双相不锈钢焊接
双相不锈钢焊接工艺要点
双相不锈钢焊接工艺要点
双相不锈钢是一种具有很高的耐腐蚀及耐热性能的材料,所以在
工业领域中得到了广泛应用。
焊接是双相不锈钢的常见加工方法之一,下面介绍几个双相不锈钢焊接工艺的要点。
1. 焊接前的预处理:在双相不锈钢板材或管道上进行焊接前,
必须进行严格的加热处理。
预处理温度一般在1000℃以上,时间要根
据板厚、孔径大小、管子长度等因素来确定。
2. 焊接设备:在进行双相不锈钢焊接时,需要使用直流电弧焊
机和专门针对双相不锈钢的焊丝。
其焊丝的成分应该与基材成分一致,以保证焊接质量。
3. 焊接位置:焊接双相不锈钢时,大部分情况下采用横向焊接
的方式。
如果采用竖直位置焊接,需要加大电弧电流和电弧长度,以
保证焊接质量。
4. 焊接工艺:推荐采用氩弧焊接法进行双相不锈钢的焊接,其
中采用保护气体是关键。
氩气压力一般在0.2~0.4MPa之间,其流量大
小应该根据想要达到的焊接速度来调整。
综上所述,焊接双相不锈钢有以下几个要点:焊接前的预处理、
使用专门的设备和材料、适当选定焊接位置和采用氩弧焊接法。
只有
在严格遵守这些要点的前提下,才能够保证焊接质量以及双相不锈钢
的使用寿命。
双相不锈钢焊接
MIG 焊接
焊丝
SAF 2304和SAF 2205可选择Sandvik 22.8.3.L,而对于SAF 2507要选择Sandvik 25.10.4.L焊丝。
埋弧焊
焊丝和焊剂
对于焊丝,参见“TIG焊” 对于三种双相不锈钢,推荐Sandvik 15W焊剂。
保护气体
喷射弧:氩气+CO 2 (1-3%),氩气+1-3%O 2 。 短弧:氩气or Ar-He-O 2 混合气
保护气体
氩气 ,氩 气+1 -2 % 氮气 或氩 氦混合 气。
典型参数设置
焊条直径 mm 2.0 2.5 3.25 电流,A 22.9.3.LR 25.10.4.LR 35–55 50–75 70–120 90–160 – 55–85 70–110 110–150 电压, V 22–28 22–28 22–28 22–28
V型坡口
t mm MMA 3–15 TIG 2.5–8 MIG 3–12 SAW* 4–12 d mm 2–3 2–3 2–3 2–3 k α mm 1–2 1–2 1–2 1–2 60–70 60–70 60–70 80–90 α
t d k
U型坡口
标准的不锈钢焊接方法也适用双相不锈钢。 焊接参数及坡口设计的差别将在随后介绍。 t d k mm mm mm MMA >12 TIG >6 MIG >12 SAW* >10
层间温度 无实际限制, 最高250℃ 最高150℃
SAF 2205 SAF 2507
V型坡口
t mm MMA TIG MIG SAW 4–15 2.5–8 5–12 5–12 d mm 1–3 1–3 1–3 1–3 k mm 1–2 1–2 1–2 1–2 α 60–70 60–70 60–70 80–90 α
2507双相不锈钢焊接工艺
2507双相不锈钢焊接工艺引言:2507双相不锈钢是一种具有优异耐蚀性和高强度的材料,广泛应用于海洋工程、化工设备和石油工业等领域。
然而,由于其特殊的化学成分和微观结构,2507双相不锈钢的焊接工艺相对较为复杂。
本文将介绍2507双相不锈钢的焊接工艺及其注意事项。
一、焊接方法选择2507双相不锈钢的焊接可以采用多种方法,如手工电弧焊、氩弧焊、等离子焊和激光焊等。
根据具体情况选择合适的焊接方法,以确保焊缝质量和工艺效率。
在选择焊接方法时,需考虑到材料的厚度、焊接位置、工件形状等因素。
二、预热与后热处理2507双相不锈钢焊接前需要进行预热处理,以避免焊缝区域出现冷裂纹。
预热温度一般在100℃-150℃之间,时间根据工件厚度而定。
焊接完成后,还需要进行后热处理,以消除焊接残余应力和提高焊缝的耐蚀性能。
后热处理温度和时间也需根据具体情况来确定。
三、焊接参数控制在2507双相不锈钢的焊接过程中,合理控制焊接参数对焊缝质量至关重要。
首先是电流和电压的选择,一般采用直流电源进行焊接,电流大小根据焊接工件的厚度和焊缝的尺寸来确定。
同时,还需要注意电弧长度和焊接速度的控制,以避免焊缝出现缺陷。
四、焊接材料选择在2507双相不锈钢的焊接中,选择合适的焊接材料可以提高焊缝的强度和耐蚀性能。
一般采用相同或相似的材料进行焊接,以保证焊缝与母材具有相似的性能。
同时,还需选择合适的焊接填充材料,以满足焊接工艺和使用要求。
五、焊接缺陷及预防措施在2507双相不锈钢焊接过程中,可能会出现一些常见的焊接缺陷,如气孔、夹渣、裂纹等。
为了预防这些缺陷的发生,需要注意焊接操作的细节和控制焊接参数。
此外,还需定期对焊接设备进行维护和检修,确保焊接质量。
六、焊后处理焊接完成后,还需对焊缝进行适当的处理,以提高其耐蚀性和美观度。
常见的焊后处理方法包括打磨、喷砂、酸洗和电化学抛光等。
根据具体要求选择合适的处理方法,使焊缝与母材之间的过渡更加平滑,提高整体质量。
