基因操作的原理和过程
基因工程的操作步骤
利用PCR技术扩增目的基因
原理: DNA双链复制 前提: 要有一段已知 目的基因的脱 氧核苷酸序列, 以便合成引物。
过程
预变性 增加DNA变性的概率
高温变性 解旋为单链
低温退火 引物与单链互补结合 适温延伸 在Taq酶的作用下合成
与模板互补的DNA双链 重复循环
归纳: 基因工程的基本操作程序. 构建基因表达载体
目的基因、启动子、终止子、标记基因
3. 将目的基因导入受体细胞
农杆菌转化法、显微注射法
4. 目的基因的检测与鉴定
检测:是否插入、转录、翻译
基因操作的基本步骤
基因操作的基本步骤
终止子:位于基因的尾端的一段特殊的DNA片断,它能阻碍RNA聚合酶的移动, 并使其从DNA模板链上脱离下来,使转录终止。
RNA聚合酶:能够识别启动子上的结合位点并与其结合的一种蛋白质. 以模板转录 然后脱落
非编码区 编码区上游 启动子
编码区
非编码区 编码区下游 终止子
原核 细胞 的基 因结
构
编码区 能转录相应的信使RNA,能编码蛋白质
知识点二.基因工程基本操作的四个步骤
1、目的基因的获取
2、基因表达载体的构建
3、将目的基因导入受体细 胞
4、目的基因的检测与鉴定
一、获取目的基因
目的基因主要是__编__码__蛋__白__质__的__结__构__基__因__
1.获取目的基因的途径
A.从自然界已有的物种中分离
B.人工合成
2.获取目的基因的方法
四、目的基因的检测与鉴定
检测:
是否插入目的基因 DNA分子杂交技术 是否转录 mRNA分子杂交技术 是否翻译 抗原—抗体杂交技术
基因的工作原理
基因的工作原理
基因是生物体中的遗传物质,决定了生物体的遗传特征和功能。
基因的工作原理主要涉及DNA、RNA和蛋白质的相互作用。
首先,基因是由DNA分子组成的。
DNA是一个双螺旋的大分子,由两条互相缠绕的链组成。
每条链上的碱基序列编码了生物体合成蛋白质所需的信息。
基因的工作始于转录过程。
转录是指DNA链上的一个片段被
复制成为mRNA(信使RNA)。
在细胞核中,特定的酶能够
识别并结合到基因上,使其中的DNA链解开。
然后,一个名
为RNA聚合酶的酶会沿着DNA链合成RNA链,根据DNA
的碱基序列合成互补的mRNA链。
这个过程中,腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)碱基按
照特定的规则进行配对。
接下来,mRNA会离开细胞核,进入细胞质。
在细胞质中,mRNA将作为模板,被一个名为核糖体的细胞器所识别和结合。
核糖体会沿着mRNA链上“读取”信息,并根据mRNA上
的密码子来选择和组装对应的氨基酸。
氨基酸的顺序由mRNA上的密码子决定,这一顺序编码了特
定的蛋白质序列。
当核糖体组装完整个蛋白质链之后,蛋白质会通过细胞质中的其他细胞器进行后续的折叠、修饰和定位。
最终,形成的蛋白质会根据其自身的功能被运输到细胞中不同的位置,并参与到各种生物过程中。
这些过程包括细胞代谢、
信号传导、细胞结构的维持和功能的实现等。
总而言之,基因的工作原理涉及到DNA的转录、mRNA的翻
译和蛋白质的产生。
这一过程是生物体遗传特征和功能的基础,也是生命活动的关键。
基因重组的操作原理
基因重组的操作原理基因重组是指通过技术手段将不同源自然界中的基因片段重新组合到不同的生物体中,从而实现基因的转移和改变。
基因重组的操作原理可以分为四个关键步骤:选择目标基因,切割DNA,连接DNA片段,转化和表达。
首先,选择目标基因。
在进行基因重组之前,需要确定目标基因,即想要改变的特定性状或功能的基因。
