2020年“希望杯”四年级数学竞赛试题(无答案)
【推荐】全国四年级希望杯数学竞赛全部试题与答案
第一届小学“希望杯”数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
希望杯四年级试题及答案
希望杯四年级试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2+3=5B. 3+4=7C. 5+5=10D. 4+5=9答案:C2. 哪个图形是正方形?A. □B. ○C. △D. ▢答案:A3. 以下哪个单词拼写正确?A. colerB. colerfulC. colerfullD. colorful答案:D4. 下列哪个是正确的分数?A. 1/2B. 2/1C. 3/1D. 4/2答案:A5. 哪个数字是最小的?A. 3B. 2C. 1D. 0答案:D6. 下列哪个选项是正确的?A. 4-2=1B. 5-3=2C. 6-4=3D. 7-5=4答案:B7. 哪个是正确的乘法?A. 2×3=6B. 3×4=10C. 4×5=15D. 5×6=30答案:A8. 哪个是正确的除法?A. 8÷2=3B. 9÷3=2C. 10÷4=2D. 12÷6=1答案:B9. 下列哪个是正确的时间?A. 12:00 PMB. 12:00 AMC. 6:00 PMD. 6:00 AM答案:A10. 哪个是正确的月份?A. 一月B. 二月C. 三月D. 四月答案:B二、填空题(每题4分,共20分)1. 一个长方形的长是6厘米,宽是4厘米,它的面积是______平方厘米。
答案:242. 一个数的3倍是9,这个数是______。
答案:33. 一个数加上5等于10,这个数是______。
答案:54. 一个数减去2等于3,这个数是______。
答案:55. 一个数乘以2等于8,这个数是______。
答案:4三、解答题(每题5分,共20分)1. 一个苹果比一个梨重200克,如果一个苹果重500克,那么一个梨重多少克?答案:一个梨重300克。
2. 小明有10个苹果,他给了小红3个,然后又买了5个,小明现在有多少个苹果?答案:小明现在有12个苹果。
希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)
球的正上方悬挂有相同的灯泡。A 灯泡位置比 B 灯泡位置低。当灯泡点亮时,受
光照部分更多的是
球。
18.用 20 厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种。 其中,面积最小的,长______ 厘米,宽______ 厘米;面积最大的长方形的长 ______ 厘米,宽______ 厘米。
千米。
13.甲、乙、丙三人中只有 1 人会开汽车。甲说:“我会开。”乙说:“我
不会开。”丙说:“甲不会开。”三人的话只有一句是真话。会开车的是
。
14.为了支援西部,1 班班长小明和 2 班班长小光带了同样多的钱买了同一
种书 44 本,钱全部用完,小明要了 26 本书,小光要了 18 本书。回校后,小明
第一届小学“希望杯”全国数学邀请赛(第 1 试)
四年级 第 1 试
1.下边三个图中都有一些三角形,在图 A 中,有
在图 C 中,有
个。
个;在图 B 中,有
个;
2.写出下面等式右边空白处的数,使等式能够成立:
0.6+0.06+0.006+…=2002÷
。
3.观察 1,2,3,6,12,23,44,x,164 的规律,可知 x =
目录
1. 第一届小学“希望杯”全国数学邀请赛(第 1 试) ........................................2 2. 第一届小学“希望杯”全国数学邀请赛(第 2 试) ........................................5 3. 第二届小学“希望杯”全国数学邀请赛(第 1 试) ........................................7 4. 第二届小学“希望杯”全国数学邀请赛(第 2 试) ......................................10 5. 第三届小学“希望杯”全国数学邀请赛(第 1 试) ......................................13 6. 第三届小学“希望杯”全国数学邀请赛(第 2 试) ......................................16 7. 第四届小学“希望杯”全国数学邀请赛(第 1 试) ......................................18 8. 