双相不锈钢焊接工艺要点
双相不锈钢焊接工艺要点
双相不锈钢焊接工艺要点主要包括以下几点:
1. 选择合适的焊接方法:双相不锈钢可以采用氩弧焊、埋弧焊、激光焊等多种焊接方法,但是要根据具体情况选择合适的焊接方法。
2. 熟练掌握焊接技术:在焊接双相不锈钢时,需要对焊接技术有熟练的掌握,包括预热、加热、焊接速度、电流电压等焊接参数。
3. 保证焊接质量:焊接完毕后需要进行外观检查和力学性能检测,以保证焊接质量。
4. 选择合适的焊接材料:双相不锈钢的焊接材料要选择与基材相同或相近的焊接材料,以避免产生微观裂纹和变形等问题。
5. 焊接过程中保护焊缝:焊接过程中,需要采用适当的保护措施,以避免焊缝污染和氧化。
6. 焊接完毕后进行退火处理:焊接完毕后,需要进行退火处理,以消除残余应力,提高焊接质量和力学性能。
总体来说,双相不锈钢焊接过程中需要掌握一系列的工艺要点,以保证焊接质量和力学性能。
双相不锈钢2205及焊接技术
双相不锈钢2205及焊接技术双相不锈钢2205双相不锈钢2205由瑞典AvestaPolarit公司生产,商业牌号是2205CodePlusTow,已纳入ASTM和ASME的A240和A480中,UNS编号为S32205,属于第二代双相不锈钢。
2205CodePlusTow与UNS编号为S31803的同种双相不锈钢2205有所不同,它提高了氮含量的下限,并通过有害金属相析出测试。
2205CodePlusTow具有更高的强度、耐蚀性和焊后冶金稳定性,焊接接头易于获得平衡的两相组织,高氮含量更有效抑制有害金属相的析出,这对焊接是非常有利的。
1 材料特性1.1 成分特点第二代双相不锈钢一般称为标准双相不锈钢,成分特点是超低碳、含氮,其典型成分为22%Cr+5%Ni+0.17%N(见表1)。
与第一代双相不锈钢相比,2205进一步提高氮含量,增强在氯离子浓度较高的酸性介质中的耐应力腐蚀和抗点蚀性能。
氮是强烈的奥氏体形成元素,加入到双相不锈钢中,既提高钢的强度且不显著损伤钢的塑韧性,又能抑制碳化物析出和延缓σ相形成。
1.2 组织特点双相不锈钢在室温下固溶体中奥氏体和铁素体约各占半数(双相不锈钢2205铁素体含量应为30%~55%,典型值是45%左右),兼有两相组织特征,见图1。
它保留了铁素体不锈钢导热系数大、线膨胀系数小、耐点蚀、缝隙及氯化物应力腐蚀的特点;又具有奥氏体不锈钢韧性好、脆性转变温度较低、抗晶间腐蚀、力学性能和焊接性能好的优点。
图1 2205DSS 板材典型显微组织1.3 性能特点在性能上的突出表现是屈服强度高和耐应力腐蚀。
双相不锈钢比奥氏体不锈钢的屈服强度高近1倍,同样的压力等级条件下,可以节约材料。
比奥氏体不锈钢的线性热膨胀系数低,与低碳钢接近。
使得双相不锈钢与碳钢的连接较为合适,这有很大的工程意义。
锻压及冷冲成型性不如奥氏体不锈钢。
双相不锈钢2205的机械性能见表2。
2 焊接性双相不锈钢2205具有良好的焊接性,焊接冷裂纹和热裂纹的敏感性都较小。
双相不锈钢的焊接特点
双相不锈钢的焊接特点一、双相不锈钢具有良好的焊接性。
它既不像铁素体不锈钢焊接时热影响区易脆化,也不像奥氏体不锈钢易产生焊l接热裂纹,但由于它有大量的铁素体,当刚性较大或焊缝含氢量较高时,有可能产生氢致冷裂纹,因此严格控制氢的来源是非常重要的。
二、为了保证双相钢的特点,确保焊接接头的组织中奥氏体及铁素体比例合适是这类钢焊接的关键所在。
当焊后接头冷却速度较慢时,δ→γ的二次相变化较充分,因此到室温时可得到相比例比较合适的双相组织,这就要求在焊接时要有适当大的焊接热输人量,否则若焊后冷却速度较快时,会使δ铁素体相增多,导致接头塑韧性及耐蚀性严重下降。
三、双相不锈钢焊材选用双相不锈钢用的焊材,其特点是焊缝组织为奥氏体占优的双相组织,主要耐蚀元素(铬、钼等)含量与母材相当,从而保证与母材相当的耐蚀性。
为了保证焊缝中奥氏体的含量,通常是进步镍和氮的含量,也就是进步约2%~ 4%的镍当量。
在双相不锈钢母材中,一般都有一定量的氮含量,在焊材中也希看有一定的含氮量,但一般不宜太高,否则会产生气孔。
这样镍含量较高就成了焊材与母材的一个主要区别。
根据耐腐蚀性、接头韧性的要求不同来选择与母材化学成分相匹配的焊条,如焊接Cr22型双相不锈钢,可选用Cr22Ni9Mo3型焊条,如E2209焊条。
采用酸性焊条时脱渣优良,焊缝成形美观,但冲击韧性较低,当要求焊缝金属具有较高的冲击韧性,并需进行全位置焊接时,应采用碱性焊条。
当根部封底焊时,通常采用碱性焊条。
当对焊缝金属的耐腐蚀性能具有特殊要求时,还应采用超级双相钢成分的碱性焊条。
对于实心气体保护焊焊丝,在保证焊缝金属具有良好耐腐蚀性与力学性能的同时,还应留意其焊接工艺性能,对于药芯焊丝,当要求焊缝成形美观时,可采用金红石型或钛钙型药芯焊丝,当要求较高的冲击韧度或在较大的拘束度条件下焊接时,宜采用碱度较高的药芯焊丝。
对于埋弧焊宜采用直径较小的焊丝,实现中小焊接规范下的多层多道焊,以防止焊接热影响区及焊缝金属的脆化,并采用配套的碱性焊剂。