这个基因可以来源于同一物种内的其他个体,也可以来自不同物种甚至不同领域的生物体。
接下来是切割DNA。
DNA切割是将目标基因从其原来的DNA序列中“剪”下来的过程。
这一步通常通过限制性内切酶来实现。
限制性内切酶是一类具有特定识别和切割DNA序列的酶。
通过选择适当的限制性内切酶,可以将目标基因的DNA序列从整个基因组中剪切出来。
切割后的DNA片段的两端通常会生成特定的黏性末端或平滑末端。
然后是连接DNA片段。
连接DNA片段需要使用DNA连接酶,常用的连接酶有DNA连接酶Ⅰ和DNA连接酶Ⅳ。
DNA连接酶能够在DNA分子的修复和连接过程中起到重要的作用,它可以利用DNA片段两端的黏性末端或平滑末端,将不同的DNA片段连接在一起,形成新的DNA序列。
最后是转化和表达。
转化是将修饰好的DNA片段导入到宿主细胞(常用的宿主细胞包括大肠杆菌、酵母等)中的过程。
这一步可以通过多种方法实现,如化学法、电击法和基因枪法等。
一旦DNA片段成功转化到宿主细胞中,它将被宿主细胞的核酸复制、转录和翻译系统识别和表达。
这样,目标基因的功能就可以在宿主细胞中得到表达。
基因重组技术的应用非常广泛。
在农业领域,基因重组被用来改良植物,使其具有抗虫、抗草药、抗病以及更好的产量等性状。
在医学领域,基因重组被用来研发新药和疫苗,以治疗疾病和预防感染。
此外,基因重组还可用于生物能源的生产,环境修复,工业生产等等。
总之,基因重组通过选择目标基因,切割DNA,连接DNA片段,转化和表达,在生物体中实现外源基因的导入和表达。
这一技术在农业、医学、工业等领域具有广泛的应用前景,对于人类社会的发展和进步具有重要意义。
基因提取的实验原理和方法
基因提取的实验原理和方法基因提取是生物学实验中常用的技术,广泛应用于基因克隆、基因组测序、基因表达分析等领域。
基因提取的目的是从细胞或组织中分离出目标基因的DNA或RNA分子,以便进行后续的分析和研究。
基因提取的实验原理:基因提取的实验原理基本上是利用细胞的生物学特性和生物化学方法,将目标基因从细胞或组织中分离出来。
一般的基因提取过程可以分为几个关键步骤:细胞破碎、去除细胞蛋白质、DNA或RNA纯化和定量。
1. 细胞破碎:将目标细胞或组织破碎,以释放细胞内的DNA或RNA。
细胞破碎的方法有多种,包括物理破碎(如超声波、高压力刀、研钵磨碎)和化学破碎(如洗涤剂溶解、酶消化等)。
2. 去除细胞蛋白质:细胞破碎后,需要去除细胞中的蛋白质。
这一步的目的是消除蛋白质对DNA或RNA的干扰,同时减少后续实验中对抗蛋白酶的需求。
通常可以使用蛋白酶K等酶来消化细胞蛋白,或者先用有机溶剂沉淀蛋白质后去除。
3. DNA或RNA纯化:纯化是基因提取过程中的一个重要步骤。
纯化的目的是从混合的细胞组分中分离出目标DNA或RNA分子,使其具有足够的纯度和浓度以进行后续的分析。
纯化方法常用的有有机溶剂沉淀、柱层析、电泳等。
4. 定量:基因提取后,需要对提取得到的DNA或RNA进行定量。
定量的目的是确定提取物中基因的浓度以及纯度。
常用的定量方法有比色法、荧光法、分光光度法等。
基因提取的实验方法:基因提取的实验方法根据不同的样品来源和实验目的的不同,可以选用不同的方法。
1. 细胞基因提取:对于细胞的基因提取,可以使用各种方法进行细胞破碎,如超声波破碎、磨砂法等。
然后使用蛋白酶或洗涤剂等方法去除蛋白质。
最后使用柱层析或有机溶剂沉淀法纯化DNA或RNA。
2. 组织基因提取:组织样品的基因提取相对于细胞样品更为复杂,因为组织中存在更多的蛋白质、多糖和废物等。
组织基因提取常用的方法有CTAB法、盐析法、脂肪沉淀法等。
