3/2m n,o e,o 15/32352ln ln ln ln ln ln 20.72322K Pa kg mol M T p k S R g g R L h π-⎡⎤⎛⎫⎛⎫=++-+++⎢⎥ ⎪ ⎪⋅⎝⎭⎢⎝⎭⎥⎣⎦将531n,o e,o 10 Pa,4010 kg mol ,300 K,1,1p p M T g g --===⨯⋅===代入上式,得14.设Na 原子气体〔设为理想气体〕凝聚成壹外表膜.(1)假设Na 原子可以在膜内自由运动〔即贰维平动〕,试写出此凝聚过程的摩尔平动熵变的统计表达式;〔2〕假设Na 原子在膜内不能运动,其凝聚过程的摩尔平动熵变的统计表达式又将如何" 解 (1)Na 原子气体凝聚成外表膜,由叁维运动变为贰维运动.壹个平动自由度的配分函数叁维平动配分函数 3/2t,322mkT q V h π⎛⎫= ⎪⎝⎭ 叁维平动熵 t,3t,m,35ln 2q S R L ⎛⎫=+ ⎪⎝⎭贰维平动配分函数 t,222mkT q A h π⎛⎫= ⎪⎝⎭贰维平动熵 t,2t,m,2ln2q S R L ⎛⎫=+ ⎪⎝⎭(2) 假设Na 原子在膜内不能运动,其摩尔平动熵为零,则15.试分别计算转动、振动和电子能级间隔的Boltzmann 因子exp kT ⎛⎫- ⎪⎝⎭£各为多少.已知道各能级间隔的值为:电子能级间隔约为100 kT,振动能级间隔约为10 kT,转动能级间隔约为 kT. 解 电子能级间隔的Boltzmann 因子 振动能级间隔的Boltzmann 因子 转动能级间隔的Boltzmann 因子16.设J 为转动量子数,取整数,转动简并度为〔2J +1〕.在240K 时,CO 〔g 〕最可能出现的量子态的转动量子数J 的值为多少"已知道CO(g)的转动特征温度t 2.8K Θ= 解 转动特征温度 2t 28h IkπΘ=转动能级公式 ()()2r 2ε118h J J J J kIπΘ=+=+ 根据Boltzmann 分布0j dN dJ=时的J 值就是CO 最可能出现的J 值,则17. H B r 分子的核间平衡距离 nm,试计算: ⑴ H B r 的转动特征温度;⑴ 在298 K 时,H B r 分子占据转动量子数J =1的能级上的分数; ⑴ 298 K 时,H B r 理想气体的摩尔转动熵. 解 ⑴ H B r 的折合质量 转动惯量⑵ HB r 转动配分函数 2r 2r8Ik q T hTπ=Θ= 转动能级 ()r r 1/J J k ε=+Θ转动简并度 21J +HB r 分子占据转动量子数J=1的能级上的分数 ⑶HBr 转动熵和I 的摩尔质量、转动特征温度和振动特征温度分别为)1mol - 3- 310-石球在298K 时:⑴H 2和I 2分子的平动摩尔热力学能、转动摩尔热力学能和振动摩尔热力学能; ⑵H 2和I 2分子的平动摩尔定容热容、转动摩尔定容和振动摩尔定容热容和总的摩尔定容热容〔忽略电子的核运动对热容的奉献〕. 解 ⑴r ,2ln V Nq NkT U T ∂⎛⎫=⎪∂⎝⎭H 2和I 2分子的平动摩尔热力学能 H 2和I 2分子的转动摩尔热力学能 振动摩尔热力学能⑵H 2和I 2分子的平动摩尔定容热容 H 2和I 2的转动摩尔定容r,m 11r ,m 2(H )8.3145 J mol K ,V U C R T--∂==⋅⋅∂振动摩尔定容热容 总的摩尔定容热容19.在298 K 和100 kPa 时,1 mol O 2〔g 〕(设为理想气体)放在体积为V 的容积中,试计算: ⑴O 2〔g 〕的平均配分函数q t ;⑵O 2〔g 〕的转动配分函数q r ,已知道其核间距为1207 nm;⑶O 2〔g 〕的电子配分函数q e ,已知道电子基态的简并度为3,忽略电子激发态的奉献; ⑷O 2〔g 〕的标准摩尔熵值.解⑴O 2〔g 〕的平均配分函数 3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭O 2分子的质量将231341.3810 J K , 6.62610 J s,=298 K k h T ---=⨯⋅=⨯⋅及m 、V m 等数平动配分函数表达式即得3/230t 22 4.3410mkT q V h π⎛⎫==⨯ ⎪⎝⎭⑵O 2〔g 〕的折合质量71.7= (同核双原子分子,对称数σ=2) ⑶q e =g e,0=3⑷忽略振动激发态时,常温下,双原子分子的振动熵数值非常小,可以忽略,即 根据Sackur -Tetrode 公式 将232334m /,/, 6.02210mol , 1.3810 J K , 6.62610 J s,R=8.3145 J mol K m M L V RT p N L k h -1--1--1-1====⨯=⨯⋅=⨯⋅⋅⋅代入上式化简得 t,m 135ln ln ln 20.72322K Pa kg mol M T pS R -⎡⎤⎛⎫=+-+⎢⎥⎪⋅⎝⎭⎣⎦ 将5-3-110 Pa,=3110 kg mol p p M ==⨯⋅代入上式得转动熵 ,ln ln ln r r r r V Nq S Nk q NkT Nk q Nk T ∂⎛⎫=+=+⎪∂⎝⎭电子运动熵〔忽略电子激发态〕 标准摩尔熵K 和100 K P a 时,求1 molNO(g)(设为理想气体)的标准摩尔熵值.已知道NO(g)的转动特征温度为2.42K,振动特征温度为2690K,电子基态和第壹激发态的简并度均为2,两能级间的能量差21ε 2.47310 J -∆=⨯ 解 平动熵 转动熵 振动熵 电动运动熵NO(g)在298K 及100kPa 时的摩尔熵K 和100 kPa 时,求1 molNO(g)(设为理想气体)的标准摩尔剩余熵值和标准摩尔量热熵值.由题20算出的统计熵值.已知道NO(s)晶体就是由N 2O 2贰聚分子组成,在晶体中有两种排列方式.解 量热熵就是以为在T→0K 时,分子只有壹种取向,对应S 0=0,然而N 2O 2分子有两种不同取向,1 molNO(即12 molN 2O 2)晶体就有2L/2种取向,所以热力学概率Ω=2L/2, 即标准摩尔剩余熵值为 向,1 mol NO,〔即12molN 2O 2〕,晶体中就有2L/2 种取向,所以热力学概率Ω=2L/2, 即标准摩尔剩余熵值为由20题算出NO 〔g 〕的统计熵值 所以NO 得标准摩尔量热熵值22.