竖向地震作用计算
第四章竖向地震作用4
S ≤ R /γ
RE
---包含地震作用效应计值; S ---包含地震作用效应的结构构件内力组合的设计值;
R ---结构构件承载力设计值; ---结构构件承载力设计值 结构构件承载力设计值;
γ
RE
---承载力抗震调整系数,除另有规定外,按下表采用; ---承载力抗震调整系数,除另有规定外,按下表采用; 承载力抗震调整系数
S ≤ R /γ
RE
承载力抗震调整系数 材料 钢 结构构件 柱、梁 支撑 节点板件、 节点板件、连接螺栓 连接焊缝 两端均有构造柱、 两端均有构造柱、芯柱的抗震墙 其他抗震墙 梁 梁轴压比小于0.15柱 梁轴压比小于 柱 梁轴压比不小于0.15柱 梁轴压比不小于 柱 抗震墙 各类构件 受剪 受剪 受弯 偏压 偏压 偏压 受剪、 受剪、偏拉 受力状态
§4.7 结构竖向地震作用 4.7
竖向地震运动是可观的: 竖向地震运动是可观的:
根据观测资料的统计分 在震中距小于200km 200km范 析,在震中距小于200km范 围内, 围内,同一地震的竖向地面 加速度峰值与水平地面加速 度峰值之比av/ah平均值约为 度峰值之比 1/2,甚至有时可达1.6 1.6。 1/2,甚至有时可达1.6。
二、高耸结构和高层建筑竖向地震作用的计算公式
F EVK = α V max G eq
G eq = 0 . 75 ∑ G i
Gn
Gi
FVi
α V max = 0 . 65 α H max
FEVK
---结构总竖向地震作用标准值; ---结构总竖向地震作用标准值; 结构总竖向地震作用标准值
G1
---竖向 水平地震影响系数最大值。 竖向、 αV max ,α H max ---竖向、水平地震影响系数最大值。 F EVK
地震作用下框架内力和侧移计算
6 地震作用下框架内力和侧移计算6.1刚度比计算刚度比是指结构竖向不同楼层的侧向刚度的比值。
为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层。
根据《建筑抗震设计规范》(GB50011-2010)第3.4.2条规定:抗侧力构件的平面布置宜规则对称、侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小、避免侧向刚度和承载力突变。
根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第3.5.2条规定:对框架结构,楼层与其相邻上层的侧向刚度比计的比值不宜小于0.7,且与相邻上部三层刚度平均值的比值不宜小于0.8。
计算刚度比时,要假设楼板在平面内刚度无限大,即刚性楼板假定。
7.0939.0/1136076/1066908211>===∑∑mmN mmN DDγ,满足规范要求;()8.0939.0/113607611360761136076/10669083343212>=++⨯=++=∑∑∑∑mmN mmN DD D D γ,满足规范要求。
依据上述计算结果可知:刚度比满足要求,所以无竖向突变,无薄弱层,结构竖向规则,故可不考虑竖向地震作用。
将上述不同情况下同层框架柱侧移刚度相加,框架各层层间侧移刚度∑iD ,见表6-4。
6.2水平地震作用下的侧移计算根据《高层建筑混凝土结构技术规程》(JGJ3-2010)附录C 中第C.0.2条可知:对于质量和刚度沿高度分布比较均匀的框架结构、框架剪力墙结构和剪力墙结构,其基本周期可按公式6-1计算。
T T T μψ7.11= (6-1)式中:1T ——框架的基本自振周期;T μ——计算结构基本自振周期的结构顶点假想位移,单位为m ; T ψ——基本自振周期考虑非承重砖墙影响的折减系数。
根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第4.3.17条规定:1、框架结构可取0.6~0.7;2、框架-剪力墙结构可取0.7~0.8;3、框架-核心筒结构可取0.8~0.9;4、剪力墙结构可取0.8~1.0。
地震作用与结构抗震验算
第一节地震作用
• 2.按作用大小分 • 地震作用按其作用大小可分为:多遇地震作用、基本地震作用和预
估的罕遇地震作用。下节主要介绍多遇地震作用的计算方法。
• 四、水平地震作用与风荷载的区别
• 水平地震作用与风荷载都是以水平作用为主的形式作用在建筑物上 的,但是它们作用的表现形式和作用时间的长短是有很大区别的。因 此,在结构设计中要求结构的工作状态是不同的。
上一页
返回
第二节地震作用的计算
• 一、动力计算简图
• 实际结构在地震作用下颠簸摇晃的现象十分复杂。在计算地震作用 时,为了将实际问题的主要矛盾突显出来,然后运用理论公式进行计 算设计,需将复杂的建筑结构简化为动力计算简图。
• 例如:对于图4-1(a)所示的实际结构一水塔,在确定其动力计算简图 时,常常将水箱及其支架的一部分质量集中在顶部,以质点m来表示; 而支承水箱的支架则简化为无质量而有弹性的杆件,其高度等于水箱 的重心高,其动力计算简图如图4-1(b)所示。这种动力计算体系称为 单质点弹性体系。