这些方法主要通过化学和物理手段破坏组织细胞的完整性,使DNA或RNA释放出来,并通过有机溶剂或柱层析等方法纯化。
基因工程的原理和技术
基因工程的基本原理:
让人们感兴趣的基因(即目的基因)在宿主细 胞中稳定和高效的表达。根据不同的实验目的,目 的基因可以有很多种,如抗虫基因、抗病基因、抗 除草剂基因、人胰岛素基因和人干扰素基因等。因 此表达的产物各不相同。通过基因工程的基本操作 ,就能实现目标。
二、基因操作的基本步骤
第三步:将目的基因导入受体细胞
选择的关键是分析基因工程的最终目的,按转基因的目的来选择:
基因工程的 最终目的
得到大量特 殊蛋白质
得到转基因动物 得到转基因植物
常用的受 体细胞
大肠杆菌 等微生物
受精卵 植物体细胞
导入的方法
Ca2+处理法 显微注射法 农杆菌转化法
将目的基因导入微生物细胞
常选细菌 作受体细胞的原因:它 们繁殖力极强,生长速 度很快,短期内就会产 生大量后代,所以把目 的基因转入这些细菌, 就能在短时间内得到大 量的目的基因产物。
细菌的检测:
将每个受体细胞单独培养形成菌落,检测菌落中 是否有目的基因的表达产物。淘汰无表达产物的 菌落,保留有表达产物的进一步培养、研究。
无表达产物
无表达产物
有表达产物
无表达产物
多细胞生物的检测: 将每个受体细胞单独培养并诱导发育成完整个体, 检测这些个体是否表现出相应的性状。
例:抗虫棉检测
用棉铃饲喂棉铃虫,如虫吃后不 出现中毒症状,说明未摄入目的基 因或摄入目的基因未表达。
例:下列有关基因表达载体的构建说法正确的是( C ) A.限制性核酸内切酶的功能是切割各种DNA分子 B.基因工程中经常用到的酶只有DNA连接酶和限制性 核酸内切酶 C.将目的基因与载体结合的过程,实际上就是不同来 源的DNA重新组合的过程 D.具有粘性末端的目的基因片段插入质粒的切口处, 先形成磷酸二酯键,再形成氢键
基因编辑技术的原理与方法
基因编辑技术的原理与方法基因编辑技术是一种能够创造新的生命形态的科技,它可以改变生物的基因组,使其拥有更先进的基因组结构,并且可以消除人类遗传病。
基因编辑技术的主要原理是通过改变生物基因组内的核酸序列,去掉有害基因和插入有利基因,来实现对生物基因编辑的操作。
本文将讨论基因编辑技术的原理和方法。
一. 基因编辑技术的原理基因编辑技术的原理是利用现代生物技术将人类的基因或某种蛋白质编辑或修饰,使其能更好的适应环境以及更好的发挥作用。
1.重组DNA技术重组DNA技术是基因编辑技术的关键,重组DNA技术使得科学家们可以利用细胞、病毒或细菌的基因将不同的DNA片段组合在一起,产生新的DNA序列。
具体地,利用重组DNA技术在DNA链上切开并粘贴一段新的DNA,这样就可以在人类基因组上定位有害基因并进行修饰、消除。
2. CRISPR / Cas9基因编辑技术CRISPR/Cas9基因编辑技术是一种基因编辑技术,是一种高效的基因编辑工具。
与传统的基因编辑技术相比,CRISPR/Cas9可以更容易地定位和修改目标基因。
它利用了CRISPR基因与Cas9蛋白的互作,在某个DNA片段上划分一个锋利的切割器,来修正、插入或删除DNA链中的基因。
这种基因编辑技术使得基因编辑更加精准和有效,对治疗包括肺癌、胃癌、乳腺癌等多种疾病均具有一定的优势。
二. 基因编辑技术的方法目前,基因编辑的主要方法有三种:基因注射法、细胞融合法和CRISPR/Cas9技术。
1.基因注射法基因注射法是一种基本的基因编辑方法,它适用于比较简单、单一的生物细胞,如蝌蚪、动物卵细胞等。
该技术的具体方法是将编码所需蛋白或RNA的DNA或RNA注射进去,使其在细胞内进行转录和后续翻译,来实现对细胞基因编辑的操作。