第四届小学“希望杯”全国数学邀请赛(第 2 试) ......................................21 9. 第五届小学“希望杯”全国数学邀请赛(第 1 试) ......................................23 10. 第五届小学“希望杯”全国数学邀请赛(第 2 试) ......................................26 11. 第六届小学“希望杯”全国数学邀请赛(第 1 试) ......................................28 12. 第六届小学“希望杯”全国数学邀请赛(第 2 试) ......................................30 13. 第七届小学“希望杯”全国数学邀请赛(第 1 试) ......................................32 14. 第七届小学“希望杯”全国数学邀请赛(第 2 试) ......................................36 15. 第八届小学“希望杯”全国数学邀请赛(第 1 试) ......................................39 16. 第八届小学“希望杯”全国数学邀请赛(第 2 试) ......................................41 17. 第九届小学“希望杯”全国数学邀请赛(第 1 试) ......................................44 18. 第九届小学“希望杯”全国数学邀请赛(第 2 试) ......................................46 19. 第十届小学“希望杯”全国数学邀请赛(第 1 试) ......................................48 20. 第十届小学“希望杯”全国数学邀请赛(第 2 试) ......................................50 21. 第一届---第八届“希望杯”全国数学邀请赛参考答案………………………53
小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
(2020年编辑)希望杯数学竞赛第一届至十历届四年级全部试题与答案打
教育精品资料目录1.第一届小学“希望杯”全国数学邀请赛(第1试) (2)2. 第一届小学“希望杯”全国数学邀请赛(第2试) (5)3. 第二届小学“希望杯”全国数学邀请赛(第1试) (7)4. 第二届小学“希望杯”全国数学邀请赛(第2试) (10)5. 第三届小学“希望杯”全国数学邀请赛(第1试) (13)6. 第三届小学“希望杯”全国数学邀请赛(第2试) (16)7. 第四届小学“希望杯”全国数学邀请赛(第1试) (18)8. 第四届小学“希望杯”全国数学邀请赛(第2试) (21)9. 第五届小学“希望杯”全国数学邀请赛(第1试) (23)10. 第五届小学“希望杯”全国数学邀请赛(第2试) (26)11. 第六届小学“希望杯”全国数学邀请赛(第1试) (28)12. 第六届小学“希望杯”全国数学邀请赛(第2试) (30)13. 第七届小学“希望杯”全国数学邀请赛(第1试) (32)14. 第七届小学“希望杯”全国数学邀请赛(第2试) (36)15. 第八届小学“希望杯”全国数学邀请赛(第1试) (39)16. 第八届小学“希望杯”全国数学邀请赛(第2试) (41)17. 第九届小学“希望杯”全国数学邀请赛(第1试) (44)18. 第九届小学“希望杯”全国数学邀请赛(第2试) (46)19. 第十届小学“希望杯”全国数学邀请赛(第1试) (48)20. 第十届小学“希望杯”全国数学邀请赛(第2试) (50)21.第一届---第八届“希望杯”全国数学邀请赛参考答案 (53)第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
第十五届小学四年级“希望杯”全国数学邀请赛试题及答案
第十五届小学“希望杯”全国数学邀请赛四年级 第1试试题以下每题6分,共120分。
1、计算:19×75+23×25 = .2、定义新运算:b b a b a ⨯+=*)(,b b a b a +⨯=⊗,如:2044141=⨯+=*)(,844141=+⨯=⊗。