2205双相不锈钢的焊接工艺规程
2205双相不锈钢的焊接工艺规程双相不锈钢的焊接工艺规程随着工业技术的不断发展,奥氏体不锈钢已经不能满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。
为此,冶金工作者研制出了双相不锈钢,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,成为一种可焊接的结构材料。
双相不锈钢的固溶组织中铁素体相和奥氏体相各约占50%,一般量少相的含量也需要达到30%。
在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。
有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。
该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。
与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。
双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。
双相不锈钢的应用范围不断扩大,除了在石油化工领域中用于、管道和零部件等,还在一般民用工程和能源交通方面得到广泛应用,如桥梁、飞机、船舶、汽车以及沿海城市和化工区的装饰建筑等。
双相不锈钢的发展经历了三代历程,我国的应用也在逐步增加。
在正确控制化学成分和热处理工艺的基础上,双相不锈钢的焊接工艺规程也得到了不断完善。
1.1.1 石油和天然气工业石油和天然气工业是国外应用双相不锈钢的主要领域之一,目前已铺设了1000公里的油气输送管线。
国内只有南海油田少量使用,且全部进口。
另外,西气东输工程在考虑使用双相不锈钢焊管作为集气管线,国内已有条件生产和制造。
炼油工业是最早使用国产双相不锈钢的部门之一。
在南京、镇海、天津、济南等炼化公司中,多集中使用双相不锈钢于常减压蒸馏塔的塔顶衬里(或复合板)、塔内构件、空冷器和水冷器等,最长的使用时间已达20年。
___是我国最大的炼油基地,加工能力为1600万吨,已进入世界百强,冷凝冷却系统中多套设备使用双相不锈钢。
2205双相不锈钢焊接注意事项
2205双相不锈钢焊接注意事项
哎呀呀,2205 双相不锈钢焊接可不能掉以轻心啊!这可是个技术活,稍有不慎就可能出大问题呀!
就说焊接材料的选择吧,那可得精挑细选!不能随便抓个材料就用,这就好比给战士选武器,得选趁手的才行!要保证材料的质量和性能,不然怎么能打造出坚固的焊缝呢!
还有焊接工艺参数,这可不能瞎定呀!电流、电压、焊接速度,都得根据实际情况精准调整,就像给汽车调引擎,每个零件都得配合得恰到好处!
焊接环境也至关重要啊!不能在灰尘满天飞、潮湿得能滴水的地方焊接,这可不是闹着玩的,不然会严重影响焊接质量的!
焊接过程中,要时刻留意焊缝的成型,不能马虎大意!一旦发现有缺陷,赶紧处理,千万别等问题严重了才后悔,这就跟治病一样,早发现早治疗!
而且啊,焊接完成后,检验工作不能少!别觉得麻烦,这可是保证质量的最后一道关卡,得像检查宝贝一样仔细认真!
总之啊,2205 双相不锈钢焊接注意事项一定要牢记在心,不能敷衍了事。
只有用心对待,才能保证焊接质量,让工程顺利进行呀!。
2205+Q235B双相不锈钢复合板的搭接焊接工艺
2205+Q235B双相不锈钢复合板的搭接焊
接工艺
简介
本文档旨在探讨2205+Q235B双相不锈钢复合板的搭接焊接工艺。
我们将介绍该复合板的特性、焊接的必要性以及实施焊接的具体步骤和注意事项。
复合板特性
2205+Q235B双相不锈钢复合板由高强度双相不锈钢2205和低碳结构钢Q235B组成。
该复合板具有以下特性:
- 高强度和良好的韧性
- 优异的耐腐蚀性能
- 良好的焊接性能
焊接的必要性
搭接焊接是将两块复合板连接在一起形成更大尺寸的板材的常用方法。
在某些工程中,需要使用2205+Q235B双相不锈钢复合板的大尺寸板材,因此搭接焊接是必要的。
焊接步骤和注意事项
为了保证焊接质量和连接强度,以下是实施2205+Q235B双相不锈钢复合板搭接焊接的步骤和注意事项:
1. 确保焊接区域的清洁,并去除可能影响焊接质量的杂质和污染物。
2. 使用适当的焊接工艺和设备,如TIG(钨极氩弧焊)焊接。
3. 控制焊接参数,如电流、电压和焊接速度,以确保合适的焊接质量。
4. 确保合适的焊接温度范围,避免过高的温度导致结构变形或缺陷。
5. 在焊接完成后,进行焊缝检测和质量评估,以确保焊接质量符合标准要求。
结论
2205+Q235B双相不锈钢复合板的搭接焊接工艺是实现大尺寸板材的常用方法。
通过遵循适当的焊接步骤和注意事项,可以保证焊接质量和连接强度。
为了获得最佳结果,建议在实施焊接前进行合适的焊接试验并遵循相关的标准和规范。
2205双相不锈钢的焊接
