数字电子技术时序逻辑电路

合集下载

王海光数字电子技术基础 第5章 时序逻辑电路

王海光数字电子技术基础 第5章 时序逻辑电路

与触发器的对应关系,还应给出排序示范
图 ( 如 图 5.1.2 示 范 图 圆 圈 中 标 注 的 Q3Q2Q1 ),对含多个输入输出端的时序
电路,也应在示范图中标出(如图5.1.2中
指向线上标注的/Y)。
5.1.1 时序逻辑电路的人工分析
(5)电路功能判断说明。
对电路功能的判断应结合输入输出信号的具体物理含义来
5.1.1 时序逻辑电路的人工分析
*二、异步时序逻辑电路的分析
与同步时序电路不同的是,异步时序电路中的所有触发 器并非由同一时钟源触发,所以在根据电路的现态计算电路 的次态时,应特别注意各个触发器的时钟条件是否具备。只 有时钟条件具备的触发器才会按状态方程描述的逻辑关系转
换成次态,否则将维持现态不变。为此在分析异步时序电路
组合逻辑电路
Y1 Yj
Z Zk 存储电路
图5.0.1 时序逻辑电路结构示意框图
这四种信号之间的逻辑关系可用以下三个向量函数表示: 输出方程:Y(tn)=F1[X(tn),Q(tn)]
驱动方程:Z(tn)=F2[X(tn),Q(tn)]
状态方程: Q(tn+1)=F3[Z(tn),Q(tn)] 式中tn、tn+1是对电路进行考察的两个相邻的离散时间。
5.1.1 时序逻辑电路的人工分析
一、同步时序逻辑电路的分析 导出同步时序电路的状态转换表、状态转换图和时序波 形图,判断时序电路逻辑功能的通常步骤:
1.根据给定的时序电路列出电路的输出方程和驱动方程组。 2.将各个驱动方程代入对应触发器的特性方程得到整个时序 电路的状态方程组。 3.根据电路的状态方程组计算列出电路的状态转换表。 4.根据电路的状态转换表画出状态转换图或时序波形图。 5.根据状态转换图或时序波形图说明电路的逻辑功能,判断 电路能否自启动。

数字电子技术基础-第六章_时序逻辑电路(完整版)

数字电子技术基础-第六章_时序逻辑电路(完整版)

T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)

CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0

CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3

数字电子技术基础第五章时序逻辑电路PPT课件

数字电子技术基础第五章时序逻辑电路PPT课件

减小功耗
优化电路结构,降低电路的 功耗,减少能源浪费。
提高可靠性
通过优化设计,提高电路的 可靠性和稳定性,降低故障 发生的概率。
提高性能
优化电路结构,提高电路的 响应速度和性能,满足设计 要求。
05 时序逻辑电路的实现技术
基于中小规模集成电路的时序逻辑电路实现技术
概述
中小规模集成电路是将多个晶体管集成在一块芯片上,实现时序逻辑功能。
冒险现象
由于竞争现象的存在,时序逻辑电路 的输出可能会产生短暂的不确定状态, 这种现象称为冒险现象。
04 时序逻辑电路的设计方法
同步时序逻辑电路的设计方法
建立原始状态图
根据设计要求,确定系统的输入和输出变量,并使用状 态图表示系统的状态转换关系。
逻辑方程组
根据状态图和状态编码,列出逻辑方程组,包括状态转 移方程、输出方程和时钟方程。
分类
根据触发器的不同,时序逻辑电 路可分为同步时序电路和异步时 序电路;根据电路结构,可分为 摩尔型和米立型。
时序逻辑电路的功能与特点
功能
实现数据的存储、记忆、计数、分频 等功能。
特点
具有记忆功能、输出状态不仅与当前 输入有关还与之前状态有关、具有时 钟信号控制等。
时序逻辑电路的应用场景
01
02
数字电子技术基础第五章时序逻辑 电路ppt课件
目 录
• 时序逻辑电路概述 • 时序逻辑电路的基本电路的实现技术 • 时序逻辑电路的应用实例
01 时序逻辑电路概述
时序逻辑电路的定义与分类
定义
时序逻辑电路是一种具有记忆功 能的电路,其输出不仅取决于当 前的输入,还与之前的输入状态 有关。
03
数字钟
利用时序逻辑电路实现时 间的计数和显示。