则按从左到右的顺序计算:=⊗*321 .3、abc 是三位数,若a 是奇数,且abc 是3的倍数,则abc 最小是 .4、三个连续自然数的乘积是120,它们的和是 .5、已知x ,y 是大于0的自然数,且150=+y x 。
若x 是3的倍数,y 是5的倍数,则),(y x 的不同取值有 对。
6、如果18128=÷+⨯)(x ,则=x .7、观察以下的一列数,依次是11,17,23,29,35,….若从第n 个数开始,每个数都大于2017,则=n .8、下图由20个方格组成,其中含有A 的正方形有 个。
9、下图是由12个面积为1的方格组成,则图中和阴影梯形面积相同的长方形有 个。
10、某学习小组数学成绩的统计图如下,该小组的平均成绩是 分。
11、今年,小军5岁,爸爸31岁,再过 年,爸爸的年龄是小军的3倍。
12、10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是 。
13、把一个边长是5厘米的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向和长 第8题 第9题 第10题度移动其中的4个长方形,则所得图形的周长是厘米。
14、在一个长方形内画三个圆,这个长方形最多可被分成部分。
15、2017年3月19日是星期日,据此推算,2017年9月1日是星期。
16、观察23=,2⨯⨯=,这里,7,12和17被叫做“3个相邻的被5除余2 12+17+55157+⨯2=,2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.17、甲、乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米。
奥数竞赛 第五届小学希望杯全国数学邀请赛四年级第2试及答案
第五届小学希望杯全国数学邀请赛一、填空题(每小题5分,共60分)1.(1234+2314+3412+4123)÷(1+2+3+4)=__________2.如果△÷☆=◇,☆×◇=80,◇-◇=60,那么☆=__________3.为使下面算式中的5个数的成绩末尾有六个0,□里的数最小是__________4.在2×2=4,3×3=9,4×4=16,5×5=25,6×6=36,……等这些算式中,4,9,16,25,36……叫做完全平方数。
那么不超过2007的最大的完全平方数是__________5.用1,2,3,4,5,6,7,8组成两个四位数,这两个四位数的差最小是__________6.有两匹马和一副鞍,白马配鞍售价800元,黑马配鞍售价600元,两匹马售价1000元,那么一副按售价__________元7.一群小猴上山摘野果,第一只小猴摘了1个野果,第二只小猴摘了3个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比他前面的小猴多摘了1个野果,最后,每只小猴分得8个野果,这群小猴一共有__________只。
8.王奶奶家养了鸡、鸭、鹅共250只,其中鸭比鹅的2倍少10只,鸡比鹅的3倍多20只,王奶奶养了__________只鸡,__________只鸭,__________只鹅。
9.某学校组织师生去春游,准备租用如图1所示的两种客车。
若租若干辆45座的客车,则有15人没有座位;若租60座的客车,则可少租一辆且恰好全部坐满。
按照最省钱的方案租车,租金至少需______元10.图2中不含A 的正方形有多少______个?D C A B FE 图 311.如图3,平行四边形ABCD被分割成三角形ADF和梯形ABCF两部分,他们的面积相差14平方厘米,已知AE=7厘米,那么FC=______厘米。
12.将16个相同的小正方体拼成一个体积为16立方厘米的长方体,将表面涂漆,然后分开,结果2面涂漆的小正方体有8个,那么三面涂漆的小正方体有______个,4面涂漆的小正方体有______个二、解答题(本大题共4小题,每小题15分,共60分)13.“希望号”和“奥运号”两列火车相向而行,“希望号”车的车身长280米,“奥运号”车的车身长385米,坐在“希望号”车上的小朋友看“奥运号”车驶过的时间是11秒。
2024年希望杯冬令营比赛试题——四年级含答案
2024 IHC D-4 中文卷1.366× 20242023 − 365× 20242024 =。
2.将三进制数(11012)3 转换成七进制数是()7。
3.如图,平行四边形 ABCD 的面积是 2023,E 、F 是对角线 AC 上两点,AC =7EF ,阴影部分面积是。
4.能被 33 整除的八位数2024□□24 有个。
5.百位数不是 4 的全部三位数之和为。