在298 K 和100 kPa 时,求1mol SO 2 (g)(设为理想气体)的标准摩尔热力学能,焓,Gibbs 自由能,Helmhotls 自由能、熵、定压摩尔热能和定容摩尔热能等热力学函数.已知道SO 2的摩尔质量M 〔SO 2〕=3×10- 3 kg·mol - 1,σ1 =1151.4 cm - 1, σ2 =517.7 cm - 1 , σ3 =1361.8 cm - 1; 叁个转动惯量分别为I X ×10- 46 kg∙ m 2, I y ×10- 46 kg∙ m 2, I z ×10- 46 kg∙ m 2 SO 2 (g)分子的对称数为2,忽略电子和核的奉献. 解: SO 2 分子的质量 平动配分函数SO 2分子就是非线性分子,其转动配分函数 T =298 K 时 q r 振动局部利用c νσ=〔c =3×108 m •s -1〕将波数转换成频率,131 3.4510ν=⨯ s -1,132 1.5510ν=⨯s -1,133 4.0810ν=⨯ s -1.令112233/(),/(),/()x h kT x h kT x h kT ννν===.[]3112311111.004 1.090 1.001 1.0951exp /()1exp()1exp()1exp()v i i q h kT x x x ν====⨯⨯=--------∏[]3v,m 1ln 1exp() 2.875 J mol K exp()1i i i i x S R x x -1-1=⎧⎫=---+=⋅⋅⎨⎬-⎩⎭∑=v,m V,m,0631.01 J mol K U U -1-1-=⋅⋅ 总的热力学函数11mt,m r,m v,m 248.2 J mol K SS S S --=++=⋅⋅311v,m v,m,0t,m r,m v,m v,m,08.06410 J mol K U U U U U U ---=++-=⨯⋅⋅=411v,m v,m,0t,m r,m v,m v,m,0 1.05410 J mol K H U H H H U ---=++-=⨯⋅⋅K 时HI , H 2, I 2的标准Gibbs 自由能函数.已知道HI 的转动特征温度为9. 0 K,振动特征温度为3200 K ,摩尔质量M (HI)=127.9 X 10-3 kg·mol -1. I 2在零点时的总配分函数为q 0(I 2)=q t,0q r,0q v,0=4.143 X 1035, H 2在零点时的总配分函数为q 0(H 2)= q t,0q r,0q v,0=1.185 X 1029. 解HI 分子的质量平动配分函数 3/231t 22 3.4610mkT q h π⎛⎫==⨯ ⎪⎝⎭HI 分子就是线性分子,其转动配分函数振动局部()()()2V ν8111.000021exp /1exp /1exp 3200/298IkT q h kT T πν====----Θ--⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦HI 的总配分函数 ()0t,0r,0ν,03133HI 3.461033.111 1.14610q q q q ==⨯⨯⨯=⨯HI 的标准Gibbs 自由能函数()()33m m 1111230 1.14610ln 8.3145ln J mol K 177.65 J mol K ?6.02210G T H q R TL ----⎡⎤-⎛⎫⨯=-=-⨯⋅⋅=-⋅⋅⎢⎥ ⎪⨯⎝⎭⎣⎦I 2在零点时的总配分函数为 ()2t,0r,0ν,03535I =10=4.14310q q q q ⨯⨯I 2的标准Gibbs 自由能函数H 2在零点时的总配分函数为()2t ,0r,0ν,029H 1.18510q q q q ==⨯H 2的标准Gibbs 自由能函数24. 计算298K 时HI , H 2, I 2的标准热焓函数.已知道HI , H 2, I 2的振动特征温度分别为3200K 、6100K 和610K.解()(),mm 0ln N VH T U q RT R TT -∂⎛⎫=+ ⎪∂⎝⎭ 平动局部3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭,t ,ln 32N V q T T ∂⎛⎫= ⎪∂⎝⎭,()()t,m t,m 052H T U R T -= 转动局部振动局部HI:()()()()()mm 03200/298exp 3200/298521exp 3200/298H T U R RR T-⨯-=++-- H 2:()()()()()m m 06100/298exp 6100/298521exp 6100/298H T U R RR T-⨯-=++-- I 2:()()()()()m m 0610/298exp 610/298521exp 610/298H T U R RR T-⨯-=++--25.计算298K 时,如下反响的标准摩尔Gibbs 自由能变化值和标准平衡常数. H 2(g)+I 2(g)2HI(g)已知道298K 时,HI , H 2, I 2的有关数据如下:m,T m,0 K 11)/ J mol K G H T ---⋅⋅m,T m,0 K 11)/ J mol K H T ---⋅⋅m,T 1mol - 0解26. 计算300K 时,如下反响的标准平衡常数. H 2(g)+D 2(g)2HD(g)已知道298K 时,1656.9 J mol r m U -∆=⋅,HD 、H 2、D 2的有关数据如下:解 对于反响前后分子数不变的反响,则式中,f 就是提出V 以后的分子总配分函数,()t r v n e f q q q q q ='.