数字电子技术第6章 时序逻辑电路

数字电子技术第6章 时序逻辑电路

RD—异步置0端(低电平有效) 1 DIR—右移串行输入 1 DIL—左移串行输入 S0、S1—控制端 1 D0D1 D2 D3—并行输入
《数字电子技术》多媒体课件
山东轻工业学院
4、扩展:两片74LS194A扩展一片8位双向移位寄存器
《数字电子技术》多媒体课件
山东轻工业学院
例6.3.1的电路 (P276) 74LS194功能 S1S0=00,保持 S1S0=01,右移 S1S0=10,左移 S1S0=11,并入
(5)状态转换图
《数字电子技术》多媒体课件
山东轻工业学院
小结
1、时序逻辑电路的特点、组成、分类及描述方法; 2、同步时序逻辑电路的分析方法; 课堂讨论: 6.1,6.4
《数字电子技术》多媒体课件
山东轻工业学院
6.3 若干常用的时序逻辑电路
寄存器和移位寄存器 时序 逻辑电路 计数器 顺序脉冲发生器 序列信号发生器
移位寄存器不仅具有存储功能,且还有移位功能。 可实现串、并行数据转换,数值运算以及数据处理。 所谓“移位”,就是将寄存器所存各位数据,在每个移 位脉冲的作用下,向左或向右移动一位。
2、类型: 根据移位方向,分成三种:
左移 寄存器 (a) 右移 寄存器 (b) 双向 移位 寄存器 (c)
《数字电子技术》多媒体课件
学习要求 :
* *
自学掌握
1. 掌握寄存器和移位寄存器的概念并会使用; 2. 掌握计数器概念,熟练掌握中规模集成计数器74161 和74160的功能,熟练掌握用160及161设计任意进制计 数器的方法。
《数字电子技术》多媒体课件
山东轻工业学院
6.3.1寄存器和移位寄存器
一、寄存器
寄存器是计算机的主要部件之一, 它用来暂时存放数据或指令。

数字电子技术基础时序逻辑电路共142页

数字电子技术基础时序逻辑电路共142页

33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
数字电子技术基础时序逻辑 电路
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。

时序逻辑电路的分析方法

时序逻辑电路的分析方法

利用染色体畸变和基因
突变为指标监测环境污染 物的致突变作用
理生化变 化为指标
来监测环
单元1 时序逻辑电路的分析方法
一、生物监测的主要方法
《数字电子技术》
1.生物群落法(生态学方法) 利用生物群落组成和结构的变化及生态 系统功能的变化为指标监测环境污染。
(1)寻找指示生物
例如:蜗虫
水蚯蚓
(2)了解污染物对生物群落的影响
单元1 时序逻辑电路的分析方法
号作用前电路的输出状态有关。
时序逻辑电路 方框图
特点:(1)时序电路往往包含组合电路和存储电路两
部分,而存储电路是必不可少的。(2)存储电路输出 的状态必须反馈到输入端,与输入信号一起共同决定组 合电路的输出。
分类:同步时序逻辑电路:所有触发器的时钟端均连
在一起由同一个时钟脉冲触发,使之状态的变化都与输 入时钟脉冲同步。 异步时序逻辑电路:只有部分触发器的时钟端与输入时 钟脉冲相连而被触发,而其它触发器则靠时序电路内部 产生的脉冲触发,故其状态变化不同步。
时序图:在时钟脉冲序列作用下,电路状态、输出状态随时间变化的 波形图。
单元1 时序逻辑电路的分析方法
1.2 时序逻辑电路的分析方法
《数字电子技术》
[例1-1] 试分析电路的逻辑功能,并画出状态转换图和时序图。
解: 1、写方程式
(1)输出方程
(2)驱动方程
一单、元生1 时物序监逻辑测电的路主的分要析方方法法有哪些?
《数字电子技术》
[例1-1] 试分析电路的逻辑功能,并画出状态转换图和时序图。
解: 1、写方程式
(2)驱动方程
(3)状态方程
单元1 时序逻辑电路的分析方法
1.2 时序逻辑电路的分析方法