• 3)整根桩应一次连续压到设计标高,当必须中途 停压时,桩端应停留在软弱土层中,且停压的间隔 时间不宜超过24h;
上一页 下一页 返回
第一节地震作用
• 1.作用形式 • 风荷载是直接作用于建筑物表面上的压(吸)力,只和建筑物的体形、
高度、环境(地面粗糙度、地貌、周围的楼群)、受风面积大小等有关; 而地震作用都是由质量受振动而引发的惯性力,地震作用是通过场地、 地基、基础作用于结构上部的。 • 2.作用时间 • 风荷载的作用时间长,发生的机遇也多,因而要求结构在风荷载作 用下不能出现较大的变形,结构处于弹性工作状态;相反,发生地震 的机遇少,持续时间也短,但作用剧烈,故要求做到“小震不坏,中 震可修,大震不倒”。
浅谈框架结构在地震作用下抗震计算方法_陶凯尔
G - 结构等效总重力荷载; GG
(9) (10)
G- 结构总重力荷载,
G
G;
1.2.1 底部剪力法适用条件
通过理论分析,对重量和刚度沿高度分布比较均匀,高度不超过 40m,并以剪切变形为主(房屋高宽比小于 4)的结构宜采用底部剪力法。
1.2.2 底部剪力法计算公式
- 等效重力荷载系数,《建筑抗震设计规范》规定
F
F
式(21)代入式(22),因为 V 1
( GH ) F
GH
GH GH
yG V max ,y
H ,则 V1
G
(21) (22)
直至振动终止整个过程的地震反应,包括位移、速度和加速度。
以单质点体系弹性体系的增量运动微分方程:
或
FEVk
G V max eq
(23)
m x(t ) c x(t ) k x(t ) m x (t )
Fji j jXjiGi i 1, 2, n j 1, 2, m
(1)
j
XG
XG
(2)
式中:F - j 振型 i 质点的水平地震作用标准值;
- 相应于 j 振型自振周期的地震影响系数;
X - j 振型 i 质点的水平相对位移;
- j 振型的参与系数
1.1.3 框架结构作用效应
ÁÂÂ 《建筑抗震设计规范》中根据概率论方法,得出了结构地震作用效应
t
t
将式(22)改写成 v (16)
1F GH
(24)
在时刻 ti的位移增量计算公式:
F(t ) x(t )
~
k
将式(24)代入式(20),因为 y H ,则有
(17)
F
GH F
边坡竖向地震力计算公式
边坡竖向地震力计算公式全文共四篇示例,供读者参考第一篇示例:边坡是指山体或者其他土体的边缘区域,其形成、稳定和灾害防治一直是工程领域中的热点问题。
在地震发生时,边坡往往会承受到严重的竖向地震力,这会对边坡的稳定性造成极大的影响。
正确计算边坡竖向地震力是非常重要的。
边坡竖向地震力的计算公式是基于力学原理和地震力学理论建立的,其目的是通过计算得出边坡在地震作用下承受的竖向地震力,从而评估边坡的稳定性。
一般来说,边坡竖向地震力的计算公式包括两个方面:地震作用下的有效水平力和竖向地震力的分解计算。
地震作用下的有效水平力是指地震作用下地表土体受到的水平分布载荷。
在计算边坡竖向地震力时,需要首先确定地震作用下的有效水平力大小。
通常,可以采用强震动参数、地震波矩、地震谱等进行计算,得出地震作用下的有效水平力。
水平向下的地震力是指地震作用下,地表土体受到的向下的水平力。
通常可以通过地震力的垂直分量和边坡的倾角来计算得出,其计算公式为:F_down = F_h*sinαF_down为水平向下的地震力,F_h为地震作用下的有效水平力,α为边坡的倾角。
τ_v = W/g * Iτ_v为竖向剪应力,W为地震作用下的重力分量,g为重力加速度,I为边坡的惯性阻力。
综合考虑水平向下的地震力和竖向剪应力,可以得出边坡竖向地震力的综合计算公式为:这个综合公式综合考虑了地震作用下的效果水平力和竖向剪应力,能够更加准确地反映边坡在地震作用下的受力情况,为边坡的稳定性评估提供了重要依据。
需要注意的是,在实际工程中,边坡竖向地震力的计算还需要考虑土体的物性参数、边坡的几何形态、地质条件等因素,需要综合考虑多个因素进行合理的计算。
为了准确评估边坡的稳定性,还需要进行现场监测和实测数据的分析,结合计算结果进行综合评估。
边坡竖向地震力的计算公式是一个复杂的问题,需要综合考虑多个因素来进行合理的计算。
通过正确计算边坡竖向地震力,可以为边坡的设计、施工和维护提供有力支持,保障边坡的工程安全和稳定性。
地震作用计算
A 结构基本自振周期T1的求解A.1 求解各层重力荷载代表值G i 和抗侧刚度D i :G i =永久荷载标准值+0.5×楼面活载标准值(按5.1.3条,不包括屋面活载)。
D i 为根据D 值法得到的修正抗侧刚度,矩形柱:33i c i D a Ebh D l = (b 、h 分别为矩形截面宽、高,l 为柱长,a c 为刚度修正系数参页8插页,a c =1时为反弯点法);圆柱:43316i c D a E dl π=(d 为圆形截面直径,l 为柱长,a c 为刚度修正系数参页8插页)。
S —C 修正刚度法,底层:()()211[1216][231]cbbciiD ii l ii =++∑∑∑∑,底层以上:()212[11]i i bciD l ii =+∑∑。