提出V 以后的平动配分函数其间只有摩尔质量M 和物质种类有关,和其他的量对各物质都相同,可以在平衡常数表达式中消去,所以平动局部为转动配分函数 2r 28IkTq h πσ=只有I 和σ和物质种类有关,所以转动局部成为 振动配分函数根据v c σ=,将题给的波数σ转换成频率291H 1.3110s v -=⨯,91HD 1.1410s v -=⨯,281D 9.2810s v -=⨯将数据代入振动配分函数,计算得核配分函数在化学反响中可不考虑,大多数电子处于基态,配分函数1e q =.H 2(g) + D 2(g)2HD(g)的1r m656.9J mol U -∆=⋅.所以27.计算298K 时,如下两个反响的标准平衡常数.已知道自由能函数和0 K 时的焓变如下:)m,m,0K 11/J mol KTH T---⋅(m,0K /KJ mol ⋅解 (1) CH 4(g) + H 2O(g)CO(g) + 3H 2(g)28.计算298 K 时,如下反响的标准平衡常数.已知道热力学数据如下:(m,0K /)m,m,0K 11/J mol K TU T---⋅⋅)m,m,0K 11/J mol K TH T---⋅⋅解 ()m m,0K 1102.19182.23168.82155.53J mol G H T -⎛⎫-∆=-+--⋅ ⎪⎪⎝⎭29.用配分函数计算298 K 时,如下反响的标准平衡常数.已知道反响的()1r m 08.03kJ mol U -∆=-⋅,在298 K 时的参数如下表所示,忽略电子和核的奉献.解对于反响前后分子数不变的反响,则式中,f 就是提出V 以后的分子的总配分函数,()t r v n e f q q q q q ='.忽略核和电子的奉献,则 提出V 以后的平动配分函数其间只有摩尔质量M 和物质种类有关,其他的量对各物质都相同,所以平动局部成为 转动配分函数σ就是分子对称数,所以转动局部成为 振动配分函数H 2 (g) + I 2 (g)2HI(g)的()1r m 08.03kJ mol U -∆=-⋅.所以30. 计算5000 K 时,反响 N2(g)2N(g) 的标准平衡常数.已知道 N2(g) 分子的转动特征温度r 2.84K Θ=,振动特征温度v 3350K Θ=,解离能1708.35kJ mol D -=⋅,N2(g)的电子基态就是非简并的,而N 原子基态的简并度为4.解 ()()()()2m m 2N N 2m m m N N 2N N 2ln ln U U q q G G G RT L RT L RT ⎧⎫⎡⎤⎪⎪∆=-=---+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭所以 ()2222N N m m p N N /1exp exp /q L q U U K q L RT q RT L⎛⎫⎛⎫∆∆=-=- ⎪ ⎪⎝⎭⎝⎭ N 就是单原子,只需考虑电子和平动配分函数.2N 分子为双原子分子,所以要考虑电子、平动和振动配分函数,2N 的对称数2σ=. 将510,5000p Pa T K ==及其他常数代入,计算得自 测 题1. 在N 个NO 分子组成的晶体中,每个分子都有两种可能的排列方式,即NO 和ON,在 0 K 时该体系的熵值为 ( )A. 00S =B. 0ln 2S k =C. 0ln 2S Nk =D. 02ln S k N =2. 分子的平动、转动和振动的能级间隔的大小顺序就是 〔 〕A .振动能>转动能>平动能 B. 振动能>平动能>转动能 C. 平动能>振动能>转动能 D. 转动能>平动能>振动能3. 在以下热力学函数的单粒子配分函数q 统计表达式中,和系统的定位或非定位无关的就是 ( )A. G 、F 、SB. U 、H 、SC. U 、H 、v CD. H 、G 、v C4. 能量零点的不同选择对热力学量不产生影响的就是 〔 〕A. U 、H 、GB. U 、H 、S 、v CC. S 、v CD. S 、F 、v C5. 在298 K 和100kPa 时,摩尔平动熵最大的气体就是 〔 〕 A. H 2 B. CH 4 C. NO D. CO 26. 叁维平动子的平动能就是2t 2/368h E mV =,能级的简并度为 〔 〕A. 1B. 2C. 3D. 67. 双原子分子以平衡位置为能量零点,其振动的零点能等于 〔 〕 A. kT B.12kT C. h υ D. 12h υ 8. 当两能级差21kT εε-=,且简并度121,3g g ==,两能级上最概然分布时分子数之比21/N N 为 〔 〕 A .3kT e B. 3kT e - C. 13e - D. 13e9. 300 K 时,分布在J =1转动能级上的分子数就是J =0能级上的0.1e -倍,则分子的转动特征温度就是 〔 〕 A . 10 K B. 15 K C. 30 K D. 300 K10. CO 和2N 分子的质量m 及转动特征温度r Θ根本相同,振动特征温度v Θ均大于298 K,电子又都处于非简并的基态,298 K 时这两种气体的标准摩尔统计熵的差()()m m 2CO N S S -约为 〔 〕 A .0 B. ln2R C. ()ln 1/2R D. ()v r ln /R ΘΘ11. 1 mol 纯物质的理想气体,设分子的某内部运动形式只有叁个可及的能级,它们的能量和简并度分别为1122330,0;/100K,g 3;/300K,g 5g k k εεε======.其间k 为Boltzmann 常数. 〔1〕 计算200 K 时的分子配分函数;〔2〕 计算200 K 时能级2ε上的最概然分子数;〔3〕 当T →∞,求出叁个能级上的最概然分子数的比.12. 系统中假设有2%的2Cl 分子有振动基态跃迁到第壹振动激发态,分子的振动波数115569cm υ-=,试估算系统的温度.13.设某独立定域子系统的分子只有两个能级0和ε,请计算当T →∞时 1 mol 该物质的平均能量和熵 14.用统计力学方法求 1 mol 氦气由1T 、1V 变化到2T 、2V 的S ∆和U ∆〔设电子不激发〕. 15. 某混合理想气体系统由x N 个X 分子和Y N 个Y 分子组成,X 、Y 分子的配分函数各为X q 和Y q .〔1〕 试导出该混合系统的Helmholtz 自由能〔2〕用统计热力学方法导出该混合理想气体的状态方程和Dalton 分压定律. 16. 