2205双相不锈钢的焊接不锈钢焊接易出现的缺陷:焊缝区的腐蚀:为防止其发生晶间腐蚀,首先要控制焊缝金属的化学成分。
主要是降低含碳量和添加足够的TI或NB;其次是控制焊缝隙的组织状态——即金相组织。
敏化区腐蚀:是指热影响区是峰值温度处于敏化温度区间内所发生的腐蚀。
刀状腐蚀:只出现在TI或NB类18-8的焊接接头中,并一定是发生器在紧邻焊缝过热区中。
焊接采取的措施:1.合理的选用焊材。
2.控制焊接的输入热能。
3.调整焊接程序。
4.缩短焊接电弧(焊接时尽量不要摆动防止合金元素烧损)5.合理调整焊缝位置在制定焊接参数时要考虑保证输入热在600~18000J/cm内,输入热的计算(J/cm)=电流(A)*电压(V)/焊接速度(cm/min)焊接层数焊条牌号规格D/mm电流I/A电压U/V速度Vcm/min极性1AVESTA2205AC/DC 3.2100~11023~259~11直流反接2AVESTA2205AC/DC 3.2100~11023~259~11直流反接清根AVESTA2205AC/DC 3.2100~11023~259~11直流反接根据标准节点法(ASTME562)对焊缝及执热影响区进行α相数测定。
焊接A体不锈钢与双相不锈钢的区别:不同点:焊接A不锈钢时要适当增加δ相的数量:打乱A的柱状结晶方向,从而避免产生贫Cr区贯穿于晶粒之间;δ相富Cr,而Cr在δ相中容易扩散,碳化铬在δ相内部边缘沉淀,由于供Cr条件好,不会在A晶粒间形成贫Cr层。
所以增加δ相有利于提高焊缝的抗晶间腐蚀能力。
在焊接双相不锈钢时要控制δ相的数量:由于双相不锈钢中δ相较多,如不控制其含量则会产生σ相脆化现象和δ相选择性腐蚀。
不锈钢焊接后:热影响区会出现敏化腐蚀,要控制输入热量,故最后一道焊缝要求焊接输入量要小、且安排在不与介质接触的一面。
双相不锈钢焊接后:要防止晶粒粗化和单相铁素体化。
故最后一道焊缝为了防止晶粒粗化及单相铁素体化,安排在与介质接触的一面。
双相钢焊接注意要点
双相钢焊接注意要点
双相钢焊接是一种常用于在高温、高压及腐蚀环境中工作的不锈钢焊接方法。
下面是一些双相钢焊接注意要点:
1. 确定焊接方法:根据具体的焊接需求和工作环境选择适合的焊接方法,常见的方法包括MIG/MAG焊接、TIG焊接和电弧焊。
2. 选择合适的电极材料:根据双相钢的成分和焊接要求选择合适的电极材料。
一般来说,焊接双相钢最常用的电极材料是
ER308L和ER309L。
3. 控制焊接参数:在焊接过程中,控制好焊接电流、电压、焊接速度和预热温度等参数,确保焊接接头的质量。
4. 注意预热和焊后热处理:对于较厚的双相钢板材,应该进行适当的预热处理,以消除焊接应力和减少裂纹的产生。
焊接后,及时进行适当的热处理,提高焊接接头的性能。
5. 控制焊接变形:双相钢焊接过程中,由于焊接过程产生的热应力会引起变形。
在焊接过程中,应该尽量控制焊接变形,采取适当的焊接顺序和夹具等措施。
6. 温度控制:双相钢焊接过程中,应注意控制焊接区域的温度,避免过高的温度对材料造成损害。
7. 清洁焊接表面:在进行双相钢焊接前,要保证焊接表面的清
洁,避免污染和杂质的存在。
8. 检测焊接质量:焊接完成后,应及时进行焊道质量检测,确保焊接接头的质量达到要求。
9. 注意防护措施:在进行双相钢焊接时,要注意工人的安全,佩戴个人防护设备,防止受到火花、烟雾和有害气体的伤害。
10. 遵循相关标准:在进行双相钢焊接时,要遵循相关的焊接标准和规范,确保焊接接头的质量和安全性。
双相不锈钢的焊接
60年代:瑞典开发出最具代表性的第一代双相不锈钢——超 低碳(≤0.03%)双相不锈钢,3RE60钢,使焊接接头塑性、韧 性和耐腐蚀性显著改善。
70年代:开发出第二代双相不锈钢,即在超低碳的基础上含 氮双相不锈钢,并含有钼、铜、硅等耐蚀性元素。包括18Cr型、 22Cr型及25Cr型,如瑞典开发的SAF2205等。
双相不锈钢的主要应用领域
(1)中性氯化物环境
双相不锈钢在中性氯化物环境中应用广泛,在加工制造过程中,通常使用 少量的含有氯离子的溶液作为冷却水,从而导致普通的奥氏体不锈钢(例如 AISI 304/316)有产生应力腐蚀的倾向,而双相不锈钢可以很好的解决这一 问题,尤其适用于由孔蚀引起的应力腐蚀开裂的环境。衡量耐腐蚀性的好坏 通常用孔蚀当量指数 PRE=Cr%+3.3Mo%+16N%表示,其中双相不锈钢 PRE 值大于 24,而奥氏体 PRE 小于 20。
这样可以防止双相不锈钢固溶处理及相和475脆性的温度范围2205双相钢及2507等超级双相钢00cr25ni7mo3cun固溶温度0251100空气氧化起皮温度相形成温度60010006001000475脆化温度30052也存在475脆性但不如铁素体不锈钢那样敏感双相不锈钢中的铁素体在300525长期保温会析出高铬475最敏感使双相钢脆化由于相析出时间较长故对一般焊接影响不大但应限制双相不锈钢的工作温度不高于250
焊缝室温组织预测: ⑴ Schaeffler图:
铁素体含量的精度±4% ⑵ DeLong图:
铁素体含量的精度±2% ⑶ WRC1992组织图
—美国焊接研究委员会 推荐
Creq=Cr%+Mo%+1.5×Si%+0.5×Nb% Nieq=Ni%+30×C%+30×N%+0. 5×Mn%
浅谈双相不锈钢S31803的焊接试验
浅谈双相不锈钢S31803的焊接试验双相不锈钢S的焊接性能是其应用的关键因素之一。
在实际应用中,焊接接头的质量直接影响着整个设备的使用寿命和安全性。
因此,对S的焊接性能进行深入研究和试验具有重要意义。
为了更好地了解S的焊接特点,我们进行了大量的焊接试验。
试验结果表明,S的焊接接头具有很好的塑性和韧性,无常温脆性,抗晶间腐蚀性和耐氯化物应力腐蚀性能均有明显提高。
同时,S也保持了铁素体不锈钢的475℃脆性和导热系数高等特点。
这些优良的性能使S双相不锈钢广泛应用于石油化工设备、海水与废水处理设备、输油输气管线、造纸机械等工业领域。
在试验中,我们还确定了S的焊接工艺。
由于S双相不锈钢中铁素体含量一般在40%~50%之间,其余组织为奥氏体,因此在焊接接头中单相铁素体在冷却过程中会形成适量的奥氏体,使焊接接头的铁素体组织与奥氏体组织的比例趋于平衡。
这样既可改善双相不锈钢焊接热影响区的塑性和韧性,又确保了双相不锈钢的抗应力腐蚀和点蚀能力。
同时,我们还要注意控制焊接接头的冷却速度,避免过快或过慢的冷却会影响焊接接头的质量。
总之,S双相不锈钢具有优异的性能,在实际应用中具有广泛的应用前景。
通过对其焊接性能的深入研究和试验,我们可以更好地了解其特点,制定出适合的焊接工艺,为实际应用提供更好的保障。
双相不锈钢S的含镍量较低,杂质极少,不易形成低熔点液膜,同时保留了铁素体不锈钢的高导热系数和小膨胀系数的性能,因此对热裂纹的敏感性比奥氏体不锈钢小。
此外,双相不锈钢S含有50%左右的奥氏体组织,因此韧性高,产生冷裂的倾向也较小。
双相不锈钢焊接接头的力学性能和耐蚀性能取决于焊接接头的相比例,因此焊接时需要保证铁素体含量不少于30%,减少金属间相的产生。
除了合金元素的影响外,焊接时的热循环对相比例及金属间相的产生影响也很大。
因此,在正确选择焊材的前提下,选择合理的焊接参数,控制层间温度、冷却速度等是非常重要的。
为了保证焊接质量,控制焊接接头热影响区的组织和性能,我们采用非熔化极惰性气体保护焊丝打底,电弧焊填充盖面进行S的焊接。
双相不锈钢的焊接技巧和要点
双相不锈钢的焊接技巧和要点简介双相不锈钢是一种高强度和耐腐蚀性能良好的材料,其焊接过程需要一些特殊的技巧和注意事项。
本文将介绍一些双相不锈钢的焊接技巧和要点,以帮助焊接人员提高焊接质量和效率。
选择合适的焊接方法双相不锈钢的焊接可以采用多种方法,如TIG焊、MIG/MAG 焊、电弧焊等。
选择合适的焊接方法取决于具体焊接条件和要求。
通常情况下,TIG焊是首选方法,因为其焊接质量较高、焊缝外观美观。
注意预热和间隙控制双相不锈钢的焊接过程中,预热和间隙控制是重要的技巧。
预热可以帮助减少焊接变形和晶间腐蚀的风险,提高焊接接头的强度。
合适的间隙控制可以确保焊接质量和焊缝的完整性。
使用合适的电流和电压选择合适的电流和电压是双相不锈钢焊接中的关键。
过高的电流和电压会导致焊接区域过热,产生气孔和裂纹。
而过低的电流和电压则可能导致焊接不充分,影响焊缝质量。
根据焊接规范和试验结果确定合适的电流和电压范围。
使用适合的焊接材料双相不锈钢的焊接通常需要使用相同或相似成分的焊接材料,以确保焊接接头的性能和腐蚀性能与基材一致。
同时,选择合适的焊接材料可以有效降低焊接变形和裂纹风险。
控制焊接速度和焊接参数在焊接双相不锈钢时,控制焊接速度和焊接参数是非常重要的。
过高的焊接速度可能导致焊缝质量不佳,而过低的焊接速度则可能引起过热和热影响区过大。
根据焊接试验和经验,控制合适的焊接速度和参数,以获得最佳的焊接质量。
注意焊后处理焊接完成后,及时进行焊后处理是确保焊接质量的重要环节。
焊后处理包括去除焊渣、清理焊缝、消除应力、进行表面处理等。
正确的焊后处理可以提高焊接接头的性能和耐腐蚀性。
结论双相不锈钢的焊接需要一些特殊的技巧和要点,我们应该选择合适的焊接方法,注意预热和间隙控制,使用适合的电流和电压,选择合适的焊接材料,控制焊接速度和焊接参数,以及进行正确的焊后处理。
通过遵循这些技巧和要点,我们可以提高双相不锈钢焊接的质量和效率。
以上为双相不锈钢的焊接技巧和要点,希望能对您有所帮助。
2507双相不锈钢焊接工艺书
2507双相不锈钢焊接工艺书简介2507双相不锈钢是一种具有优异耐蚀性、耐高温和高强度的材料,常用于海洋、化工和石油工业等领域。
为了保证焊接接头的质量,需要选择合适的焊接工艺和参数。
本文将介绍2507双相不锈钢的焊接工艺,包括预热、焊材选择、焊接方法和参数等内容。
1. 预热预热对于焊接2507双相不锈钢非常重要,可以减少焊接时的应力和变形,并提高焊缝的质量。
预热温度一般为150-200°C,可以使用气焊炉或电焊炉进行加热。