A.2 求解各层相对位移i δ及顶点总位移T μ:nijj iGG==∑∑ ii iGD δ=∑ 1iT i jj μδ==∑ 1nT ii μδ==∑A.3 求解T 1:1 1.7TT ψ=(式C.0.2《高规》页173),T ψ为周期折减系数《高规》4.3.17页43,填充墙刚度越大取下限,否则取上限。
《高钢规》中T ψ为0.90T ξ=B 多层结构(钢结构≤12层)底部剪力法解题步骤B.1 求1α(T 1对应的地震影响系数):T 1未知时,另参A 中T 1的求解。
已知T 1时,求1α:m axαg (特征周期)B.2 求G i 、iG ∑、eq G 、Ek F 、n δ、n F ∆、i F 、E ki V :G i =永久荷载标准值+0.5×楼面活载标准值(不包括屋面活载);i G ∑=1G +2G +…+n G (n 为楼层总数包括小塔楼);0.85eq i G G =⨯∑;1Ek eq F G α=⨯;分别根据T g 和T 1查表5.2.1(页36)得n δ、1n δ-(小塔楼层数为1):n F ∆=n δ×Ek F (无小塔楼时);11n n Ek F F δ--∆=⨯(小塔楼层数为1),内框架0.2n δ=,砖混底框0n δ=。
工程结构抗震设计竖向地震作用计算题
结构的总竖向地震作用标准值 FEvk
FEvk v maxGeq
0.208105375kN
21918kN
2020/4/11
现今各层层高均为4.0m
FVik
Gi Hi
10
FEvk
Gi Hi
j 1
14.050 Hi 21918
14050(4 8 12 16 20 24 28 32 36 40)
2020/4/11
因此,结构的总重力荷载代表值
10
GE Gi 14050kN 10 i1 140500kN
结构140500kN 105375kN
2020/4/11
vmax 0.65 0.32 0.208
Geq 105375 kN
2020/4/11
❖ 结构的总竖向地震作用标准值 FEvk
❖ 现今为9度区,在多遇地震影响下的水平地震影响
系数最大值,max 0.32 。
烈度
地震影响
6
7
8
9
多遇地震 0.04 0.08(0.12) 0.16(0.24) 0.32
罕遇地震 0.28 0.50(0.72) 0.90(1.20) 1.4
1 (398.51 797.02 1195.53 1594.04 1992.55 2391.05 2789.56 10 3188.07 386.82 3985.09) 1.5 1 21918kN 1.5
10 3287.70kN
2020/4/11
按重力荷载代表值比例分配,中柱A将受到1/3的竖向地震作 用轴向力标准值,即
NEvk 1/ 3 3287 .7 1095 .90kN
2020/4/11
Hi 21918kN 220
高层建筑结构设计水平地震作用
水平荷载与结构计算简化原则
第二节 地震作用
一、特点
地震时,地震波产生地面运动,通过房屋基础使上部结构产生振动, 这就是地震作用。地震作用使结构产生的运动称为地震反应,包括位移、 速度、与加速度,加速度将使结构产生惯性力,过大的惯性力将会影响 结构的正常使用,甚至造成结构的破坏。 地震波使建筑房屋产生竖向振动和水平振动,一般对房屋的破坏主要 由水平振动造成。设计中主要考虑水平地震作用,只有震中附近的高烈 度区域才考虑竖向地震作用。 地震动三要素: 1、强度:反应地震波的幅值,烈度大,强度大。 2、频谱:反应地震波的波形,1962年墨西哥地震时,墨西哥市a=0.05g, 但由于地震卓越周期与结构接近,从而破坏严重。 3、持时:反应地震波的持续时间,短则对结构影响不大。
动速度和位移可能对结构的破坏具有更大影响,但振型反应谱法或底部剪力尚无 法对此作出估计。出于结构安全的考虑,《高层规程》规定了结构各楼层水平地 震剪力最小值的要求,给出了不同烈度下的楼层地震剪力系数(即剪重比),结 构的水平地震作用效应应据此进行相应的调整。 水平地震作用计算时,结构各楼层对应于地震作用标准值的剪力应符合下式要 求:
1、计算范围: 水平地震作用:
• 6度区 (除甲类建筑和IV类场地上的较高房屋
外)可不算 • 7-9度区 (除可不进行上部结构抗震验算的房 屋外)均算
竖向地震作用:
•8、9度大跨度结构和长悬臂结构 •9度的高层建筑
2、水平地震作用的计算原则: – 一般正交布置抗侧力构件的结构,可沿纵横主轴方向分别计算 – 斜交布置抗侧力构件的结构,宜按平行于抗侧力构件方向计算 – 质量和刚度明显不均匀、不对称的结构,应考虑水平地震作用的 扭转影响
5、动力时程分析法
竖向地震作用计算
做出估计。为此,《抗震规范》处于结构安全的考虑,提出了对各楼层水平地震剪
力最小值的要求,即在进行结构抗震验算时,结构任一楼层的水平地震剪力应满足 下式要求:
Veki G j
j i
n
Veki 第i层对应于水平地震作用 标准值的楼层剪力;
剪力系数,按照表 3.7取值。
G j j层的重力荷载代表值
max 0.32 v max 0.65 max 0.208
各楼层重力荷载代表值为:
Gi 150001.0 0.5 2450 16225 KN