证明对双原子分子,在p=101.25 KPa 时()v,m ln 11x x x S R e e -⎛⎫=-- ⎪-⎝⎭〔式中 h x kT υ=〕自 测 题 参 考 答 案1. C.2. A.在通常温度下,平动、转动、振动的能级间隔分别约为1910kT -、210kT -、10kT .3. C.在热力学函数中,凡和S 无关的函数,其值均和体系的定位或非定位关系,H 、S 、v C 和 S 无关,G 和S 有关.4. C.能量零点的不同选择,对U 及和U 有关的函数都有影响.选择不同的能量零点,每摩尔有影响的状态函数相差0U L ε=.5. D.根据Sackur -Tetrode 公式可知,平动熵()3/2325ln 2mkT S Nk V Nh π⎧⎫⎡⎤⎪⎪=+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭,m 越大,平动熵越大. 6. C. ()2222222t2/3,68xy z x y z nn n h E n n n mV++=++=,叁种简并态分别为1,1,2;x y z n n n ===1,2,1;x y z n n n === 2,1,1;x y z n n n ===.7. D. 8. C.1222111exp 3N g e N g kT εε--⎛⎫=-= ⎪⎝⎭ 9. B. ()()2r r 2118h J J J J k Iεπ=+=+Θ10. B.CO 和2N 分子的质量m 大体相同,平动熵大体相同,振动熵非常小,也大体相同,两物质的转动特征温度也根本相同,但不同的就是转动特征数σ,因此两物质的统计熵差值为 11. 〔1〕 ()()()112233exp /exp /exp /q g kT g kT g kT εεε=-+-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 〔2〕 ()()2223232exp /3exp 100/2006.02210 2.785103.935g kT N Nqε-⎡⎤-⎣⎦==⨯⨯=⨯〔3〕 T →∞时 ,()()exp /exp 01kT ε-→=⎡⎤⎣⎦ 所以 123123::::1:3:5N N N g g g == 12. 由Boltzmann 分布定律得()()1100exp /0.020.98exp /kT N N kT εε-⎡⎤⎣⎦==-⎡⎤⎣⎦,由振动能级公式知12h ευυ⎛⎫=+ ⎪⎝⎭,基态到第壹振动激发态的能级间隔为h υ,所以将有关数据代入上式,解出 2062K T =13. ()()()12exp /exp /1exp /q kT kT kT εεε=-+-=+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦当T →∞时当T →∞时14. He 就是单原子气体,当电子不激发时,其内部运动只有平动运动. 平动熵 热力学能15. 〔1〕理想气体就是非定位子系统,()ln /!N A kT q N =-,混合体系的Helmholtz 自由能()()()()X Y X X Y Y X X Y Y ln /!ln /!ln /!/!N N N NA A A kT q N kT q N kT q N q N ⎡⎤=+=--=-⎣⎦〔2〕转动、振动配分函数和体积无关,只有平动配分函数对压力有奉献,则 因为 X Y N N N =+ 所以 X Y X Y N kT N kTNkT p p p V V V==+=+ 即Dalton 分压定律.16. 平动配分函数 3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭将231231346.02210mol , 1.3810J K , 6.62610J s,L k h ----=⨯=⨯⋅=⨯⋅11R 8.3145J mol K --=⋅⋅,101.25kPa p =代入上式得当100kPa p =时 t,m 135ln ln 1.15422K kg mol MT S R -⎡⎤⎛⎫=+-⎢⎥⎪⋅⎝⎭⎣⎦ 转动配分函数 2t 28IkTq h πσ=振动配分函数 ()v 1111exp /xq e h kT υ-==---⎡⎤⎣⎦ 电子配分函数 0e e,0exp q g kT ε-⎛⎫=⎪⎝⎭。
物理化学第七章统计热力学基础

热力学第二定律的实质是揭示了热量 传递和机械能转化之间的方向性。
VS
它指出,热量传递和机械能转化的过 程是有方向的,即热量只能自发地从 高温物体传向低温物体,而机械能只 能通过消耗其他形式的能量才能转化 为内能。
热力学第二定律的应用
在能源利用领域,热力学第二定律指导我们合理利用能源,提高能源利用效率。
优势
统计热力学从微观角度出发,通过统计方法描述微观粒子的运动状态和相互作用,能够 更深入地揭示热现象的本质和内在规律。
局限性
统计热力学涉及到大量的微观粒子,计算较为复杂,需要借助计算机模拟等技术手段。
统计热力学与宏观热力学的关系
统计热力学和宏观热力学是相互补充的 关系,宏观热力学提供整体的、宏观的 视角,而统计热力学提供更微观、更具 体的视角。
03
热力学第一定律
热力学第一定律的表述
热力学第一定律的表述为
能量不能无中生出,也不能消失,只能从一种形式转化为另一种 形式。
也可以表述为
封闭系统中,热和功的总和是守恒的,即Q+W=ΔU。其中Q表示传 给系统的热量,W表示系统对外做的功,ΔU表示系统内能的变化。
热力学第一定律的实质
热力学第一定律实质是能量守恒定律在封闭系统中的具体表现。 它表明了在能量转化和传递过程中,能量的总量保持不变,即能 量守恒。
掌握理想气体和实际气 体的统计描述,理解气 体定律的微观解释。
了解相变和化学反应的 统计热力学基础,理解 热力学第二定律和熵的 概念。
02
统计热力学基础概念
统计热力学简介
统计热力学是研究热力学系统 在平衡态和近平衡态时微观粒 子运动状态和宏观性质之间关 系的学科。
它基于微观粒子的运动状态和 相互作用,通过统计方法来描 述系统的宏观性质,揭示了微 观结构和宏观性质之间的联系 。
07章_统计热力学基础 课件

t3 = C41 C31
= 4!/(2!1!1!)