2.细胞融合法细胞融合法是一种通过融合两个非常相似的细胞产生一个新的细胞来编辑基因的方法,主要针对多细胞生命而言。
这种方法通过融合可以得到新细胞及其基因,可以将新细胞的某些特征加入原有的种群中,使它们更适应某些特定环境和进化。
基因操作原理和方法
克隆和重组技术的应用
克隆和重组技术广泛应 用于基因工程、生物制 药、农业和医学等领域 。
在基因工程中,克隆和 重组技术用于生产重组 蛋白、疫苗和抗体等生 物制品。
在农业中,克隆和重组 技术用于改良作物品种 和提高农作物的抗逆性 和产量。
生物科学研究
基因敲除和敲入技术可用于研究基因功能、细胞信 号转导、药物筛选等生物科学研究领域,有助于深 入了解生命活动的本质。
生物制药
基因敲除和敲入技术可用于生产基因工程药物,通 过改造或增强微生物、细胞或动物细胞中的基因表 达,生产具有特定功能的药物。
敲除和敲入技术的限制和挑战
80%
技术难度高
基因敲除和敲入技术需要精确的 操作和设计,对技术和实验条件 要求较高,且存在一定的失败率 和不确定性。
05
基因编辑新技术
CRISPR-Cas9系统
总结词
CRISPR-Cas9系统是一种高效、简单、低成本的基因编辑技术,通过向导RNA和Cas9 蛋白的引导,实现对特定DNA序列的切割和修复。
详细描述
CRISPR-Cas9系统利用向导RNA与目标DNA序列的特异性结合,将Cas9蛋白引导至目 标位置,通过切割DNA双链形成缺口,启动细胞内的DNA修复机制。在修复过程中, 插入、删除或替换特定DNA序列成为可能,从而实现基因敲除、敲入和点突变等基因
基因操作的历史与发展
基因操作技术的起源可以追溯到20 世纪70年代,当时科学家开始探索 限制性内切酶和DNA连接酶等工具 的应用。
随着技术的不断发展,基因操作逐渐 成为现代生物学和医学研究的重要手 段,广泛应用于基因克隆、基因治疗 、基因工程等领域。
基因提取的实验原理是什么
基因提取的实验原理是什么基因提取是一种实验方法,用于从细胞中分离和纯化DNA分子。
它涉及到一系列步骤,包括细胞破碎、去除杂质、DNA溶解和纯化等。
基因提取的实验原理主要分为以下几个步骤:1. 细胞破碎:首先需要将细胞破碎以释放DNA分子。
这可以通过物理或化学方法实现。
物理方法包括振荡、摇床或超声波等,用于破坏细胞膜和壁。
化学方法则是采用细胞裂解缓冲液,其中含有蛋白酶或表面活性剂等,可以破坏细胞结构。
2. 去除杂质:细胞的破碎会释放许多非DNA的组分,如蛋白质、RNA、多余的盐和酶等。
这些杂质会影响DNA的提取和分析,因此需要通过凝胶电泳、离心沉淀或其他分离技术来除去。
一种常用的方法是通过protease K 酶处理混合物,使DNA不受蛋白质的干扰。
3. DNA溶解:细胞溶解后,DNA被释放到溶液中。
DNA在水溶液中具有一定的稳定性,但在高温、酸碱等环境条件下会降解。
因此,为了保护DNA的完整性,需要在溶解过程中加入一定的缓冲液,如Tris-HCl缓冲液或TE缓冲液(Tris-EDTA缓冲液),以维持适宜的pH值和离子强度。
4. DNA纯化:DNA溶液中仍然存在其他杂质,如RNA、酶、无机盐等。
这些杂质会干扰DNA的后续分析。
因此,需要利用分子生物学中的各种技术来纯化DNA,如甲醇沉淀、有机溶剂提取(如酚/氯仿或酒精/马尾酚方法),或者利用商用的DNA提取试剂盒进行纯化。
总体来说,基因提取的实验原理是通过破碎细胞、去除杂质、溶解DNA和纯化DNA等步骤来获得纯净的DNA样品。
这种纯化后的DNA可以用于许多后续实验,如PCR、酶切、DNA序列测定等。
基因提取是分子生物学和遗传学等领域中的关键步骤,对于研究基因功能、诊断疾病、进行基因工程等有着重要的意义。