数字电子技术时序逻辑电路习题

数字电子技术时序逻辑电路习题
第42页/共55页
5、画逻辑电路图
T1 = Q1 + XQ0 T0 = XQ0 + XQ0 Z = XQ1Q0
第43页/共55页
6、检查自启动
全功能状态转换表
现 入 现 态 次 态 现驱动入 现输出
Xn Q1n Q0nQ1n+1Q0n+1 T1 T0
Zn
1/0
0/0 0 0 0 0 1 0 1
0
现入 现态 次 态
X Q1 Q0 Q1 Q0 0 0 00 1 0 0 11 0 0 1 00 0
1 0 00 1 1 0 11 0 1 1 01 1 1 110 0
现驱动入 现输出
D1 D0 01 10 00
Z1 Z2
00 00 10
01 10 11 00
00 00 00 01
D1 = Q1Q0 + Q1Q0X
标题区
节目录
第14页/共55页
X/Z
S0 1/0
S1
1/1
0/0
S2
10101…
题6.2(1)的状态转移图
③ 状态间的转换关系
标题区
节目录
第15页/共55页
X/Z
0/0 S0 1/0
S1 1/0
1/1
11…
0/0
0/0
100…
S2
题6.2(1) 的原始状态转移图
标题区
节目录
第16页/共55页
(2) 解:① 输入变量为X、输出变量为Z;
S1 1/0
11…
0/0
1/1
0/0
100…
S2
题6.2(2) 的原始状态转移图
标题区
节目录
第19页/共55页

数字电子技术 时序逻辑电路的分析与设计 国家精品课程课件

数字电子技术 时序逻辑电路的分析与设计 国家精品课程课件

《数字电子技术》精品课程——第6章
FF0
FF1
1J
Q0 1J
Q1
时序逻辑电路的分析与设计
&Z
FF2
1J
Q2
C1
C1
C1
1K
1K
1K
Q0
Q1
Q2
CP
➢驱动方程:
《数字电子技术》精品课程——第6章 时序逻辑电路的分析与设计
② 求状态方程
JK触发器的特性方程:
Qn1 JQ n KQn
将各触发器的驱动方程代入,即得电路的状态方程:
简化状态图(表)中各个状态。 (4)选择触发器的类型。
(5)根据编码状态表以及所采用的触发器的逻辑功能,导出待设计 电路的输出方程和驱动方程。
(6)根据输出方程和驱动方程画出逻辑图。
返回 (7)检查电路能否自启动。
《数字电子技术》精品课程——第6章 时序逻辑电路的分析与设计
2.同步计数器的设计举例
驱动方程: T1 = X T2 = XQ1n
输出方程: Z= XQ2nQ1n
(米利型)
2.写状态方程
T触发器的特性 方程为:
Qn1 TQn TQn
Q 1nQ1QX21nn TX1QQ1n1nXTQX11nQ1n X Q1n
Q1n
Qn1 2
T2 Q2n
T2Qn2
T Q n 将T1、 T2代入则得X到Q两1n Q2n XQ1nQn2
0T1 = X0 0 0 0 0 0
0
求T1、T2、Z
0T2
0
=ZX=01QX1nQ10 2nQ010n
0 0
0 1
1 0
0 0
由状态方程
求Q2n+1 、 Q1n+1

数字电子技术时序逻辑电路PPT

数字电子技术时序逻辑电路PPT
CP0 CP0 CP1 CP3 Q0 CP2 Q1
写驱动方程: J 0 K 0 1
J1 J2
Q3 K2
1
K1
1
J 3 Q1Q2
K3 1
写状态方程:
Q0n1 QQ1n2n11
n
Q0
Q3
n
Q2
n
Q1
(CP0 下降沿动作) (Q0 下降沿动作) (Q1下降沿动作)
Q3n 1
Q1Q2
画时序图: 该电路能够自启动。
5.1.2 异步时序逻辑电路的分析方法
异步时序电路的分析步骤:
① 写时钟方程; ② 写驱动方程; ③ 写状态方程; ④ 写输出方程。
[例5-2]试分析图示时序逻辑电路的逻辑功能,列出状态转换 表,并画出状态转换图。
解:图5-7所示电路为1个异步摩尔型时序逻辑电路。 写时钟方程:
Q3n(Q0
下降沿动作)
列状态转换表:
画状态转换图:
5.2 若干常用的时序逻辑电路 5.2.1寄存器
1. 基本寄存器
图5-2 双2位寄存器74LS75的逻辑图
图5-2所示为双2位寄存器74LS75的逻辑图。当 CPA = 1时,
送到数据输入端的数据被存入寄存器,当CPA =0时,存入
寄存器的数据将保持不变。
2n-1 M 2n
然后给电路的每一种状态分配与之对应的触发器状态组合。
4)确定触发器的类型,并求出电路的状态方程、驱动方程 和输出方程。 确定触发器类型后,可根据实际的状态转换图求出电路的状 态方程和输出方程,进而求出电路的驱动方程。
5)根据得到的驱动方程和输出方程,画出相应的逻辑图。
6) 判断所设计的电路能否自启动。
1.同步计数器 1)同步二进制计数器