= 12
24
=4
2019/3/31
一、定位系统的最概然分布
N! ti Ni !
i
这是一种分布的微态数,在满足这两个条 件下,可以有各种不同的分布,则总微观状态 数为: N! ti Ni N Ni N N i ! i i i N U N U ii ii
i
t — 分布方法数 N — 总粒子数 Ni — 分布于各能级上的粒子数
2019/3/31
临沂大学化学化工学院
23
一、定位系统的最概然分布
例 4个不同粒子(可分辨),在不同能级上分布, 体系总能量3h,分布如下:
ε3 = 3hν
ε2 = 2hν
ε1 = hν
ε0 = 0 t1 = C41 = 4!/(1!3!) t2 = C43 = 4!/(3!1!) =4
N! tm N i!
i
ln tm N ln N N Ni* ln Ni* Ni*
-----Stirling公式 * * * S k N ln N N Ni ln Ni Ni i i
2019/3/31
临沂大学化学化工学院
1.定位系统的微观状态数 一个由 N 个可区分的独立粒子组成的宏观 系统(U,V,N为定值),在量子化的能级上可
以有多种不同的分配方式。
设其分配方式为:
能级: 1, 2 , 3 , , i 一种分布方式: N1,N 2,N 3 , ,N i
' ' 另一种分布方式: N1' ,N 2 ,N 3 , ,N i'
第七章统计热力学基础

练习7.7一个U,N,V确定的系统,任何一种分布均不能随意的,而必须满足①与②两个条件。
练习7.8对于一定量的某气态、液态、固态物质,其微观状态数的排序是。
练习7.9最概然分布的微观状态数随粒子增加而①,该分布出现的概率随粒子数增加而②。
自测7.15转动特征温度定义为( )。
(A) (B) (C) (D)
自测7.16双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为()。
(A)0(B)1(C)<0(D)>0
自测7.17对于N个粒子构成的定位独立可辨粒子系统熵的表达式为( )。
(A) (B)
(C) (D)
自测7.18对理想气体分子的平动,下面的结果中正确的是( )。
自测7.23已知CO与N2的质量、转动特征温度基本相同,若电子运动与振动能级均未开放,则()。
(A) (B) (C) 与 无法比较(D)
自测7.241mol双原子分子理想气体,当其温度由T1升到2T1时,若其转动惯量不变,则其转动熵变将是()。
(A) 5.763J·mol1K1(B)RlnT1
(C)RlnT2(D) 11.526J·mol1K1
练习7.22一个体积为V,粒子质量为m的离域子系统,其最低平动能级和其相邻能级间隔为①。若平动能级的 ,该能级的统计权重 是②。
练习7.23NH3分子的对称数是3,BF3分子的对称数是。
练习7.24已知HI的转动惯量I为4.31×1045kg·m2,h=6.626×1034J·s,k=1.38×1023J·K1,则其转动特征温度是。
(C)它的定义是 (D)它不是状态函数
自测7.32用J代表分子具有的各独立运动项目,分子在能级i的统计权重gi为下式中的()
统计热力学

第七章统计热力学基础热力学:基础:三大定律研究对象:(大量粒子构成的)宏观平衡体系研究方法:状态函数法手段:利用可测量量p-T-V+C p,m和状态方程结果:求状态函数(U,H,S,G,等)的改变值,以确定变化过程所涉及的能量和方向。
但是,热力学本身无法确定体系的状态方程,需借助实验。
很显然,体系的宏观热力学性质取决于其微观运动状态,是大量粒子微观运动的统计平均结果。
热力学宏观性质体系的微观运动状态统计热力学统计热力学:基础:微观粒子普遍遵循的(量子)力学定律对象:大量粒子所构成的体系的微观运动状态工具:统计力学原理目的:大量粒子某一性质的微观统计平均的结果(值)与系统的热力学宏观性质相关联。
7.1概述统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann给出了宏观性质—熵(S)与微观性质—热力学几率(Ω)之间的定量关系:S k=Ω。
ln热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的lnΩ≈ln W D,max。
所以,S=k ln W D,max这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
《统计热力学基础》课件