基因操作原理知识点总结
基因操作原理知识点总结基因操作是一种在生物体内对基因进行修改或操作的技术,它的出现为生物学、医学和农业等领域带来了革命性的变革。
通过基因操作技术,科学家们可以改变生物体的一些性状,使得其具有更好的抗病性、生长速度、产量等特性,从而为人类生活和生产带来了巨大的便利和利益。
在这篇文章中,我将从基因操作的原理、技术、应用和风险等方面进行详细的介绍和讨论。
基因操作的原则基因操作的基本原理是对生物体的基因进行修改或操作,使得其具有某些特定的性状。
这是通过DNA重组技术来实现的,DNA重组技术是一种利用酶的作用或化学方法,将DNA片段进行切割、粘接、合成等操作,从而实现对基因的改变或移植。
利用这一技术,科学家们可以将某种物种的基因转移到另一种物种中,或者通过改变某个基因的表达方式来使得生物体产生一些新的性状。
基因操作的技术基因操作技术主要包括DNA重组技术、基因克隆技术、基因敲除技术、基因编辑技术等。
其中,DNA重组技术是最基本的技术,它通过切割、粘接、重组DNA片段来改变基因的结构和表达方式;基因克隆技术是一种通过细胞培养和分裂来复制基因的方法,可以用于大规模生产具有某些特定性状的生物体;基因敲除技术是一种通过干扰某个基因的表达来观察该基因在生物体中的功能和作用;基因编辑技术是一种通过精确的操纵基因序列来实现对基因的改变和操作。
基因操作的应用基因操作技术在农业、医学、生物工程等领域都有着广泛的应用。
在农业领域,基因操作技术可以用来改良作物的产量、抗病性、品质等性状,从而为农业生产提供更多的选择和可能;在医学领域,基因操作技术可以用来治疗或预防一些遗传疾病,为人类健康带来更多的希望和机会;在生物工程领域,基因操作技术可以用来生产某些特定的物质或药物,从而为生产和生活提供更多的可能性。
基因操作的风险尽管基因操作技术为人类带来了巨大的利益和希望,但是它可能也会带来一些潜在的风险和问题。
其中,最主要的风险包括对环境的影响和对人类健康的影响。
基因工程的原理是什么
基因工程的原理是什么
基因工程是一种利用生物技术手段对生物体进行基因改造的技术,它的原理主要包括基因分离、基因修饰和基因重组三个方面。
基因工程的原理是通过对生物体的基因进行改造,实现对生物体性状的调控和改良,从而达到人为控制生物体遗传特征的目的。
首先,基因工程的原理之一是基因分离。
基因是生物体内控制遗传信息传递和表现的基本单位,通过基因分离技术,可以将特定的基因从一个生物体中分离出来。
这一过程需要利用分子生物学技术,如PCR、酶切等,将目标基因从细胞或DNA中分离出来,为后续的基因修饰和重组奠定基础。
其次,基因工程的原理还包括基因修饰。
基因修饰是指对已分离的基因进行改造,使其具有特定的性状或功能。
这包括基因的点突变、插入、删除等操作,通过改变基因的序列,使其表达产生不同的蛋白质或调控特定的生物过程,从而实现对生物体性状的调控和改良。
最后,基因工程的原理还涉及基因重组。
基因重组是指将不同来源的基因进行组合,形成新的基因组合,使生物体表现出新的性
状或功能。
通过基因重组技术,可以将来自不同生物体的基因进行组合,形成转基因生物,从而实现对生物体性状的改造和调控。
总的来说,基因工程的原理是通过基因分离、基因修饰和基因重组等技术手段,对生物体的基因进行改造,实现对生物体性状的调控和改良。
基因工程技术的应用,不仅可以用于农业领域的作物育种和畜禽改良,还可以用于医学领域的基因治疗和药物研发,对人类健康和生物资源的可持续利用具有重要意义。
基因工程的原理流程及应用
基因工程的原理流程及应用引言基因工程是一门将基因科学与工程技术相结合的学科,通过技术手段对生物体的基因进行改造和调控,以实现特定的生物功能。