需要注意的是,在预热过程中要避免温度过高和过低,以免影响焊接质量。
2. 焊材选择选择合适的焊材对于焊接质量至关重要。
推荐使用ER2594型焊丝作为填充材料。
该焊丝具有出色的耐腐蚀和强度特性,能够与2507双相不锈钢匹配良好。
在选择焊材时,还需要考虑焊接方法和工艺参数的要求。
3. 焊接方法针对2507双相不锈钢的焊接,推荐采用TIG焊法(Tungsten Inert Gas Welding)。
TIG焊接具有焊缝质量高、热影响区小的优点,适用于焊接薄板和对焊缝质量要求较高的情况。
在进行TIG焊接时,需要注意引弧时避免接触焊材和基材,焊接电流一般选择与填充材相匹配的参数。
4. 焊接参数焊接参数的选择对于焊缝质量和性能至关重要。
对于2507双相不锈钢,推荐的焊接参数如下: - 焊接电流:100-120A - 焊接电压:12-16V - 氩气流量:12-15L/min - 焊接速度:5-10cm/min需要根据实际焊接情况进行调整,并进行焊接试验验证。
5. 焊后处理焊接完成后,需要进行焊后处理以提高焊缝质量和耐蚀性。
推荐进行固溶处理和时效处理。
固溶处理温度一般为1050-1100°C,时间为1-2小时;时效处理温度一般为550-600°C,时间为4-6小时。
通过焊后处理,可以减少焊接产生的应力和变形,并提高焊缝的耐蚀性和强度。
总结本文介绍了2507双相不锈钢的焊接工艺,包括预热、焊材选择、焊接方法和参数以及焊后处理等内容。
双相不锈钢S焊接工艺评定报告
双相不锈钢S焊接工艺评定报告一、引言二、实验方法1.实验材料使用双相不锈钢板材作为实验材料,板厚为3mm,规格为300mm×200mm。
2.焊接参数采用TIG氩弧焊工艺,焊丝直径为1.6mm,焊接电流为100A,焊接速度为20mm/min。
3.实验步骤首先进行表面处理,将双相不锈钢板材进行清洗和抛光,以确保焊接区域的干净和光滑。
然后将焊接样品固定在焊接平台上,进行焊接工艺评定。
焊接完成后,对焊缝进行断面金相组织观察和宏观观察,并进行力学性能测试。
三、实验结果1.焊接外观经过焊接后,双相不锈钢的焊缝外观整齐、美观,无焊接缺陷和明显的裂纹。
2.焊缝金相组织焊缝金相组织为铁素体和奥氏体的共存结构,奥氏体以网状分布在铁素体基质中。
焊缝边缘区域存在一定的过渡区,金相组织呈现出从铁素体向奥氏体逐渐增多的趋势。
3.力学性能测试焊接样品的拉伸强度达到了XXXMPa,屈服强度为XXXMPa,延伸率为XX%。
测试结果表明,焊接后的双相不锈钢具有较高的强度和良好的延伸性能。
四、分析与讨论双相不锈钢在焊接时,由于其铁素体和奥氏体的共存结构,使得其具有良好的焊接性能。
焊缝金相组织的观察结果与理论预期相符,说明焊接工艺参数的选择合理。
通过力学性能测试,焊接样品的强度和延伸性能满足了工艺评定的要求。
五、结论本次实验对双相不锈钢S焊接工艺进行了评定,实验结果表明该工艺具有较好的焊接性能。
通过焊缝金相组织观察和力学性能测试,证明焊接后的双相不锈钢焊缝具有良好的强度和延伸性能。
在实际工程应用中,可根据具体要求优化焊接参数,进一步提高焊缝质量。
双相不锈钢焊接特点
双相不锈钢焊接特点双相不锈钢的种类很多,但工程上应用最多的是SAF2205钢,约占80%,其次超级双相不锈钢SAF2507约占13%。
当前,双相钢常用焊接方法有手工电弧焊(SMAW)、钨极氩弧焊(GTAW)、药芯焊丝电弧焊(FCAW)和等离子焊(PAW)等,埋弧悍最近也有少量使用。
兼有奥氏体和铁素体不锈钢的双相不锈钢的焊接的特征有:1、双相组织的形成,阻止了奥氏体晶粒的长大,打乱了柱状晶的方向性,增加了晶界面积。
同时,铁素体相可以降低相间的界面能,使残余的低熔点液相接触角增大,阻碍其润湿展开,并且可溶解较多的S和P。
因此,对热裂纹的敏感性要比奥氏体不锈钢小很多。
2、双相不锈钢含有近50%的铁素体,保持了铁素体不锈钢475℃脆性及导热系数高等特点,但不如铁素体不锈钢那样明显。
3、对冷裂纹的敏感性比一般的低合金高强钢小很多。
4、双相不锈钢焊接的主要问题是在热影响区,热影响区的组织主要取决于合金成分以及焊接热循环。
5、双相不锈钢含有较多的合金元素,焊接过程易产生金属间相、碳氮化合物。
这些相或化合物的产生均会影响焊接接头的力学和耐腐蚀性能,其中脆性相σ是最危险的一种。
6、双相不锈钢焊接的关键是要在接头中保持理想的双相比例,尤其是要保持热影响区的相比例;对于焊缝金属区,使奥氏体的含量占优势双相不锈钢焊接发展的趋势。
在焊接接头组织方面,双相不锈钢焊接时,要经历多次热循环作用,虽然该过程变化很快且历时短暂,但往往导致接头热影响区以及焊缝金属区中的相比例和相分布状态发生变化,从而影响到整个焊接接头的耐蚀性能。
此外,接头在冷却过程中易形成碳或氮的化合物,从而造成焊缝金属周围形成贫钝化元素区,严重影响到接头的耐腐蚀性。
因此在焊接过程中应控制适宜的两相比例,促进两相平衡,防止σ相聚集长大,将有利于提高双相不锈钢街头的耐蚀性。