分布函数的定义
分布函数是描述系统微观状态分布的函数,它表示在某一时刻, 系统中的粒子在各个状态上的概率分布情况。
微观状态数的概念
微观状态数是描述系统内部可能的状态数量的一个概念,它与系统 的宏观状态和微观状态有关。
分布函数的应用
通过分析分布函数,可以了解系统的微观结构和性质,从而更好地 理解系统的宏观行为和变化规律。
02
概率分布
概率分布用于描述粒子集合中不同微观状态的概率分布情况。最常见的
概率分布有玻尔兹曼分布和麦克斯韦-玻尔兹通过概率分布可以计算各种物理量的平均值,如粒子的平均速度和平均
动能。同时,涨落描述了粒子集合中物理量的偏离平均值的情况。
统计热力学的发展历程
早期发展
经典统计热力学
统计热力学的重要性
在科学研究和工程应用中,统计热力学提供了理解和预测物质性质、能量转换 和热力学过程的基础理论框架。它对于化学工程、材料科学、环境科学等领域 具有重要意义。
统计热力学的基本概念
01
微观状态和宏观状态
微观状态是指单个粒子的状态,如位置和速度;宏观状态是指大量粒子
集合的整体状态,如温度、压力和体积。
05
02
详细描述
热力学的第二定律指出,在一个封闭系统中 ,自发过程总是向着熵增加的方向进行,即 熵总是向着增加的方向变化。
04
详细描述
根据热力学的第二定律,热机的效率 不可能达到百分之百,因为总会有一 些能量以热的形式散失到环境中。
06
详细描述
热力学的第二定律还排除了第二类永动机的存 在,即不能从单一热源吸收热量并将其完全转 化为机械功而不产生其他影响。
熵的概念和性质
1 2
熵的定义
07章_统计热力学基础a

2
ChemHome
h2 6 当 i 8mV 3/2
nx
1
ny
1
nz
2
1 2
2 1
1 1
这时,在相同的i情况下,有三种不同的微 观状态,则gi=3 。
Physical Chemistry
ChemHome
推广到N个可区分的分子,分子能级是1, 2, 1,…, I,各能级又有g1, g1,…, gi,所以在U,V,N 一定的条件下,所有可能分布的方式为
i
h
2 2 2 2 ( n x n y nz )
8mV 3 / 2
式中n x , n y , n z 分别是在x, y, z轴方向的平动量子数,
h 3, 则n x 1, n y 1, n z 1, 只有一种可能 3/ 2 8mV 的状态, 则gi 1, 是非简并的。 i
物质结构 基本常数(核间距、 键角、 振动频率等) 分子配分函数 热力学性质。
计算
基本假定
实验光谱数据
统计热力学是统计物理学的一个分支。
Physical Chemistry
ChemHome
方法的优点
1. 将体系的微观性质与宏观性质联系起来。 2. 不需要进行复杂的低温量热实验,就能求 得相当准确的熵值。 3. 对简单分子的计算是满意的。
ChemHome
根据揭示熵本质的Boltzmann公式
S k ln k ln tm
得出:
S kN ln e
i kT
U T
i kT
A U TS kNT ln e
Physical Chemistry
134-154 第七章统计热力学基础

则陈列的情况 n = 5! 32 23 = 720 3!2!
3.设某分子有 0,1ε,2ε,3ε 四个能级,系统共有 6 个分子,试问
(1)如果能级是非简并的,当总能量为 3ε 时,6 个分子在四个能级上有几种分布方式?
总的微观状态数为多少?每一种分布的热力这概率是多少?
(2)如果 0,1ε 两个能级是非简并的,2ε 能级的简并度为 6,3 能级的简并度为 10,则
有几种分布方式?总的微观状态数为多少?每一种分布的热力这概率是多少?
答:(1)能级是非简并的,则每一个能级只与一个量子状态相对应.
在 0,1ε,2ε,3ε 四个能级上六个分子,总能量为 3ε
排列方式
0
1ε
2ε
3ε
总能量
1
5
1
3ε
2
4
1
1
3ε
3
3
3
3ε
① 则总共有 3 种分布方式
② 根据 t = N ! Ni!
=
20 260
=
0.077
4.混合晶体可看作在晶格点阵中,随机放置 NA 个 A 分子和 NB 个 B 分子组成,试证明
( ) (1)分子能够占据格点的花样数为: = NA + NB !
NA !+ NB !
(2)若 NA
=
NB
=
N 2
,利用
Stirling
公式证明 = 2N
(3)若 NA = NB = 2 ,利用上式计算 = 24 =16
题中已知 =1.15 ,与 CO2 为线性分子计算的 γ 值相近.