数字电子技术 第5章 时序逻辑电路的分析

数字电子技术 第5章  时序逻辑电路的分析

40
5.8异步计数器
1.异步计数器的概念:异步计数器中的 触发器不会同时改变状态,因为它们没 有共同的时钟脉冲
41
2. 三位异步二进制计数器
42
波形图
Q0:2分频 Q1:4分频 Q2:8分频
Q0 Q1’ Q2
43
3.四位异步十进制计数器
1 CP 2 3 4 5 6 7 8 9 10
起译码 作用
电路分析: Di输入的数据,在cp 上升沿作用下,逐位 向左移动,经过4个 脉冲,将把输入的第 1个数传送到输出D0。
电压波形
34
5.5.MSI移位寄存器
M=0 M=1
串行输出
74LS95右移 移位寄存器
并 行 输 出
(1)电路形式:电路接成串行移位右移,并行输入,并行输出。 (2)工作原理:当方式控制M=1时,允许数据以并行方式输入,在cp2作用下,并 行存入J-K FF,并以并行方式输出Data.Q0~Q3。当M=0时,并行输入被禁止, 允许串行输入到J-K FF,在cp1作用下逐位右移。
1
1
1
1
4位异步二进制计数器(74LS93)
电路特点: 74LS93是一个MSI.模2×8进制计数器。从电路形式上看,第1 个FF为2进制,第2~4个FF是8进制计数器。采用两个时钟脉冲 CPA,CPB,有2个复位输入端,为方便灵活使用。
46
74LS93应用
用74LS93构成模16计数器。 将QA(第一级FF输出)作为CPB 使用,成为模16计数器。
(4)将驱动方程分别代入J-K FF的特性方程:
001 000 (2)时序电路的输出为Q3Q2Q1
(3)各FF的驱动方程: J1=Q3 K1=1 J2=1 K2=1 J3=Q2Q1 K3=1

数字电子技术 第5章

数字电子技术  第5章

锁存器电路图
(1)
E CP 1D 1
(11) 1
C1
(3)
1D Q
C1
EN
(2) 1Q
1
EN
(4) 2D
1D C1 Q
(5) 2 Q
1
EN
(6)
D
3Q
1
& ≥1 Q
(7) 3D
19) 4 Q
1D C1
Q
1
& ≥1
(12)
Q
5Q
EN
5D
(13)
1D C1 Q
1
CP
图5-13 一位D锁存器逻辑图
EN
(15)
6D
(14)
6Q
1D C1
Q
1
EN
(16)
7D
(17)
1D C1
Q
1
7Q
EN
8D
(18)
(19)
1D
Q
1
8Q
(3)移位寄存器
移位寄存器不仅可以存储代码,还可以将代码移位。 ⑴四位右移移位寄存器的原理:
并行输出
Q0 DI FF0 1D Q C1 CP FF1 1D Q1 FF2 1D Q C1 Q2 FF3 1D C1 Q Q3 DO
表5-4 74194的工作状态表
Rd
0 1 1 1 1
S1 S0 × 0 0 1 1 × 0 1 0 1
工作状态 清零 保持 右移 左移 送数
CP A
& & & & & & &
1
并行输出
FA QA Q 1 FB QB Q 1 1S C1 1R R FC Q C Q 1 FD QD Q 1S C1 1R R
74161的逻辑符号