本文将介绍基因工程的原理流程及其在科学研究、农业、医药等领域中的应用。
基本原理基因工程的基本原理是通过对DNA分子进行操作,以改变生物体的遗传信息。
DNA分子是构成生物遗传信息的基本单位,包含了生物体的所有遗传信息。
基因工程主要通过以下几个步骤实现:DNA提取与克隆1.提取源:根据需要研究或改造的生物体,选择相应的组织或细胞作为DNA的来源。
2.细胞破碎:采用物理或化学方法破坏细胞膜,释放DNA分子。
3.分离纯化:通过离心、渗析、电泳等技术,将目标DNA从其他细胞成分中分离出来。
4.克隆:将目标DNA片段插入载体DNA中,形成重组DNA。
常用的载体包括质粒、噬菌体等。
5.转化:将重组DNA转入宿主细胞中,使其成为表达所需基因的工具。
基因编辑与改造1.基因识别:通过生物信息学方法,识别目标基因的DNA序列。
2.基因编辑:利用CRISPR/Cas9等工具,精确地编辑目标基因的DNA序列。
可以实现基因剪接、替换或插入等操作。
3.基因表达:通过基因转录和翻译过程,将编辑后的基因表达为蛋白质,实现特定功能。
应用领域基因工程在科学研究、农业、医药等领域有着广泛的应用。
以下是几个主要应用领域的列举:科学研究1.基因功能研究:通过基因敲除、过表达、静默等方法,揭示基因在生物体发育、代谢、免疫等方面的功能。
2.基因调控研究:通过改变特定基因的表达水平,探索基因调控网络和信号传递机制。
农业1.作物改良:通过导入耐逆性、抗病性、高产性等基因,提高作物品质和产量。
2.遗传改良:通过基因编辑技术,快速培育出更好的品种,提高农作物的抗虫、抗逆性。
医药1.药物研发:利用基因工程技术生产重组蛋白质,用于药物的研发和生产。
2.基因治疗:通过基因编辑和基因传递技术,矫正遗传性疾病、癌症等疾病相关基因的异常。
基因工程主要操作流程及图解
基因功能研究
通过动物模型研究基因在生物体内的功能及 其调控机制,揭示生命活动的本质。
动物模型构建方法和注意事项
构建方法:包括自然 突变筛选、化学诱变、 物理诱变和基因编辑 技术等。其中,基因 编辑技术如CRISPRCas9等已成为主流方 法。
注意事项
选择合适的动物种类 和品系,确保实验结 果的准确性和可重复 性。
基因工程主要操作流程及图解
$number {01}
目 录
• 基因工程概述 • 基因工程基本操作流程 • 基因表达调控技术 • 蛋白质纯化与功能分析技术 • 细胞培养、转染和稳定株构建技
术 • 动物模型在基因工程中应用 • 总结与展望
01
基因工程概述
定义与发展历程
定义
基因工程是通过改变生物体的遗传物 质,来实现对生物性状和功能的定向 改造的一门技术。
通过基因编辑技术(如CRISPR-Cas9)或基因重组技术将目的基因整合到细胞基因组中,实现稳定表达。
筛选方法
利用抗生素抗性基因或荧光标记基因进行初步筛选,再通过qPCR、Western blot等方法对稳定株进 行鉴定和验证。
06
动物模型在基因工程中应用
常见动物模型类型及其特点
小鼠模型
繁殖周期短,基因型确定,适合大规模遗传研 究。
转化细胞筛选与鉴定
01
02
03
抗性筛选
报告基因检测
PCR或测序鉴定
利用选择性培养基筛选转化细胞, 如抗生素或营养缺陷型培养基。
通过检测报告基因的表达情况, 间接判断目标基因是否整合到受 体细胞基因组中。
利用PCR或测序技术直接检测目 标基因在转化细胞中的存在和表 达情况。
03
基因表达调控技术
基因操作的主要技术原理
基因操作的主要技术原理1.核酸的凝胶电泳(Agarose & Polyacrylamide)将某种分子放到特定的电场中,它就会以一定的速度向适当的电极移动。