7.指出下列分子的对称数(. 1)O2;(2)CH3Cl;(3)CH2Cl2;(4)C6H6(苯);(5)C6H5CH3(甲
化学工业出版社物理化学答案第7章 统计热力学基础

第七章 统计热力学基础习题详解1. (1) 10个可分辨粒子分布于 n 0=4,n 1=5,n 2=1 而简并度 g 0=1,g 1=2,g 2=3 的 3 个能极上的微观状态数为多少?(2) 若能级为非简并的,则微观状态数为多少?。
解: (1)451D g 123W =N =10=120960451i n i i n ⋅⋅Π⋅⋅!!!!!!(2)D 110W =N ==1260451i n Π⋅⋅!!!!!!2. 某一分子集合在100 K 温度下处于平衡时,最低的3个能级能量分别为 0、2.05×10-22J 和 4.10×-22J ,简并度分别为1、3、5。
计算3个能级的相对分布数 n 0:n 1:n 2。
解:-22-2202.051011.38101001==1:2.593N N e⎛⎞−×⎜⎟⎜⎟××⎝⎠⋅()-22-222.05 4.10101.3810100123==0.6965N e N ⎡⎤−×−⎢⎥××⎢⎥⎣⎦⋅123=1:2.59:3.72N N N ::3. I 2分子的振动能级间隔是0.42×10-20 J ,计算在25℃时,某一能级和其较低一能级上分子数的比值。
已知玻尔兹曼常数k =1.3806×10-23 J·cm -1。
解:根据Boltzmann 分布对于一维谐振子,能级为非简并的,即+1==1i i g g ,因此 I 2分子-201+1-230.4210=exp =exp =0.360T1.380610298i+i i i N g N g k ε⎛⎞−∆−×⎛⎞⎜⎟⎜⎟××⎝⎠⎝⎠4. 一个含有N 个粒子的系统只有两个能级,其能级间隔为ε,试求其配分函数q 的最大可能值是多少?最小值是多少?在什么条件下可能达到最大值和最小值?设ε=0.1 k T 。
第七章 统计热力学基础

• 统计热力学的研究对象同热力学,均为众多粒子组成 的宏观体系。宏观性质是众多粒子微观性质的“平均
表现” 。统计热力学的研究目的是采用统计方法以求 出这些“平均值” 。
• 统计热力学方法是在统计原理的基础上,运用力学规 律对单个粒子的微观量求统计平均值,以此得宏观性
数学概率是指任一偶然事件A出现的机会或可能性的大 小。
任一种体系分布 D 的概率 P(D)
每一微态的概率为:
热力学概率 WD 不同于数学概率 P(D),换言之, WD≥1,但0≤P(D)≤1
16
• 分布的微态数 WD的计算
(ⅰ)玻耳兹曼系统(定域子体系) (ⅱ)玻色系统(离域子体系)
17
• 例1 试列出分子数为 4,总能为 3 单位的体系中各 种分布方式和实现这类分布方式的热力学概率。 解:令 按题意要求
本章中着重讨论独立子体系 (二)定域子体系与离域子体系
3
“定域子体系”(localized sub-system)也称为“可 分辨粒子体系”(distinguishable sub-system),体 系中粒子运动是定域化的。在晶体中,粒子在固定的晶格
位置上作振动,每个位置可以想象给予编号而加以区分,所以 定位体系的微观态数是很大的。
“离域子体系”( non-localized sub-system)也
称为“不可分辨粒子体系”或“等同粒子体系”,体 系中粒子运动是非定域化的。气体的分子,总是处于混乱
运动之中,彼此无法分辨,所以气体是非定域体系,它的微观 状态数在粒子数相同的情况下要比定位体系少得多。
4
河工大 物化课件 07章_统计热力学基础

独立粒子体系是本章主要的研究对象
上一内容 下一内容 回主目录
返回
独立粒子体系和相依粒子体系
相依粒子体系(assembly of interacting particles) 相依粒子体系又称为非独立粒子体系,体系 中粒子之间的相互作用不能忽略,体系的总能量 除了包括各个粒子的能量之和外,还包括粒子之 间的相互作用的位能,即:
上一内容
下一内容
回主目录
返回
统计热力学的研究方法
物质的宏观性质本质上是微观粒子不停地运 动的客观反应。虽然每个粒子都遵守力学定律, 但是无法用力学中的微分方程去描述整个体系的 运动状态,所以必须用统计学的方法。 根据统计单位的力学性质(例如速度、动量、 位置、振动、转动等),经过统计平均推求体系 的热力学性质,将体系的微观性质与宏观性质联 系起来,这就是统计热力学的研究方法。
上一内容 下一内容 回主目录
返回
统计热力学的优缺点
该方法的优点: 将体系的微观性质与宏观性质 联系起来,对于简单分子计算结果常是令人满意 的。不需要进行复杂的低温量热实验,就能求得 相当准确的熵值。 该方法的局限性:计算时必须假定结构的模型, 而人们对物质结构的认识也在不断深化,这势必 引入一定的近似性。另外,对大的复杂分子以及 凝聚体系,计算尚有困难。
物理化学电子教案—第七章
上一内容
下一内容
回主目录
返回
第七章 统计热力学基础目录
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 概论 Boltzmaann统计 Bose-Einstein统计和Fermi-Dirac统计 配分函数 各配分函数的求法及其对热力学函数的贡献 晶体的热容问题 分子的全配分函数 $ 用配分函数计算 ∆ r Gm和反应的平衡常数
《统计热力学基础》课件

本课程将介绍统计热力学的基础知识,涵盖热力学基本概念、状态方程和物 态方程、热力学函数与热力学势以及热力学基本理论的应用。
课程介绍
1 深入浅出
通过生动的例子和实际应用案例,帮助你理解统计热力学的基本原理。
2 互动体验
通过小组讨论和实验操作,全方位提升学习效果。
3 实用导向
传统热力学 基于宏观观测的经验定律 通过物理量之间的关系描述系统行为 适用于宏观系统的简化模型
热力学的基本概念和定律
热力学系统
描述研究对象的物质和能 量的组合。
热力学平衡
系统内各部分的宏观性质 保持不变的状态。
能量守恒定律
能量不可被创造或消灭, 只能在系统内部进行转化。
状态方程与物态方程
状态方程
掌握统计热力学的基础知识,为未来学习和研究打下坚实基础。
热力学基础概述
定义
热力学研究能量转化和能量 传递的规律,是物质宏观性 质的理论基础。
研究对象
包括热力学系统、热力学平 衡和热力学过程等。
重要原理
能量守恒定律、熵增定律、 热传导定律等。
统计热力学与传统热力学的关系
统计热力学 基于微观粒子的统计规律 通过概率和统计分布描述系统行为 提供了更深入的理解和预测能力
工程热力学
应用热力学理论解决工程问 题,如热力学循环分析和能 量转换。