数字电子技术课件第六章 时序逻辑电路(调整序列码)0609

数字电子技术课件第六章 时序逻辑电路(调整序列码)0609

(3)移入数据可控的并行输入移位寄存器
Z
M
Z D3 X Q3MX Q3NX
N 0 1 0 1
Q3n+1 置0 Q3不变 Q3计翻 置1
0 0 1 1
X 0, Z D3 同步(并行)置数 X 1, Z M Q3 NQ3 右移
右移数据由MN组合而定
3、双向移位寄存器 加选通门构成。
t1
t2
t3
存1 个 数 据 占 用1 个 cp
D1 D2 D3、 Q1 Q2 Q3波形略
二、移位寄存器
移位:按指令(cp),触发器状态可 向左右相邻的触发器传递。 功能:寄存,移位。
构成:相同的寄存单元(无空翻触发器)
共用统一的时钟脉冲(同步工作) 分类:单向、双向
1、单向移位寄存器(4位,右移为例,JK触发器构成) (1)电路:4个相同寄存单元(4个JK触发器); 同步cp为移位指令; 移1(即: Qn+1 =1) → J=1,K=0 移0(即: Qn+1 =0) → J=0,K=1
1
4个脉冲以后 可从Q3~Q0并 行输出1101
2、并行输入移位寄存器
可预置数的移 位寄存器
(1)选通门——与或逻辑,2选1数据选择器 A B X X:控制信号 F=AX+BX X=1,F=A X=0,F=B
1
&
≥1
F
(2)电路(4位,右移,JK触发器构成)
X控制信号:X=0,置数; X=1,右移。 Dr右移数据输入端。 D3~D0并行数据输入端。
X控制信号:X=0,左移,DL左移数据输入端。 X=1,右移,Dr右移数据输入端;
双向移位寄存器示例,X控制信号:X=0,左移, X=1,右移,

时序逻辑电路的设计步骤

时序逻辑电路的设计步骤

时序逻辑电路的设计步骤时序逻辑电路的设计步骤时序逻辑电路是一种能够处理时间序列信号的电路,它可以根据输入信号的变化情况,按照一定的规则输出相应的信号。

时序逻辑电路在数字电子技术中有着广泛的应用,如计数器、触发器、时钟等。

本文将介绍时序逻辑电路设计的步骤。

第一步:确定所需功能在进行时序逻辑电路设计之前,需要先明确所需实现的功能。

例如:计数、存储、比较等。

只有确定了所需功能,才能够开始进行后续的设计工作。

第二步:建立状态转移图状态转移图是描述系统状态和状态之间转移关系的图形表示方法。

通过建立状态转移图,可以清晰地描述系统中各个状态之间的转移条件和输出条件。

在建立状态转移图时,需要考虑以下几个方面:1. 确定系统中所有可能出现的状态;2. 确定各个状态之间可能存在的转移条件;3. 确定各个状态对应输出信号。

第三步:编写状态转移表根据建立好的状态转移图,可以编写出相应的状态转移表。

在编写状态转移表时,需要考虑以下几个方面:1. 确定状态转移表的行和列;2. 将状态转移图中的各个状态按照一定的顺序排列,并为每个状态分配一个唯一的编号;3. 将各个状态之间可能存在的转移条件和输出条件填入到状态转移表中。

第四步:选择适当的时序逻辑电路根据所需实现的功能和建立好的状态转移表,可以选择适当的时序逻辑电路。

常见的时序逻辑电路包括触发器、计数器、移位寄存器等。

在选择时序逻辑电路时,需要考虑以下几个方面:1. 选择与所需实现功能相符合的时序逻辑电路;2. 确定所选时序逻辑电路支持的输入和输出信号,并与状态转移表中相应信号进行对比;3. 确定所选时序逻辑电路支持的工作频率,并与系统要求进行对比。

第五步:设计电路原理图在确定了所需实现功能、建立了状态转移图并编写了相应的状态转移表、选择了合适的时序逻辑电路之后,可以开始进行电路原理图设计。

在设计原理图时,需要考虑以下几个方面:1. 根据所选时序逻辑电路提供的输入和输出信号,在原理图中添加相应的输入和输出端口;2. 根据状态转移表中的状态转移条件,将时序逻辑电路进行连接,并添加必要的控制元件;3. 为电路添加必要的时钟信号,并确定时钟信号的工作频率。