6.用数字 1、2、3、4 5 可以组成 120 个无重复数字的五位数,将这 120 个数从小到大排列,第61 个数是 。
7.算式n 个2021n 个2023n 个2025n 个2027得数的个位数字是 8,则不超过 2024 的 n 有 个。
8.小希家住在幸福小区 8 号楼第 28 层,由于电梯检修,小希与妈妈一起爬楼梯回家,每层都有同样级数楼梯。
妈妈和小希同时从8 号楼第 1 层开始爬楼梯,妈妈爬到第 7 层时,小希刚到达第 5 层,那么当妈妈回到家时,小希到了第层。
2021× 2021× × 2021+ 2023× 2023×× 2023 + 2025× 2025×× 2025 + 2027× 2027××20272024年希望杯冬令营比赛试题——四年级9. 已知n!=1×2×3××n。
那么2021!+2022+!2023+!202的末尾有_个连续的零。
10.如图,已知一个凸六边形的六个内角都是120°,其连续四边的长依次是10,665,15,653,则这个六边形的周长是。
11.1~2024 的连续自然数按下图所示的规律排列,用一张等腰直角三角形纸片可以盖住其中的三个数。
有4 种盖法,如下图。
如果纸片盖住的三个数的和是2022,那么这三个数中的最大数是。
四年级“希望杯”全国数学邀请赛参考答案
第十二届小学 希望杯 全国数学邀请赛参考答案及评分标准四年级㊀㊀第2试一㊁填空题(每小题5分㊂)题号123456789101112答案495362853410272012307941342㊀㊀二㊁解答题13.解㊀由题设条件,得B =60ː2=30,(3分)A =24ː3=8,(6分)A ˑB =8ˑ30=240,(9分)如果数A 增加2,数B 减少3,则积变为(8-2)ˑ(30-3)=270,(12分)270-240=30,所以乘积比A ,B 的乘积增加了30㊂(15分)14.解㊀(1)所有的果篮用掉2份哈密瓜,4份火龙果,8份猕猴桃㊂当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出如图的线段图,剩下的130个火龙果对应线段的黑色部分,则每段线段代表水果的数量是(130-10)ː2=60(个),(4分)水果店原有火龙果60ˑ6+10=370(个)㊂(8分)(2)水果店原有猕猴桃370ˑ2=740(个),(12分)用完所有的哈密瓜后,还剩下猕猴桃740-60ˑ10=140(个)㊂(15分)15.解㊀大正方形的面积为6ˑ6=36(平方厘米),(3分)挖出的正方形边长为6-1ˑ2=4(厘米),挖出的正方形的面积为4ˑ4=16(平方厘米),(6分)1个方框的面积为36-16=20(平方厘米),4个方框面积为20ˑ4=80(平方厘米),(9分)重叠部分是6个边长为1厘米的正方形6个重叠部分的面积为12ˑ6=6(平方厘米),(12分)所以方框纸盖住桌子的面积为80-6=74(平方厘米)㊂(15分)16.解㊀因为小红的速度不变,从家到电影院的距离等于从电影院到家的距离,所以小红从家到电影院的时间等于从电影院到家的时间㊂也就是说,小丽从电影院到家比从家到电影院少用4分钟㊂由㊀(70ˑ4)ː(90-70)=14(分),(10分)可知,小丽从电影院到家用了14分钟,所以从家到电影院用了18分,两人的家相距(52+70)ˑ18=2196(米)㊂(15分)。
2020年第八届小学“希望杯”全国数学邀请赛试卷(四年级第2试)
2010年第八届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(每小题5分,共60分)1.(5分)王云在计算325﹣□×5时先算了减法,结果得出1500,那么这道题的正确结果应该是.2.(5分)今天(2010年4月11日)是星期日,则2010年的六一儿童节是星期.3.(5分)今年,玲玲8岁,奶奶60岁,再过年,奶奶的年龄是玲玲的5倍.4.(5分)算式1×1+11×11+111×111+…+111…111(2010个1)×111…111(2010个1)的结果的末三位数字是.5.(5分)将一个长6厘米,宽5厘米,高4厘米的长方体的表面刷上红漆,然后将这个长方体切割成棱长为1厘米的小正方体,则任何一面都没有被刷漆的小正方体有个.6.(5分)有四个自然数,它们的和是243.如果将第一个数加上8,第二数减去8,第三个数乘以8,第四个数除以8,则得到的四个数相等.那么,原来的四个数中最大数与最小数的乘积是.7.(5分)如图,长9厘米,宽8厘米的长方形的中间有一个由两个长方形构成的十字形的阴影.如果阴影部分的面积恰好等于空白部分的面积,那么X=厘米.8.