某物质在电场作用下的迁移速度叫作电泳的速率,它与电场强度成正比,与该分子所携带的净电荷数成正比,而与分子的磨擦系数成反比(分子大小、极性、介质的粘度系数等)。
在生理条件下,核酸分子中的磷酸基团是离子化的,所以,DNA和RNA实际上呈多聚阴离子状态(Polyanions)。
将DNA、RNA放到电场中,它就会由负极→正极移动。
在凝胶电泳中,一般加入溴化乙锭(EB)--ethidium bromide染色,此时,核酸分子在紫外光下发出荧光,肉眼能看到约50ng DNA所形成的条带。
DNA的脉冲电泳技术 :PFGE-Pulse-field gel electrophoresis2.核酸的分子杂交技术在大多数核酸杂交反应中,经过凝胶电泳分离的DNA或RNA分子,都是在杂交之前,通过毛细管作用或电导作用按其在凝胶中的位置原封不动地"吸印" 转移到滤膜上的。
常用的滤膜有尼龙滤膜、硝酸纤维素滤膜,叠氮苯氧甲基纤维素滤纸(DBM)和二乙氨基乙基纤维素滤膜(DEAE)等。
核酸分子杂交实验包括如下两个步骤:将核酸样品转移到固体支持物滤膜上,这个过程特称为核酸印迹(nucleic acid blotting)转移,主要有电泳凝胶核酸印迹法、斑点和狭线印迹法(dot and slot blotting)、菌落和噬菌斑印迹法(colony and plaque blotting);将具有核酸印迹的滤膜同带有放射性标记或其它标记的DNA或RNA探针进行杂交。
所以有时也称这类核酸杂交为印迹杂交。
3.细菌的转化所谓细菌转化,是指一种细菌菌株由于捕获了来自另一种细菌菌株的DNA,而导致性状特征发生遗传改变的生命过程。
这种提供转化DNA的菌株叫做供体菌株,而接受转化DNA的寄主菌株则称做受体菌株。
基因工程的原理和技术
2、形成重组DNA分子
限制性核酸 ①用一定的_________切割 内切酶 质粒,使其出现一个切 粘性末端 口,露出____________ 。 同一种限制性核酸内切酶 ②用_____________切割 含目的基因的DNA ,使其产生_____ 相同 的粘性末端 ____________。
切口 处, ③将切下的目的基因片段插入质粒的______ DNA连接酶 ,形成了一个重组 再加入适量___________ DNA分子(重组质粒)
农杆菌转化法
农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,农杆 菌中细胞中含有Ti质粒,其上有一段T-DNA,农杆菌通过 侵染植物伤口进入细胞后,可将T-DNA插入到植物染色体 中。人们将目的基因插入到经过改造的T-DNA区,借助农 杆菌的感染实现外源基因向植物细胞的转移与整合,然后 通过植物组织培养技术,再生出转基因植株。
5、目的基因的表达
①检测转基因生物染色体的DNA 上是否插入了目的基因 检测 方法—— DNA分子杂交(DNA探针) (分子水平) ②检测目的基因是否转录出了mRNA 方法—— 分子杂交 ③检测目的基因是否翻译成蛋白质 方法—— 抗原抗体杂交 个体水平 抗虫鉴定、抗病鉴定、活性鉴定等
程的叙述中,错误的是 ( A ) A、DNA连接酶将黏性末端的碱基对连接起来 B、限制性核酸内切酶用于目的基因的获得 C、目的基因须由载体导入受体细胞 D、人工合成目的基因不用限制性内切酶
2.有关基因工程的叙述正确的是
(
D
)
A.限制性内切酶只在获得目的基因时才用 B.重组质粒的形成在细胞内完成 C.质粒都可以作为运载体 D.蛋白质的结构可为合成目的基因提供资料
第一章
第二节
基因工程
基因工程的原理和技术