屋面重力荷载代表值(不考虑屋面活荷载)为:
G10 150001.0 0 15000 KN
结构总重力荷载代表值: 结构重力荷载代表值为:
而对于长周期结构地震动中的地面运动速度和位移可能对结构的破坏具有更大的影响但目前抗震规范采用的振型反应谱法无法对此由于地震影响系数在长周期段下降较快对于周期大于35s的结构计算所得结构地震作用效应一般偏小
3.2.5 楼层最小地震剪力的规定
由于地震影响系数在长周期段下降较快,对于周期大于 3.5s的结构,计算所得结构 地震作用效应一般偏小。而对于长周期结构,地震动中的地面运动速度和位移可能 对结构的破坏具有更大的影响,但目前《抗震规范》采用的 振型反应谱法无法对此
GE 16225 9 15000 161025 KN
Geq 161025 0.75 12076 .88KN
.88 25119 .9KN 结构的竖向地震作用标准值为: FEvk v max Geq 0.20812076 (2)
16225 4 FEv1 25119 .9 16225 4 16225 8 ... 16225 36 15000 4 546.98KN来自3.3 竖向地震作用的计算
建筑结构抗震总复习第五章-地震作用和结构抗震设计要点
6度时建造于IV类场地上较高的高层建筑(高于40米的钢筋混 凝土框架,高于60米的其他钢筋混凝土民用房屋和类似的工业 厂房,以及高层钢结构房屋),7度和7度以上的建筑结构(生 土房屋和木结构房屋等除外),应进行多遇地震作用下的截面 抗震验算。
FEk——结构总水平地震作用标准值; a1 ——相应于结构基本自振周期的水平地震影响
系数值,多层砌体房屋、底部框架和多层
内框架砖房,宜取水平地震影响系数最大
Hale Waihona Puke 值;第五章 地震作用和结构抗震设计要点
Geq——结构等效总重力荷载,单质点应取总重力荷载代 表值,多质点可取总重力荷载代表值的85%;
Fi ——质点 i 的水平地震作用标准值 Gi ,Gj ——分别为集中于质点i 、j 的重力荷载代表值; Hi ,Hj ——分别为质点 i 、j 的计算高度;
改变了地基运动的频谱组成,使接近结构自振频率的分量获 得加强; 改变了地基振动加速度峰值,使其小于邻近自由场地的加速 度幅值; 由于地基的柔性,使结构的基本周期延长; 由于地基的柔性,有相当一部分振动能量将通过地基土的滞 回作用和波的辐射作用逸散至地基,使得结构振动衰减,地 基愈柔,衰减愈大;
第五章 地震作用和结构抗震设计要点
第五章 地震作用和结构抗震设计要点
1. 建筑的分类与抗震设防 1.1 建筑抗震设防类别:
(1) 特殊设防类:指使用上有特殊设施,涉及国家公共 安全的重大建筑工程和地震时可能发生严重次生灾害等特 别重大灾害后果,需要进行特殊设防的建筑。简称甲类。 (2)重点设防类:指地震时使用功能不能中断或需尽快恢 复的生命线相关建筑,以及地震时可能导致大量人员伤亡 等重大灾害后果,需要提高设防标准的建筑。简称乙类。 (3)标准设防类:指大量的除1、2、4款以外按标准要求 进行设防的建筑。简称丙类。 (4)适度设防类:指使用上人员稀少且震损不致产生次生 灾害,允许在一定条件下适度降低要求的建筑。简称丁类。
第三章 地震作用与抗震验算(4)
一般为结构基本周期的5~10倍,且≥12s。
强震持续时间
地震加速度记录
3.11 时程分析法
3.地震波选取
加速度(g)
0.3
0.2 0.1 0
0.1
0.2 0.3 0 5 10 15 20 25时间(s)
[美]英佩里亚尔谷地震
1940年El Centro地震的加速度记录(南-北分量)
动荷载下钢材的应力-应变关系
3.13 抗震验算
2.承载力验算
S
R
RE 承载力抗震调整系数
或
RE S R
3.13 抗震验算
2.承载力验算
地震作用效应与其他作用效应基本组合
S G S EG Eh S Ehk Ev S Evk w w S wk
1.2 不利 G 1.0 有利
T1 折减系数 T T 1 附加周期△T(s) 场地类别 Ⅲ类 当高宽比 烈度 大于3时,顶 0.08 8度 层不折减。
9度 0.10
0.9
Ⅳ类 0.20 0.25
3.13 抗震验算
1.确定地震作用计算方向
◆一般情况下,应允许在建筑结构的两个主轴方向分 别计算水平地震作用并进行抗震验算,各方向的水 平地震作用应由该方向抗侧力构件承担。 ◆有斜交抗侧力构件的结构;当相交角度大于15° 时,应分别计算各抗侧力构件方向的水平地震作 用。 ◆质量和刚度分布明显不对称的结构,应计入双向水 平地震作用下的扭转影响;其他情况,应允许采用 调整地震作用效应的方法计入扭转影响。 ◆8、9度时的大跨度和长悬臂结构及9度时的高层建 筑,应计算竖向地震作用。
动力方程 ti 1 Cx t i 1 Kxt i 1 m g ti 1 m x x
竖向地震作用计算
竖向地農作用计算
5.3.1 9度时的髙层建筑,其竖向地震作用标准值应按下列公式确立(图
5.3.1):楼层的竖向地箴作用效应可按各构件承受的重力荷载代表值的比例
分配,并宜乘以增大系数1.5o
(53.1-1)
(53.1-2)