数字电子技术第5章

数字电子技术第5章

(4)逻辑功能分析:当Q1Q0=11时,输出Z=1;当取 其它值时,输出Z=0;在一个循环过程中,Z=1只出现一次, 故为进位输出信号。所以,此电路是带进位输出的同步4 进制加法计数器电路。
EXIT EXIT
第5章 时序逻辑电路
分析举例
【例5.1.2】图所示电路是异步时序逻辑电路的逻辑图, 试分析它的逻辑功能。
3. 求出对应状态值
设电路初始状态为 Q3Q2Q1 Q0 =0000 当某触发器时钟 条件满足时,计算 其状态方程的值; 触发器时钟没有到 来时,则不用计算 其状态方程的值, 保持原有状态。
演 示 文 稿 Presentation
0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1
EXIT EXIT
第5章 时序逻辑电路
画状态图和时序图
演 示 文 稿 Presentation
随着CP脉冲的递 1010至1111在 增,不论从电路输 计数循环外, 出的哪一个状态开 但可以进入计 始,触发器输出的 数循环,称为 变化都会进入同一 自启动 个循环过程
(4)逻辑功能分析:由状态图和时序图 可知,该电路是十进制计数器,或10分频器。
EXIT EXIT
第5章 时序逻辑电路
5.1.2 时序逻辑电路的分析方法
演 示 文 稿 Presentation
基本步骤:
1. 根据给定的电路,写出它的输出方程和驱动方程,并求 状态方程。 时序电路的输出逻辑表达式。 2. 列状态转换真值表。 各触发器输入信号的逻辑表达式。 将驱动方程代入相应触发器的特性方程中所得到的方程 3. 分析逻辑功能。 简称状态转换表,是反映电路状态转换的规律与条件的表格。 方法:将电路现态的各种取值代入状态方程和输 出方程进行计算,求出相应的次态和输出,从而列出 4. 根据状态转换真值表来说明电路逻辑功能。 画状态转换图和时序图。 状态转换表。 如现态起始值已给定,则从给定值开始计算。如 用圆圈及其内的标注表示电路的所有稳态, 没有给定,则可设定一个现态起始值依次进行计算。 在时钟脉冲 CP作用下,各触发器状态变化的波形图。 用箭头表示状态转换的方向,箭头旁的标注表示 状态转换的条件,从而得到的状态转换示意图。 EXIT EXIT

数字电子技术基础6时序逻辑电路

数字电子技术基础6时序逻辑电路
Q* Q1 Q2 Q3 Q2Q3 3
Q1 Q3 * Q2 * Q1 * Y
输 出 方 程
Y Q2Q3
Q1 Y
CLK Q3 Q2
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 1 1 1 0 0
0 1 1 0 0 1 0 0
1 0 1 0 1 0 0 0
DI 串行 输入
D Q3 Q D Q2 Q D Q1 D Q0 Q
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 缺少111为 0 1 1 初态的情况 1 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0 0 0 1 1
7进制计数器
其中Q3Q2Q1为计数状态,Y为进位
我们可以把状态转换表表示为状态转换图的形式
/Y /0 /0
CLK Q3 0 1 0 0
*
Q
* 3
Q Q Q (Q )
1 2 3 0
C Q0Q3
设初态为0000
作状态转换图
可以看出这是一个异步十进制加法计数器! 3. 检验其能否自动启动 ?
什么叫 “自动启动” ? 四个触发器本应有十六个稳定状态 ,可 上图电路的状态图中只有十个状态。如果由 于某种原因进入了其余的六个状态当中的任 一个状态,若电路能够自动返回到计数链 ( 即有效循环 ) ,人们就称其为能自动启动。
*6.2.3
异步时序逻辑电路的分析方法
例6.2.4 分析图6.2.10所示电路的逻辑功能。
1、写三大方程
驱 动 方 程 状 Q0 Q 0 cp0 Q 0 (cp0 ) * 态 Q1 Q 3 Q 1 (cp1 ) Q 3 Q 1 (Q0 ) * 方 Q2 Q 2 (cp2 ) Q 2 (Q1 ) 程 *