化学热力学
研究化学反应的热效应和热 力学平衡,如反应焓变和反 应平衡常数。
生物热力学
探索生物系统中能量转化和 热平衡的原理。
描述了物质状态与温度、压力 和体积等物理量的关系。
理想气体方程
描述了理想气体状态的物态方 程。
液体状态方程
用于描述液体的状态和性质。ห้องสมุดไป่ตู้
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ChemHome
三、统计热力学的基本假定 指某一件事或某一种
状态出现的机会大小。
(1)概率 (2)热力学概率
体系在一定的宏观状 态下,可能出现的微 观总数,通常用表示。
Physical Chemistry
ChemHome
(3)等概率假定
Байду номын сангаас
对于U, V 和 N 确定的某一宏观体系,任何一个可 能出现的微观状态,都有相同的数学概率,所以这假 定又称为等概率原理。
ChemHome
二、统计系统的分类
(1)按粒子分辩或区分情况分类
定位体系
特点 : #又称定域子体系 ; # 粒子可以区分 ; # 微观态数很大 。
例如,在晶体中,粒 子在固定的晶格位置 上作振动,每个位置 可以想象给予编号而 加以区分。
Physical Chemistry
ChemHome
非定位体系
然的分布(微观状态数分布最多的一种)为:
N
* i
ei
式中和是Lagrange乘因子法中引进的待定因子。
Physical Chemistry
ChemHome
,可以通过数学推导得到。此部分省略。
N
* i
N
ei / kT ei / kT
i
最概然分布 公式
Physical Chemistry
ChemHome
Physical Chemistry
ChemHome
(3)统计理论的发展
经典统计 1900年Plonck量子论 量子统计 Boltzman发n 展和改进 Boltzmann统计 1924年 量子力学 改进了统计方法Bose Einste in统计。
Fe rmi Dirac统计
Physical Chemistry
ChemHome
7.1概论
一、统计热力学的研究方法和目的 (1)统计热力学的研究方法
统计单位的力学性质 速度、动 量、 位置、 振动、转动等 统计平 均热力学性质 微观和宏观性质相联系 。
Physical Chemistry
ChemHome
(2)统计热力学的基本目的
物质结构基于“基本 假定” 根据“实验 光谱数据” 基本常数(核间距、 键角、 振动频率等) 计算分子配分函数 热力学性质。
ChemHome
物理化学第二学期总安排
章次 7 8 9 10
11-12 13
14
内容 统计热力学基础 电解质溶液 可逆电池的电动势及其应用 电解与极化作用
化学动力学基础(一、二) 表面物理化学 习题课
胶体分散系统和大分子溶液
总复习
计划课时 8 6 10 6 12 8 2 6 2
Physical Chemistry
ChemHome
Physical Chemistry
ChemHome
第七章 统计热力学基础
7.1 概论 7.2 Boltzmann 统计
7.4 配分函数
7.5 各配分函数的求法及对热力学函数的贡献
7.7 分子的全配分函数 7.8 用配分函数计算标准Gibbs自由能变和反 应 的平衡常数
Physical Chemistry
统计热力学是统计物理学的一个分支。
Physical Chemistry
ChemHome
方法的优点 1. 将体系的微观性质与宏观性质联系起来。 2. 不需要进行复杂的低温量热实验,就能求 得相当准确的熵值。 3. 对简单分子的计算是满意的。
方法的局限 1. 模型本身具有结果近似性。 2. 对较为复杂的分子,难以获得准确结果。
特点 : #又称离域子体系 ; # 粒子不可以区分 ; #相同情况下 ,微观态数比定位系统少 得多。
例如,气体的分 子,总是处于混 乱运动之中,彼 此无法分辨,所 以气体是非定位 体系。
Physical Chemistry
ChemHome
(2)按粒子之间作用情况分类
近独立粒子体系
特点 : # 又称独立粒子体系; # 粒子之间相互作用微弱; #系统总能量等于各个粒子能量之和。
U n11 n11 ... ni i i
近独立粒子体系是本章主要的研究对象
Physical Chemistry
ChemHome
非独立粒子系统或相依粒子系统
特点 : # 粒子之间存在相互作用 ,不能忽略 ; #系统总能量包括各个粒 子能量累加 ,粒子之间相互作用位能 。
非理想气体就是属于该系统。
ChemHome
一、定位系统的最概然分布
(1)一个由 N 个可区分的独立粒子组成的宏观体系,在 量子化的能级上可以有多种不同的分布方式。
能级:1, 2, …, i 一种分布方式:N1, N2, …, Ni(个分子) 另一种分布方式:N’1, N’2, …, N’i (个分子)
Physical Chemistry
(3)问题在于如何在两个限制条件下,找出一种合适的 分布 ,才能有极大值tm,在数学上就是求下式的条件 极值问题(累加公式中的任一项)。
N! t
Ni!
i
Physical Chemistry
ChemHome
求极值的方法:
上式两边取对数, 用Stiring公式将阶乘展开, 用Lagrange(拉格朗日)乘因子法,求得最概
根据排列组合公式,可得:
实现该种分布,总共存在的方
法数 t 为:
N! t
Ni!
i
因为分布方式有很多种,因此各种分布方式 总的方法数(称微态数)为:
微观状态数
N!
ti NiN NiN
Ni!
i
NiiU
i
NiiU
i
i
i
Physical Chemistry
ChemHome
Boltzmann认为: ti tm N 足够大
根据揭示熵本质的Boltzmann公式 将P.398式(7.6) lnt 和P.400式(7.13) Ni*
(例如)某宏观体 系的总微态数为,则 每一种微观状态出现的 数学概率P都相等,即:
P 1
Physical Chemistry
ChemHome
7.2 Boltzmann 统计
定位体系的最概然分布 ,值的推导 非定位体系的最概然分布 Boltzmann公式的其它形式 撷取最大项法及其原理
Physical Chemistry
ChemHome
任何分布方式满足的两个条件:
Ni N 或 1 Ni N 0
i
i
Ni i U 或 2 Ni i U 0(这是假定的
i
i
一种分布方式)
(2)设想:把N个不同的球分成若干堆,每堆的数目分别 为N1,N2,N3,……,Ni。
Physical Chemistry
ChemHome