式中FEvk—结构总竖向地展作用标准值;
F“^一一质点i的竖向地處作用标准值;
倫际——竖向地窓影响系数的最大值,可取水平地虎影响系数最大值的65%:
G旳——结构等效总重力荷载,可取氏重力荷载代表值的75%。
5.3.2跨度、长度小于本规范第5.1.2条第5款规左且规则的平板型网架屋盖和跨度大于24m的
屋架、屋盖横梁及托架的竖向地震作用标准值,宜取其重力荷载代表值和竖向地後作用系数的乘积;竖向地箴作用系数可按表532釆用。
结构类型烈度
场地类别
I II1IL IV
平板型网架、钢屋架8可不计算(0.10)0.08 (0.12)0.10 (0.15) 90」50」50.20
钢筋混凝土同架80.10 (0.15)0.13 (0.19)0.13 (0.19) 90200.250.25
5.33长悬臂构件和不属于本规范第5.3.2条的大跨结构的竖向地谡作用标准值,8度和9度可分别取该结构、构件重力荷载代表值的10%和20%,设汁基本地丧加速度为0.30g时,可取该结构、构件重力荷载代表值的15%
震作用计算简图
5.3.4大跨度空间结构的竖向地震作用,尚可按竖向振型分解反应谱方法计算。
其竖向地震影响系数可采用本规范第5.1.4-5.1.5条规左的水平地震影响系数的65%,但特征周期可均按设il•第一组采用。
建筑结构抗震设计与实例第5章
3) 质量和刚度明显不对称的结构,应考虑双向水平 地震作用下的扭转影响。其他情况,可以采用调 整地震作用效应的方法计入扭转影响;
4) 不同方向抗侧力结构的共同构件,应考虑双向水 平地震作用的影响。
5) 8度和9度的大跨度结构、长悬臂结构及9度时的 高层建筑,应考虑竖向地震作用。
8度Ⅲ、Ⅳ场地
>80
9度
>60
表5.2 地震9度
多遇地震
18
35
70
(55) (110) 140
罕遇地震
—
220 400 (310) (510) 620
三、重力荷载代表值的计算
❖ 进行结构抗震设计时考虑的重力荷载称为重力荷载 代表值。重力荷载包括恒载和活载。由于地震发生 时,活载往往达不到其标准值,因此,在计算质点 的重力荷载可对活载进行折减按P98表5.3采用。
输入加速度调整
当结构采用三维空间模型等需要双向(2个水平 方向)或3向(2个水平方向和1个竖向)地震波输入 时,其加速度最大值通常按下列比例调整: 1(水平1):0.85(水平2):0.65(竖向)
表5.1 采用时程分析的房屋高度范围
烈度、场地类型 房屋高度范围(米)
7度及8度Ⅰ、Ⅱ类场地
>100
2. 乙类建筑:地震作用应符合本地区抗震设防烈度
要求。一般情况6~8度时,提高1度进行抗震设防, 9度时应比9度设防更高的要求。
3. 丙类建筑:地震作用和抗震措施均应符合本地区
抗震设防烈度要求。
4. 丁类建筑:一般情况下(具体规定除外),地震
作用应符合本地区抗震设防烈度要求,抗震措施可 适当降低,但6度抗震时不降低。 5. 抗震设防烈度为6度时,除特殊要求外,一般情况 下对乙类、丙类和丁类建筑可不进行地震作用计算。
竖向地震作用
竖向地震作用竖向地震作用:是指结构在竖向地震分量的作用下,产生竖向的地震效应。
1:竖向地震动对结构的影响并非完全没有研究过,钱培风先生早在工力所工作时就已倡导竖向地震作用研究而著名。
唐山地震时有一座烟囱拦腰折断,但有意思的是上面部分旋转90度后落在下面部分之上,并没有掉下来。
关于该震害现象是由于水平地震作用还是竖向地震作用引起的,在工力所曾引发了激烈的争论。
地震工程研究普遍重视水平地震作用的原因有二:一、从强震观测的纪录上看,竖向地震动的峰值普遍小于水平地震动峰值,一般为水平地震动峰值的1/2~2/3,所以水平地震动更重要。
二、结构体系一般具有较强地抗竖向荷载的能力(如柱的轴向刚度很大,结构设计时必须考虑死、活荷载的作用,所以结构有足够的竖向抗力!),而抗水平作用在体系实现上比较困难,这就使得水平地震作用更具威胁性。
但是,实际观测到的竖向地震动峰值也有超过1g的,况且当前的结构体系较之过去有很大不同,主要是大跨、超高的体系已很普遍。
这样竖向地震动对结构的影响似乎并不再是无足轻重了,特别是P-Delt效应问题比较突出,需要研究。
在理论上,竖向地震作用下的结构反应分析同水平地震反应分析方法没有区别,如果采用空间模型,输入三维地震地面运动,则可以将结构水平与竖向反应结果一并算出。
2:之所以“自从唐山地震以来,好像竖向地震力的关注越发受到人们的冷落”是因为唐山地震前,由钱培风先生提出的竖向地震作用也很显著的说法,很多人不理解,在期刊上争论的很激烈。
钱培风先生在众多人反对的形势下,一直坚持自己的观点。
钱老的论据尽是地震现场人员的口头描述,经过地震的人大多都不在震中区,对地震的感受只有水平运动;唐山地震(震中区)震害的照片让大家明白了确有竖向地震加速度大于g的现象。
于是大家有了统一的认识,不再争论,即冷落了。
结论是:震中区竖向地震加速度会很大,随震中距的加大,由于竖向地震波是高频率,衰减很快,所以大部分地区都是只感觉有水平地震作用。
边坡竖向地震力计算公式
边坡竖向地震力计算公式边坡竖向地震力计算公式是研究和评估边坡稳定性的重要工具之一。