(5分)如图,一个边长为50米的正方形围墙,甲乙两人分别从A、C两点同时出发,沿围墙按顺时针方向运动,已知甲每秒走5米,乙每秒走3米,则至少经过秒甲乙走到正方形的同一条边上.9.(5分)甲、乙、丙三人进行万米赛跑,甲是最后一个起跑的,在整个比赛过程中,甲与乙、丙的位置共交换了9次,则比赛的结果甲是第名.10.(5分)有下列说法:(1)一个钝角减去一个直角,得到的角一定是锐角.(2)一个钝角减去一个锐角,得到的角不可能还是钝角(3)三角形的三个内角中至多有一个钝角.(4)三角形的三个内角中至少有两个锐角(5)三角形的三个内角可以都是锐角.(6)直角三角形中可能有钝角.(7)25°的角用10倍的放大镜看就变成了250°.其中,正确说法的个数是.11.(5分)如图,周长为52厘米的“L”形纸片可沿虚线分成两个完全相同的长方形.如果最长的边长是16厘米,那么该“L”形纸片的面积是平方厘米.12.(5分)48名学生参加聚会,第一个到会的男生和全部女生握手,第二个到会的男生只差一名女生没握过手,第三个到会的男生只差2名女生没握过手…最后一个到会的男生同9名女生握过手,这48名学生中共有名女生.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如果3台数控机床4小时可以加工960个同样的零件,那么1台数控机床加工400个相同的零件需要多长时间?14.(15分)某场足球比赛赛前售出甲、乙、丙三类门票共400张,甲类票50元/张,乙类票40元/张,丙类票30元/张,共收入15500元,其中乙类、丙类门票张数相同.则三种票各售出多少张?15.(15分)甲、乙两辆车从A城开往B城,速度都是55千米/小时.上午10点,甲车已行驶的路程是乙车已行驶路程的5倍;中午12点,甲车已行驶的路程是乙车已行驶路程的3倍.问乙车比甲车晚出发多少小时?16.(15分)小红从家步行去学校,如果每分钟走120米,那么将比预定时间早到5分钟;如果每分钟走90米,则比预定时间迟到3分钟,那么小红家离学校有多远?2010年第八届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)王云在计算325﹣□×5时先算了减法,结果得出1500,那么这道题的正确结果应该是200.【分析】这是一道“倒推法”的题型,从后往前解.因为先算了减法,原式变成了(325﹣□)×5=1500,所以325﹣□=1500÷5=300,□=325﹣300=25,由此知道小方框代表的数字是25,325﹣25×5=200.【解答】解:325﹣(325﹣1500÷5)×5,=325﹣25×5,=200.故答案为:200【点评】此题采用逆推法的思想,从后向前推算,注意思路清晰.2.(5分)今天(2010年4月11日)是星期日,则2010年的六一儿童节是星期二.【分析】先求出从4月11日到6月1日有多少天,再用经过的天数除以7求出经过了几周,还余几天,再根据余数判断.【解答】解:4月11日到4月30日经过了:30﹣11=19(天);5月份有31天,那么一共经过了:19+31+1=51(天);51÷7=7(周)…2(天);余数是2,那么6月1日就是星期二;故答案为:二.【点评】这种类型的题目需要先求出经过的天数,再根据天数求出经过了几个星期还余几天,再根据余数判断.3.(5分)今年,玲玲8岁,奶奶60岁,再过5年,奶奶的年龄是玲玲的5倍.【分析】本题可列方程解答,设再过x年,奶奶的年龄是玲玲的5倍,则5年后玲玲的年龄是8+x岁,奶奶的年龄60+x岁,是由此可得等量关系式:(8+x)×5=60+x.解此方程即可.【解答】解:设再过x年,奶奶的年龄是玲玲的5倍,由此可得:(8+x)×5=60+x40+5x=60+x,4x=20,x=5.故答案为:5.【点评】年龄的问题的一个特点是,不论过多少年,两个人的年龄差是不变的.4.(5分)算式1×1+11×11+111×111+…+111…111(2010个1)×111…111(2010个1)的结果的末三位数字是690.【分析】此题看似很难,我们可从式中第一个乘法算式开始计算一下每个乘法算式的值找下规律:1×1=1,11×11=121,111×111=12321,1111×1111=1234321,11111×11111=123454321…,它们的积分别为:1,121,12321,1234321,123454321,12345654321,…,由此可以发现,除了头两个乘法算式的积分别为1,121外,后边乘法算式的积的后三位都为321,据此规律我们就能求出这个算式的末三位的数字是多少了.