数字电子技术 第6章 时序逻辑电路的设计

数字电子技术 第6章 时序逻辑电路的设计

17
2.画出次态状态表 画出次态状态表
次态 y=0(down) Q2 Q1 Q0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 y=1(up) Q2 Q1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 Q0 1 1 0 0 1 1 0 0
为使电路能自启动,将卡诺图中的最小项 xxx取做有效状态例如010状态,这时Q2n+1 的卡诺图应修改为右图。化简后得到新状 态方程: Q1n+1= Q2n⊕Q3n Q2n+1= Q1n+ Q2nQ3n Q3n+1= Q2n 驱动方程:J1=Q2n⊕Q3n 输出方程:C= Q1n Q2n Q3n K1=Q2n⊕Q3n J2=Q1n+Q3n K2=Q1n J3= Q2n K3= Q2n
检查自启动:设初态为000,来第1个CP脉冲,将跳变为010,进入循环状态,该电路可 以自启动。
11
6.3同步时序逻辑电路设计 同步时序逻辑电路设计 (时钟同步状态机的设计)
1.用状态图设计同步时序逻辑电路 ①状态序有规则的时序电路; ②态序不规则的Moore型; ③Mealy型 2. 使用状态表设计时序逻辑电路 3.使用状态转换表设计时序状态机
8
例2:设计一个串行数据检测器。要求连续输入3个或3个以 上的1时,输出为1,其它情况下输出为0。
(1)因为输入多于3个1,有输出。设输入变量为x;检测 (5)最多连续输入m=3,可选用 结果为输出变量,定义为y;又因连续输入3个1以上有 (7)逻辑电路图: n=2,2个J-K FF,于是可画出次 输出,因此要求同步计数。 态及输出卡诺图。还可分解为3 个卡诺图。 (2)状态分析:初态S0为全0状态,设输入一个1时为S1 态,输入2个1时为S2,输入3个1及以上为S3。 Q1n+1 Q0n+1 y (3)状态转换图如图所示: (4)状态转换表。因为输入m>3和连续输入3个1(m=3)状态是相同的,都停留在S2上,故 (8)检查能否自启动: 状态转换图可以简化成如下。 当电路初态进入11状态后: (6)状态方程:Q1n+1=xQ0Q1+xQ 若x=1时,Q1n+1Q0n+1=10状态为 1 sn S S1 S2 S 0 X 次态;若x=0时,Q1n+1 Q0n+1=00 3 n 驱动方程:J1=xQ0 J0=xQ1 0 S0/0 S0/0 S0/0 S0/0 次态。 输出方程:y=xQ1n 1 S1/0 该电路可以自启动。S2/0 S3/1 S4/1 Q0n+1=xQ1Q0+1Q1 K1=x K0=1 自启动部分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PPT文档演模板
数字电子技术时序逻辑电路
PPT文档演模板
图5-3 4位寄存器74LS175的逻辑图
数字电子技术时序逻辑电路
2. 移位寄存器 移位寄存器不仅具有存储的功能,而且还有移位功能,可以 用于实现串、并行数据转换。如图5-4所示为4位移位寄存器 的逻辑图。
PPT文档演模板
数字电子技术时序逻辑电路
5.1.2 异步时序逻辑电路的分析方法
异步时序电路的分析步骤:
① 写时钟方程; ② 写驱动方程; ③ 写状态方程; ④ 写输出方程。
PPT文档演模板
数字电子技术时序逻辑电路
[例5-2]试分析图示时序逻辑电路的逻辑功能,列出状态转换 表,并画出状态转换图。
PPT文档演模板
数字电子技术时序逻辑电路
解:图5-7所示电路为1个异步摩尔型时序逻辑电路。 写时钟方程:
数字电子技术时序逻辑电路
PPT文档演模板
图5-5 同步二进制加法计数器的数时字电序子图技术时序逻辑电路
PPT文档演模板
图5-8 同步4位二进制加法计数器74LS16数1字的电逻子技辑术图时序逻辑电路
表5-1 同步4位二进制加法计数器74LS161的功能表
PPT文档演模板
数字电子技术时序逻辑电路
写驱动方程:
写状态方程:
PPT文档演模板
数字电子技术时序逻辑电路
列状态转换表:
PPT文档演模板
数字电子技术时序逻辑电路
画状态转换图:
PPT文档演模板
数字电子技术时序逻辑电路
5.2 若干常用的时序逻辑电路 5.2.1寄存器
1. 基本寄存器
PPT文档演模板
图5-2 双2位寄存器74LS75的逻辑图