它可以帮助我们了解地震对边坡稳定性产生的影响,并为边坡工程的设计和施工提供依据。
地震是一种地球运动的表现,其能量会以波动的形式传播到地面上。
当地震波通过地面时,会对边坡产生竖向地震力。
这种地震力的大小与地震波的强度、波速、地震波的传播路径以及边坡的几何形状和物理特性等因素有关。
边坡竖向地震力计算公式可以用来估算边坡所受的地震力大小。
一般而言,该公式可以分为两个部分:地震波传播过程中的地震动参数和边坡的响应参数。
地震动参数包括地震波的加速度、速度和位移等,可以通过地震波观测和记录获得。
这些参数描述了地震波在传播过程中的能量变化规律,反映了地震波的强度和频率特性。
边坡的响应参数则包括边坡的质量、刚度和阻尼等,可以通过实地调查和试验获得。
这些参数反映了边坡的物理特性和几何形状,决定了边坡对地震波的响应程度。
边坡竖向地震力计算公式通常采用力学和振动理论的方法进行推导和建立。
通过分析地震波与边坡的相互作用过程,可以得到边坡所受的地震力大小。
在具体计算过程中,需要考虑边坡的几何形状、材料特性、地震波的频率特性以及边坡和地基之间的相互作用等因素。
根据边坡竖向地震力计算公式,我们可以评估边坡在地震作用下的稳定性,并采取相应的措施来加固和保护边坡。
这有助于提高边坡工程的安全性和可靠性,减少地震灾害对边坡造成的损失。
边坡竖向地震力计算公式是边坡稳定性评估的重要工具,可以帮助我们了解地震对边坡的影响,并为边坡工程的设计和施工提供依据。
通过合理使用该公式,我们可以提高边坡工程的安全性和可靠性,减少地震灾害对边坡造成的影响。
地震作用和结构抗震设计要点3
地基与结构相互作用的考虑
《抗震规范》规定 1)结构抗震计算,一般情况下,可不考虑地基与结构相
互作用的影响; 2)8度和9度时建造在Ⅲ,Ⅳ类场地土上,采用箱基、刚
性较好的筏基和桩箱联合基础的钢筋混凝土高层建筑, 当结构基本周期处于特征周期的1.2倍至5倍范围时, 若计入地基与结构动力相互作用的影响,对刚性地基 假定计算的水平地震剪力可按下列规定折减,其层间 变形可按折减后的楼层剪力计算。
mg(
xg max )( g
Sa ) xg max
Gk
G
为地震影响系数, 质点所受水平地震力与该质点重力之比。
我国《建筑抗震设计规范》(GB 50011-2010) 将地震影响系数曲线分为4个部分,覆盖的房屋 自振周期从0至6S。
加速度影响曲线,无量刚化,弹性反应谱
GB 50011-2010, Fig. 5.1.5
FXji j tj X jiGi FYji j tjYjiGi Ftji j tj ri2 jiGi
单向地震作用下
SEk
mm
jk S j Sk
j 1 k 1
双向地震作用下
SEk SEk
S
2 x
(0.85S y )2
S
2 y
(0.85S x )2
时程反应法
适用情况:
特别不规则的建筑,甲类建筑和表中所列的高层建筑
2max
When:Tg Ti 5Tg
( Tg T
) 2 m ax
加速度影响曲线
When : 5Tg Ti 6.0s [2 0.2 1 (T 5T g)]max
Geq 结构等效总重量
For SDOM,
For MDOM,
Geq =G1
框架结构竖向地震作用加速度反应谱及计算简析
框架结构竖向地震作用加速度反应谱及计算简析作者:李静贾鹏程浩来源:《中国新技术新产品》2013年第01期摘要:大量的地震灾害的研究报告表明竖向地震作用对建筑结构的能造成较大的影响,相对于水平地震我国对竖向地震作用的研究还有待加强。
本文简单地介绍了三种应用较为常见的竖向地震作用计算方法,并将其中的反应谱法与静力法做了简单的比较;阐述了对结构竖向与水平向加速度峰比值(V/H)产生影响的一些因素。
关键字:竖向地震;静力法;反应谱法;竖向加速度反应谱中图分类号:TU31 文献标识码:A地震作用可以分为水平方向与竖直方向两个方向的作用,在以往的观念中,竖向地震作用对建筑结构所造成的破坏远不如水平地震作用所带来的大。
但是自1995年日本的阪神大地震后竖向地震作用这一概念渐渐被人们所重视起来。
我国现行的抗震规范中也只对在高烈度地区的高层建筑及一些特殊的大跨度、长悬臂结构才会在设计中考虑加上竖向地震作用对其的影响,而在一般的建筑设计中则不会考虑到竖向地震作用所带来的影响。
根据水平与竖向地震作用加速度的比值(V/H比),我们可以据此了解某次地震中竖向地震作用相对于水平地震作用所带来的危害大小。
根据多次的地震记录,在一般情况下,地震作用的加速度V/H比值大约在0.5~0.65左右,而在现有的国内外许多资料中,不难发现许多的地震记录中V/H比达到1甚至有竖向地震加速度超过水平地震作用加速度的记录。
例如,1979年的美国帝国山谷地震[1]中V/H比值平均分布在0.77左右,但其中的最大值达到了2.4,1994年美国Northridge地震,记录到V/H比值约为1.79,1995年的阪神大地震和我国的唐山大地震的某次余震的记录中也发现,V/H比值约在1.0左右。
综上所述,竖向地震作用的危险性不容忽视,在对地震灾害的防御措施中,必须要考虑到竖向地震作用对其的影响,尤其是在高烈度地区和地震频发区中更是不容忽视。