在焊接工艺方面,实验得出,采用焊接线能量在0.2-1.5kJ/mm、焊前不预热、层间温度控制在不大于150℃、焊后不进行热处理、覆盖层加焊退火焊、RT合格后磨去的焊接工艺,可以使材料具有较好的耐晶间腐蚀性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2205双相不锈钢焊接1、初步焊接试验为了了解2205双相不锈钢的性能特点,进行了初步焊接试验,对拟采用的GTAW方法打底、SMA W填充并盖面组合焊接方法焊接接头的理化性能进行测试,初步掌握其力学性能水平,同时对这两种焊接方法的工艺性能进行了解,为制定管道现场焊接工艺方案提供依据。
1.1 试验材料试验母材为瑞典Avesta公司生产的12mm板材,焊材为英国曼彻特公司生产的2205双相不锈钢配套焊材ULTRAMET 2205包括氩弧焊焊丝和手弧焊焊条。
1.2 试验过程及结果对试件加工单面V型坡口,坡口角度65°,钝边尺寸0.5~1.0mm,焊前用丙酮对剖口及其两侧进行清洗,然后进行焊接,焊条在焊前进行了烘干处理,试样、焊接记录已给管材所提供。
1.3 试验结论通过试验可以得出如下初步结论:(1)采用的GTA W方法打底、SMA W填充并盖面组合焊接方法得到的焊接接头的强度、塑性、硬度良好,铁素体含量适中(按WRC图计算),韧性不高,略高于ASTM A923要求的34J;(2)化学成分中抗点蚀元素含量较低,与母材不匹配,尤其是N含量较低。
(3)采用的GTA W方法打底、SMAW填充并盖面组合焊接方法,焊接及背面采用纯氩保护,焊接工艺良好,焊缝背面成型质量好,酸性焊条的电弧稳定、脱渣性良好,无气孔产生,这种组合方法可以在管道施工中应用。
(4)采用的GTA W方法打底、SMA W填充并盖面组合焊接方法,如果背面不加气体保护,焊缝背面严重氧化、焊缝金属表面发渣,成型很差。
可见,采用GTAW打底焊,如果背面不采取气体保护,或者保护效果不良,焊缝成型很差,焊缝及热影响区氧化严重,将严重影响其耐蚀性,背面气体有效保护的实施是2205双相不锈钢管道焊接质量的关键。
(5)采用SMAW打底+SMA W盖面工艺,如果背面不加气体保护,成型较好,但焊缝背面氧化也比较严重。
通过点蚀试验证明,这种氧化色对焊接接头的抗点蚀性能没影响,对背面确实无法通气保护的收口焊缝和焊缝返修可以考虑使用该工艺。
2、酸性焊条与碱性焊条对比2.1 试验材料试验母材为瑞典Avesta公司生产的12mm板材,焊材为瑞典Avesta公司生产的2205双相不锈钢配套手弧焊焊条。
2.2 试验过程及结果对试件加工单面V型坡口,坡口角度65°,钝边尺寸0.5~1.0mm,焊前用丙酮对剖口及其两侧进行清洗,然后进行焊接。
焊条在焊前进行了烘干处理,试样、焊接记录已给管材所提供。
2.3 试验结论通过试验可以看出:(1)酸性焊条抗点蚀性能良好,满足工程技术要求。
碱性焊条因一试样焊缝边缘存在缺陷(见图),平均点蚀速率相对较高。
(2)碱性焊条所焊焊缝的低温夏比冲击功较酸性焊条明显高,但酸性焊条的夏比冲击功可以满足工程技术条件要求的34J要求,且有一定的裕量。
(3)酸性焊条的工艺性比碱性焊条明显好,对管道现场全位置焊接而言,工艺性非常重要的一个方面。
综合以上几点认为,选择Avesta 2205-PW牌号的焊条是正确的,其工艺性能和关键使用性能可以满足工程要求。
3、焊接及背面保护气体焊接试验工程管道焊接采用GTAW,对GTA W而言,焊接保护气体的种类和成分是重要的工艺参数。
另外根据前面的焊接试验可以看出,对2205双相不锈钢的焊接,背面也必须保护。
焊接和背面保护气体的对焊缝组织、成型有何影响,以及选用何种成分的气体需要通过试验予以确定。
3.1 试验材料试验母材为瑞典Avesta公司生产的12.7mm板材,焊材为瑞典Avesta公司生产的2205双相不锈钢配套氩弧焊焊丝。
3.2 试验过程及结果对试件加工单面V型坡口,坡口角度65°,钝边尺寸0.5~1.0mm,焊前用丙酮对剖口及其两侧进行清洗,然后进行焊接。
通过改变保护气体的种类和成分,观察焊缝背面的成型和保护效果,并对焊缝的组织和铁素体含量进行检验。
由于试验背面出现了不同程度的氧化,为了这种氧化层对接头腐蚀性能的影响,按ASTM G48进行在6%FeCl3了96小时的点蚀试验。
试样、焊接记录已给管材所提供。
3.3 试验结论通过试验可以看出:(1)采用不同种类和比例的焊接和背面保护气体,焊缝的铁素体含量没有明显的,均可以得到铁素体含量正常的焊缝组织;(2)采用Ar+5%N2作为焊接保护气体,会产生电弧不稳、飞溅大和表面气孔现象,因此不能作为焊接保护气体;相反,采用100%Ar或98%Ar+2%N2作为焊接保护气体,焊接电弧稳定,无飞溅和气孔产生,可以作为焊接保护气体;(3)采用不同种类和比例的背面保护气体,背面会产生不同程度的氧化。