时序图是在一系列时钟脉冲的作用下,电路的状态和输出随 时间变化的波形图。 按照触发器状态翻转先后可分为:同步时序电路和异步时序 电路。 按照输出信号的特点不同可分为:摩尔型和米里型。
PPT文档演模板
数字电子技术时序逻辑电路
5.1 时序逻辑电路的分析方法 5.1.1 同步时序逻辑电路的分析方法
同步时序逻辑电路的分析是已知同步时序逻辑电路的逻辑 图,找出其逻辑功能。
假设串行信号输入端,依次输入1011,并设初态为0,画出 电压波形图:
PPT文档演模板
数字电子技术时序逻辑电路
5.2.2计数器
计数器是能够用来记录输入脉冲的个数的逻辑电路。
按照计数器中的各个触发器状态翻转先后,可分为同步计数 器和异步计数器; 按照计数过程中,数字的增减可分为:加法计数器、减法计 数器和可逆计数器; 按照计数过程中数字的编码方式可分为:二进制计数器和二十进制计数器等。 按照计数容量可分为:十进制计数器、十六进制计数器、进 制计数器等。
2)同步十进制计数器
程: 写输出方程:
PPT文档演模板
数字电子技术时序逻辑电路
表5-2 同步十进制加法计数器的状态转换表
PPT文档演模板
数字电子技术时序逻辑电路
PPT文档演模板
图5-9 同步十进制加法计数器的状态转换图
数字电子技术时序逻辑电路
辑电路的框图如图5-1所示:
PPT文档演模板
图5-1 时序逻辑电路的框图
数字电子技术时序逻辑电路
1)时序逻辑电路是由组合逻辑电路和存储电路两部分组 成,其中存储电路必不可少。2)存储电路的输出和输入信 号共同确定时序电路的输出。
驱动方程:
状态方程:
输出方程:
这三个方程能够全面描述一个时序电路的逻辑功能。
解:该电路为1个摩尔型同步时序逻辑电路。 写驱动方程:
写状态方程:
写输出方程:
PPT文档演模板
数字电子技术时序逻辑电路
列出状态转换表:
PPT文档演模板
数字电子技术时序逻辑电路
画出状态转换图:
PPT文档演模板
数字电子技术时序逻辑电路
画时序图:
该电路能够自启动。
PPT文档演模板
数字电子技术时序逻辑电路
同步十进制加法计数器74LS160的逻辑图:
PPT文档演模板
数字电子技术时序逻辑电路
异步计数器 1)异步二进制计数器
PPT文档演模板
图5-10 异步3位二进制加法计数器的逻辑图
数字电子技术时序逻辑电路
图5-11 异步3位二进制加法计数器的时序图
分析步骤: 1.写驱动方程; 2.写状态方程; 3.写输出方程。
PPT文档演模板
数字电子技术时序逻辑电路
[例5-1]试分析图5-2所示时序逻辑电路的逻辑功能, 要求①写出驱动方程、状态方程和输出方程;②列 出状态转换表;③画出状态转换图;④画出时序 图;⑤判断电路能否自启动?
PPT文档演模板
数字电子技术时序逻辑电路
数字电子技术时序逻辑电路
图5-2所示为双2位寄存器74LS75的逻辑图。当 = 1时, 送到数据输入端的数据被存入寄存器,当 =0时,存入 寄存器的数据将保持不变。 如图5-3所示为4位寄存器74LS175的逻辑图。该寄存器具有 异步清零功能,当 =0时,触发器全部清零;当 =1, 出现上升沿时,送到数据输入端的数据被存入寄存器,实现 送数功能。由于此寄存器是由边沿触发器构成,所以其抗干 扰能力很强。
数字电子技术时序逻辑 电路
PPT文档演模板
2020/11/21
数字电子技术时序逻辑电路
第5章 时序逻辑电路
5.1 时序逻辑电路的分析方法 5.2 若干常用的时序逻辑电路 5.3 时序逻辑电路的设计方法
PPT文档演模板
数字电子技术时序逻辑电路
时序电路逻辑功能上的特点:任意时刻的输出不仅取决于该 时刻的输入,而与信号作用前电路原来的状态有关。时序逻
PPT文档演模板
数字电子技术时序逻辑电路
直观描述时序电路中全部状态转换关系的方法:状态转换 表、状态转换图和时序图。
状态转换表的列写方法:任意设定电路的1组输入变量取值 和1种初态,代入该电路的状态方程和输出方程,得到电路 的次态和输出;以得到的次态作为新的初态,连同此时的输 入变量取值,再代入状态方程和输出方程,得到新的次态和 输出,直至将电路中全部状态转换关系全部列成表格即可。
PPT文档演模板
数字电子技术时序逻辑电路
1.同步计数器 1)同步二进制计数器
PPT文档演模板
数字电子技术时序逻辑电路
写驱动方程: 写状态方程: 写输出方程:
PPT文档演模板
数字电子技术时序逻辑电路
状态转换表:
PPT文档演模板
数字电子技术时序逻辑电路
PPT文档演模板
图5-4 同步二进制加法计数器的状态转换图
相关文档
最新文档