由于V/H比值的不确定性,所以对其直接取值0.65是不准确的,对竖向地震作用的计算方法的研究也有待完善。
高层结构设计第3章 高层建筑的荷载和地震作用
3、抗震设防目标
具体通过“三水准”的抗震设防要求和 “两阶段”的抗震设计方法实现。
三水准地震作用的标定
三水准:“小震”“中震”“大震” 地震影响 众值烈度(多遇地震)小震 基本烈度(设防烈度地震)中震 罕遇烈度(罕遇地震)大震 50年超越概率 63.2% 10% 2-3% 地震重现期 50年 475年 1642-2475年
:空气密度
2014-11-16
15
(2)风荷载体型系数 s 风对建筑表面的作用力并不等于基本风压值,而是随建筑物的 体型、尺度、表面位臵等而改变,其大小由实测或风洞试验确定 s =垂直于建筑表面的平均风作用力/基本风压值
2014-11-16
16
(2)风荷载体型系数 s 风对建筑表面的作用力并不等于基本风压值,而是随建筑物的 体型、尺度、表面位臵等而改变,其大小由实测或风洞试验确定 s =垂直于建筑表面的平均风作用力/基本风压值
吸力
2014-11-16
27
4、总风荷载
各个表面承受风力的合力,沿高度变化的分布荷载
Z Z 0 (1 B1 cos1 Zn Bn cos n )
α2 =900 α1=0 μs= +0.8 B1 wind B4
μs=-0.6
2014-11-16 28
μs=-0.6
4、地震作用计算原则
一般情况下,计算两个主轴方向的地震作用;有斜交抗 侧力构件(角度大于 15 度)时应分别计算各抗侧力构件 方向的地震作用 质量与刚度分布明显不对称、不均匀的结构,应计算双 向水平地震作用下的扭转影响,其他情况应计算单向地 震作用下的扭转影响 8 度和 9 度抗震设计时,高层建筑中的大跨度和长悬臂结 构应考虑竖向地震作用 9度抗震设计时应计算竖向地震作用
第五章-地震作用和结构抗震设计要点
Geq——结构等效总重力荷载,单质点应取总重力荷载代 表值,多质点可取总重力荷载代表值的85%; Fi ——质点 i 的水平地震作用标准值 Gi ,Gj ——分别为集中于质点i 、j 的重力荷载代表值; Hi ,Hj ——分别为质点 i 、j
η
的计算高度;
ζ
δn——顶 部 附 加 地震作用 系数 ,多层 钢筋混凝土 和钢结 构房屋可按表6采用,多层内框架砖房可采用0.2,其 他房屋可采用0.0; ∆Fn ——顶部附加水平地震作用。
i =1 i =1 n n 2
式中 Fji——j 振型 i 质点的水平地震作用标准值; aj——相应于 j 振型自振周期的地震影响系数; Xji——j 振型 i 质点的水平相对位移; γj ——j 振型的参与系数。 水平地震作用效应(弯矩、剪力、轴向 力和变形),应按 下式确定:
S Ek = ∑ S j
有斜交抗侧力构件的结构,当相交角度大于15 度时, 应分别考虑各侧力构件方向的水平地震作用; 质量和刚度明显不对称的结构,应考虑双向水平地震 作用下的扭转影 响。其他情况,可以采用调整 地震作 用效应的方法计入扭转影响; 8度和9度的大跨度结构、长悬臂结构及9度时的高层建 筑,应考虑竖向地震作用。
1.1.2 地震作用计算方法
现行《抗震规范》的抗震设计计算采用以下三种方法: 适用于多自由度体系的振型分解反应谱法; 将多自由度体系看作等效单自由度体系的底部剪力法; 直接输入地震波求解运动方程及结构地震反应的时程分 析法 。
《抗震规范》对上述三种方法的使用范围作了如下规定: 高度不超过40m,以剪切变形为主且质量和刚度沿高 度分布比较均匀的结构,以及近似于单质点体系的结 构,可采用底部剪力法等简化方法 ; 除上述以外的建筑结构,宜采用振型分解反应谱法; 特别不规则的建筑,甲类建筑和表1所列的高层建 筑,应采用时程分析法进行多遇地震作用下的补充计 算,并取多条时程曲线计算结果的平均值与振型分解 反应谱法计算结果的较大值。
竖向地震作用计算
楼 层 1 2 3
高 度(m)
4 8 12 16 20
Fvi(KN)
楼 层
6 7 8 9 10
高 度(m)
24 28 32 36 40
Fvi(KN) 3281.88 3828.86 4375.84 4922.82 5056.85
546.98 1093.96 1640.94
4
5
2187.92
2734.9
力最小值的要求,即在进行结构抗震验算时,结构任一楼层的水平地震剪力应满足 下式要求:来自Veki G j
j i
n
Veki 第i层对应于水平地震作用 标准值的楼层剪力;
剪力系数,按照表 3.7取值。
G j j层的重力荷载代表值
3.3 竖向地震作用的计算
《抗震规范》规定,8度、9度时的大跨度结构和长悬臂结构,以及9度时的 高层建筑,应考虑竖向地震作用的影响。竖向地震作用的计算应根据结构的 不同类型选用不同的计算方法:对于高层建筑、烟囱和类似 高耸结构,可采 用反应谱法;对于平板网架、大跨度结构及长悬臂结构,一般采用静力法。 3.3.1 高层建筑和高耸结构的的竖向地震作用计算
1)多遇地震下结构的弹性变形验算
ue e h
2)罕遇地震作用下结构的弹塑性变形验算
up p h
本 章 结 束!