基因工程实验原理
基因工程实验原理
基因工程实验的原理是基于对生物体基因组的修改和重组,旨在增加或改变生物体的特性。
下面将介绍几种常见的基因工程实验原理:
1. 基因克隆:该实验原理是将所需基因从一个生物体中剪切并插入到另一个生物体的染色体上,使目标基因能够在新宿主中表达。
2. 限制性内切酶消化:该实验原理是利用限制性内切酶切割目标DNA,创建具有粘性末端的DNA片段。
然后,可以通过连接这些片段来构建重组DNA。
3. 反转录和cDNA合成:这个实验原理是利用逆转录酶将RNA转录成DNA,即cDNA(互补DNA),然后将其克隆到表达载体中。
4. 基因敲入和敲除:该实验原理是通过CRISPR/Cas9系统或其他方法,有针对性地切割或改写目标基因,从而敲除或敲入特定的DNA片段。
5. 转基因技术:这是将外源基因导入到目标生物体中,使其表达或增强特定的功能。
转基因技术的原理可以是通过基因枪、农杆菌介导的转化等手段。
这些实验原理是基因工程研究中常用的方法,可以用于改良农
作物、生产药物、开发生物燃料等领域。
在实验过程中,研究人员需要仔细设计实验方案,并根据具体需求选择适当的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因操作的原理和过程
基因操作(Genetic engineering)是一种利用基因技术对生物体的遗传物质进行修改和重组的技术手段。
通过基因操作,可以对生物的基因进行剪接、修饰或移除,并向生物中引入新的基因或基因片段,从而改变生物的遗传特征和表现形式。
基因操作在农业、医学、生物工程等领域都有广泛的应用,它不仅可以提高生物的抗病性、耐性和产量,还可以用于研究基因的功能和调控机制。
基因操作的原理是基于对生物体的基因组进行修改和优化,具体分为以下几个步骤:
1. 选择目标基因:首先需要确定要操作的基因,可以是现有生物体中的某个基因,也可以是外源基因。
有时也会选择修改某个特定区域的基因片段。
2. 基因克隆和构建载体:利用分子生物学技术,将目标基因从生物体中分离提取。
然后,将目标基因插入到载体DNA中,构建成重组载体。
常用的载体包括质粒和病毒。
3. 转化目标细胞:将构建好的重组载体导入到目标细胞中。
可以通过多种途径实现细胞的转化,如化学转化、电转化、冷冻复苏等。
4. 基因表达和筛选:在转化成功后,目标基因会在细胞内进行表达,从而改变生物的遗传特征和表现形式。
为了筛选出表达目标基因的细胞,可以在重组载体
中引入选择标记基因,如抗生素抗性基因。
5. 验证和分析:在筛选出表达目标基因的细胞后,需要对其进行验证和分析。
可以通过PCR、酶切、同源重组等技术手段来验证基因操作的结果,并进一步分析基因的功能。
基因操作的过程中有一些关键技术和工具,如PCR技术、限制性内切酶、连接酶、DNA测序等。
这些技术和工具的应用使得基因操作的过程更加高效、准确。
基因操作的应用领域广泛,涉及农业、医学、生物工程等多个领域。
在农业领域,基因操作可以用于改良农作物的品质和产量,提高抗病虫害的能力,延长保存期限等。
比如,通过引入抗病虫害基因,使植物对害虫和病毒的侵害产生免疫反应。
在医学领域,基因操作可以用于治疗遗传性疾病、癌症等疾病。
比如,通过修正患者的遗传突变,可以恢复正常的基因功能。
在生物工程领域,基因操作可以用于生物药物生产、工业酶的改造、污水处理等方面。
总之,基因操作是一种重要的生物技术,通过对生物体的遗传物质进行修改和重组,可以改变生物的遗传特征和表现形式。
它在农业、医学、生物工程等领域都有广泛的应用前景,可以提高生物的抗病性、耐性和产量,推动生物科学的发展和进步。