【解答】解:通过计算,可得每个乘法算式的积分别为:1,121,12321,1234321,123454321,12345654321,…,由此可以发现,除了头两个乘法算式的积分别为1,121外,后边乘法算式的积的后三位都为321;则式中每个算式末三位相加的和为:1+121+321×(2010﹣2)=122+64568,=644690.所以算式1×1+11×11+111×111+…+111…111(2010个1)×111…111(2010个1)的结果的末三位数字是690.故答案为:690.【点评】诸如此类数据较多且较为复杂的运算题目,一般都有内在规律可循,因此完成此类题目的关键是在认真分析题目在基础上找到式中数据的特点及内在规律进行解答.5.(5分)将一个长6厘米,宽5厘米,高4厘米的长方体的表面刷上红漆,然后将这个长方体切割成棱长为1厘米的小正方体,则任何一面都没有被刷漆的小正方体有24个.【分析】根据长方体切拼正方体的特点可知:表面没有刷红漆的小正方体都在这个长方体的内部,所以这些没有刷漆的棱长为1厘米小正方体体积为:(长﹣2)×(宽﹣2)×(高﹣2);由此代入数据即可解决问题.【解答】解:(6﹣2)×(5﹣2)×(4﹣2)÷(1×1×1),=4×3×2÷1,=24(个),科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。
【推荐】全国四年级希望杯数学竞赛全部试题与答案
第一届小学“希望杯”数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
小学四年级希望杯历年数学竞赛试题与答案1_14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年“希望杯”小学四年级试题
以下每题5分,共120分。
1、计算:。
2、如果。
3、某校四年级有两个班,其中甲班有a人,乙班比甲班多3人,则该校四年级共有学生人。
4、将数16表示成两个自然数的和的形式,则所表示成的两个数的最大乘积
是。
5、在括号内填上两个相邻的整数,使等式成立。
6、在月球表面,白天阳光垂直照射的地方的温度高达127℃,夜晚的温度下降到零下183℃,则月球表面昼夜温差(最高与最低温度的差)是℃。
7、北京到西安的飞机票价是每张960元。
张老师想从网上订购一张从北京到西安的飞机票。
海蓝票务中心的机票以九五折出售,但每张票要加收30元送票费;云天票务中心的机票不打折,但免费送票。
张老师从票务中心购买飞机票更省钱。
(填“海蓝”或“云天”)
8、一个数除以3的余数是2,除以5的余数是1,则这个数除以15的余数
是。
9、如果,
10、如图1,有一条长方
形跑道,甲从
A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米。
当甲第一次追上乙时,甲跑了圈。
11、三个不同的一位数的和等于10,用这三个一位数组成三位数,其中最大的
是。
12、把一个边长为a的正方形分成两个完全相同的长方形,则这两个长方形的周长的和是。
13、把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有人。
14、如图2,用火柴棍摆出一系列三角形图案,按这种方式摆下去,当N=5时,按这种方式摆下去,当N=5时,共需要火柴棍根。
15、如图3,∠1=∠2,∠3=∠4,∠5=130度,那么∠A= 度。
16、已知图4中正方体相对的两个面上的数字之和是10,则未标
出的三个数的乘积是。
17、图5中有个平行四边形。
18、有四个数,用其中三个数的平均数,再加上另外的一个数,按这样的方法计算,分别得到:28、36、42、46,那么原来四个数的平均数是。
19、如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成种不同的信号。
20、一块长方形玻璃,长截去5分米,宽截去3分米,剩下的部分是正方形。
已知截去的面积是71平方分米,那么剩下的正方形的面积是平方分米。
21、有一个正方形纸板(如图6甲),用它可以盖住日历上的九个日期,并能看到其中一个日期。
现在将它放在2020年3月的日历上(如图6乙),则纸板盖住的另外八个日期中最大是。
22
的和是240厘米,面积的和是1000平方厘米,那么阴影部分的面积是平方厘米。
23、商场里有三种价格分别是3元,4元,6元的杯子。
妈妈让小明去买杯子,小明付款30元,找回5元。
小明买了个4元的杯子。
24、某班有46人,其中有40人会骑自行车,38人会打乒乓球,35人会打羽毛球,27人会游泳,则该班这四项运动都会的至少有人。