FEvk v maxGeq
Fvi Gi H i
G
j 1
n
FEvk
j
Hj
Geq 0.75 Gi
i 1
v max 0.65max
n
例题:
某钢筋混凝土高层办公楼建筑共10层,每层层高均为4m,总高40m,质 量和侧向刚度沿高度分布比较均匀,属于规则结构。该建筑位于9度设防区, 场地类别为II类,设计地震分组分组为第二组,设计基本地震加速度为0.4g。 已知屋面、楼面永久荷载标准值为1500KN,屋面及各层楼面活荷载标准值为 2450KN,结构基本自振周期为1.0s。试计算该结构的竖向地震作用标准值, 以及每层的竖向地震作用标准值。 解:(1)该建筑位移9度设防区,因此,根据表格3-4得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《抗规》12.2.1隔震层以上结构的水平地震作用应根据水平向减震系数确定;其竖向地震作用标准值,8度(0.20g)、8度(0.30g)和9度时分别不应小于隔震层以上结构总重力荷载代表值的20%、30%和40%。用5.3.1 5.3.2和 5.3.3计算出竖向地震力(aMax应采用12.2.5调整后的)不小于本条。
竖向地震作用计算
《高规》
《抗规》
设防烈度
结构类型
规范条文
设防烈度
结构类型
规范条文
6度
7度(0.10g)
1、高位连体连体结构的连接体(如连体位置高度超过80m时)
10.5.36度和7度(0.10g)抗震设计时,高位连体结构的连接体宜考虑竖向地震的影响。
6度
7度(0.10g)非高层来自筑不需考虑5.1.110.5.27度(0.15g)和8度抗震设计时,连体结构的连接体应考虑竖向地震的影响。10.1.29度抗震设计时不应采用带转换层的结构、带加强层的结构、错层结构和连体结构
8 度
1、跨度>24m的楼盖结构
2、悬挑长度>2m的悬挑结构
3、隔震结构
4、地下空间综合体等体型复杂的地下结构
5.1.1第4款8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。
注:8、9度时采用隔震设计的建筑结构,应按有关规定计算竖向地震作用。
14.2.33)地下空间综合体等体型复杂的地下结构,8、9度时尚宜计及竖向地震作用。
9度
高层建筑
9度
1、跨度>18m的楼盖结构
2、悬挑长度>1.5m的悬挑结构
3、高层建筑
4、隔震结构
5、地下空间综合体等体型复杂的地下结构
注:
《高规》3.8.2当仅考虑竖向地震作用组合时,各类结构构件的承载力抗震调整系数均应取为1.0。
《烟规》5.5.13 抗震设防烈度为6度和7度时,可不计算竖向地震作用;8度和9度时,应计算竖向地震作用。竖向地震计算方法见 5.5.5条。
《装配式混凝土结构技术规程》 10.2节 外挂墙板设计时应考虑竖向地震作用,竖向地震作用标准值可取水平地震作用标准值的0.65倍。
《高规》4.3.13~4.3.15为竖向地震作用计算,4.3.13所有类型竖向作用和4.3.15大悬臂大跨度结构计算应与4.3.13包络;《抗规》5.3.1为计算9度高层竖向作用,5.3.2为8度和9度多高层大跨结构,5.3.3为8度和9度多高层长悬臂结构;5.3.3和5.3.2在9度高层结构且为大悬臂大跨度时应于5.3.1包络;
7 度(0.15g)
8 度
1、跨度>24m 的楼盖结构
2、跨度>8m 的转换层结构
3、悬挑长度>2m的悬挑结构
4、连体结构的连接体(4.3.2条文说明)
5、8.2.3 板柱剪力墙结构柱上板带配筋,8度时尚宜计入竖向地震影响。
4.3.2高层建筑中的大跨度、长悬臂结构,7度(0.15g)、8度抗震设计时应计入竖向地震作用。9度抗震设计时应计算竖向地震作用。