采用高纯氩(99.99%Ar),焊缝背面呈银白色,保护效果良好;在氩气中加入一定比例的氮气或采用纯氮后,由于氮气的纯度(99.95%N2)不够,背面出现严重的氧化,甚至出现焊不透现象;因此,为保证良好的背面保护效果和成型质量,背面保护气体的氧含量必须控制。
(4)采用不同种类的背面保护气体焊缝出现的氧化色,在6%FeCl3溶液中浸泡96小时后无点蚀现象产生,表明这种材料和焊缝的具有良好的耐点蚀性能。
4、焊接方法和工艺参数试验对双相不锈钢而言,焊接线能量是最重要的参数,对保证适当比例的铁素体含量,进而保证焊接接头的力学性能和耐蚀性能起关键作作用。
参考各种文献和资料,结合焊件的厚度,筛选了适当的焊接线能量进行了试验,考核了不选用焊接线能量参数下接头的主要性能。
另外采用了不同的焊接方法(GTA W、SMAW、GTAW+SMA W)进行了试验,考核了不同焊接方法及其配套焊接材料焊接接头的性能。
4.1 试验材料试验母材为瑞典Avesta公司生产的12.7mm板材,焊材为瑞典Avesta公司生产的2205双相不锈钢配套氩弧焊焊丝Avesta2205和手弧焊焊条Avesta 2205-PW。
4.2 试验过程及结果对试件加工单面V型坡口,坡口角度65°,钝边尺寸0.5~1.0mm,焊前用丙酮对剖口及其两侧进行清洗,然后进行焊接。
采用不同的焊接线能量参数和焊接方法进行试件的焊接,测试焊接接头的关键性能,考核焊接线能量参数和焊接方法对接头性能的影响。
试样、焊接记录已给管材所提供。
4.3 试验结论(1)选用的焊接线能量参数和焊接方法及配套焊接材料,得到的接头性能可以满足技术条件要求;(2)随着线能量的增大,焊缝和熔合线部位的低温冲击功略有升高(原因:冷速较慢,奥氏体转变较充分,焊缝中的铁素体含量较少),但点蚀速率也略有升高,耐蚀性能下降。
(3)随着线能量的增大,焊缝和高温热影响区的铁素体含量变化(4)采用GTAW焊接方法得到的焊缝低温冲击功明显较其它两种焊接方法高。
(5)盖面焊道由于没有下一焊道的二次加热产生的奥氏体转变,如果采用的线能量过低,焊缝凝固过快,得到铁素体含量过高的金相组织,从而降低耐腐蚀性能。
5、2205双相不锈钢焊缝超声波探伤衰减补偿试验5.1 试板试板共采用13mm、10mm、7mm三种厚度的2205材料和16MnR材料各一对作为对比试板。
由于材料取材困难,各种厚度的试块均用14mm板的对接试板用铇床加工而成(铇后用抛光布轮打磨)。
双相不锈钢焊接试板采用氩弧焊+手弧焊焊接而成,采用ER2209焊丝和E2209焊条。
16MnR 焊接试板采用手工电弧焊焊接而成,采用J507焊条。
坡口形式见图1。
图1 焊接坡口5.2 试验目的由于双相不锈钢的特殊成分和组织结构会对声能产生较大的衰减,这种衰减的大小程度与焊接条件等因素有关,为了能较真实地反映出衰减情况,体现较真实的探伤灵敏度,采用碳素钢或低合金钢焊缝对接试块和双相不锈钢对接焊缝试块进行模拟试块超声波检验对比,以便达到我们对2205双相不锈钢焊缝准确探伤的目的。
5.3 反射体的加工为了保证试验目的的准确性,在同等厚度不同材料的焊缝上加工同样的人工反射体是非常必要的,反射体的尺寸及位置如示意图2。
为了便于加工柱孔用Φ5钻头(不是平底孔),模孔用Φ2.5钻头加工。
柱孔深度(总深)4mm,模孔长20mm。
5.4 检测试验(1)扫查分别对双相不锈钢、碳钢同样厚度、同样反射体进行一、二次波检测(一面两侧)。
(2)仪器样头仪器:USIP-11 CTS-22探头:MWB60-4 MWB60-2 2.5P13x13K2(3)检测结果a. 首先采用USIP-11、MWB60-4、MWB60-2进行扫查探测,由于声程不同,材质的衰减得出下表结果:注:上表是用MWB60-2样头探测的结果,4MHz样头衰减大不适用双相不锈钢焊缝检查。
b. 由上表可以看出用二次波检测时,分贝差值较大,这也是因为声程的增大造成的,也不排除厚度增大,焊缝熔敷金属增加共同造成了衰减的增加。
从金相组织照片来看,焊缝的组织较粗大,热影响区一般在1mm左右,母材组织较均匀。
在我们一般的超声波检验焊缝时,用的是二次波检测,所以根据实验的结果,对不同的厚度要进行不同光程补偿才比较合理,故采用下表条件对国产仪器与样头的配置进行补偿后进一步探测。
我们又在7mm与13mm两块双相钢焊缝上用Φ1.5的钻头分别钻1.5x6的柱孔和模孔,且模孔在热影响区。
采用2.5P13x13K2样头使用JR4730-94标准。
完全按碳素钢焊缝的对应要求调解仪器状态,再按上表分别对7mm,13mm补偿6dB,12dB厚对双相钢Φ1.5x6柱孔和模孔进行探测,结果如下:5.5 结论及建议从试验的过程以及相关理论分析,本试验可以代表15mm以下双相不锈钢对接焊缝的声能损失状态,在进行合理的选择探头频率(2.5MHz以下)的情况下,可以得到满意的信噪比工程上的检验灵敏度技术。
可以在原有的石油管道焊缝超声波检验的标准中加上或取消一些必要的内容,原标准是能满足工程要求的。
如果管道的厚度增加的话,可以做一些补充试验。
选择较低频的样头,也可以满足更大厚度的双相不锈钢焊缝的超探需求。