初中数学“数学建模”的教学研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学“数学建模”的教学研究
张思明(北大附中,数学特级教师)
鲍敬谊(北大附中数学学科主任,高级教师)
白永潇(北京教育学院数学教师)
一、什么是数学建模?
1.1数学建模(Mathematical Modeling)是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下:
(1)普通高中数学课程标准中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容。
(2)叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(Mathematical Modeling)就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。
两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。
什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”(Mathematic Model)是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。
本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。
另外,我们所谈的数学建模主要侧重于解决非数学领域内的问题。这类问题往往来自
于日常生活、经济、工程、医学等其他领域,呈现“原胚”状态,需要分析、假设、抽象等加工,才能找出其隐含的数学关系结构。
一般地,数学建模的过程可用下面的框图表示:
1.2什么是中学数学建模?
这里的“中学数学建模”有两重含义。
一是按数学意义上的理解、在中学中做的数学建模。主要指基于中学范围内的数学知识所进行的建模活动,同其它数学建模一样,它仍以现实世界的具体问题为解决对象,但要求运用的数学知识在中学生认知水平内,专业知识不能要求太高,并且要有一定的趣味性和教学价值。
二是按课程意义理解,它是本文要展开讨论的,一种要在中学中实施的特殊的课程形态。它是一种以“问题引领、操作实践”为特征的活动型课程。学生要通过经历建模特有的过程,真实地解决一个实际问题,由此积累学数学、用数学的经验,提升对数学及其价值的认识。其设置目的是希望通过教师对数学建模有目标、有层次的教与学的设计和指导,影响学生的学习过程,改变传统的学习方式,实现激发学生自主思考,促进学生合作交流,提高学生学习兴趣,发展学生创新精神,培养学生应用意识和应用数学的能力,最终使学生提升适应现代社会要求的可持续发展的素养。
二、数学建模进入中学课堂的背景
(一)数学建模从大学到中学的历程
1.大学开设数学建模课程以及大学生数学建模竞赛的开展。
目前,数学建模在大部分高校已经成为数学专业的必修课,其它工科、金融、社会学
科的选修课程。而且,与计算机技术相结合,大学开设了数学实验课程。
美国的大学生数学建模竞赛有MCM(Mathematical Contestin Modeling)和ICM (Interdisciplinar yContestin Modeling),我国的有全国大学生数学建模竞赛(CUMCM)(China Undergraduate Mathematical Contestin Modeling)。
2.数学建模从大学进入中学。
1988年,第六届ICME就把“问题解决、建模和应用”列入大会七个主要研究课题之一,认为“问题解决、建模和应用必须成为从中学到大学——所有学生的数学课程的一部分。”
美国科学院下属的国家研究委员会在1989年发表的调查报告《关于未来数学教育的报告》中,把“数学建模进入中学”列为数学教育改革最急需的项目。
(二)国外中学数学建模相关课程的发展
很多国家在中学开设了类似“数学建模”的数学应用课程,将数学知识和现实生活中的问题融合起来进行学习,形成了各具特色的中学数学课程。
1.美国——两种课程模式。
(1)以项目为中心的学习(Project-Based Learning)
强调长期的、跨学科的、以学生为中心的学习活动,并结合现实世界中的问题与实践进行教学。
(2)以问题为中心的学习(Problem-Based Learning)
是一种关注经验的学习,它围绕现实生活中的一些结构不明确的问题展开调查,并寻求解决方法。
1991年美国出版了由Frank Swetz和JeffersonS.Hartaler编的《中学课程中的数学建模—课堂练习资料导引》。此书介绍了自1975年以来美国的中学数学教学是如何强调问题解决和数学建模的,简要分析了问题解决和数学建模的关系,指出在中学发展数学建模活动的必要性和可能性。
2.英国——课程整合。
其主要内容是:
①从现实生活题材中引入数学;
②加强数学和其他科目的联系;
③打破传统格局和学科限制、允许在数学课中研究与数学有关的其他问题。
在课程标准下,将“运用和应用数学”单独列为一项成绩目标,贯穿于整个数学课程之中。“运用和应用数学”十分注意面对解决实际问题与日常生活中的问题,包括提出问题、设计任务、做出计划、收集信息、选用数学、运用策略、获得结论、检验和解释结果等环节,而不是局限在书本上现成的“问题”。例如,为研究最好的储蓄方式(或地点),就要去调查各家银行不同存款形式、期限的利率等。
3.日本——课题学习。
受美国“问题解决”等因素的影响,日本教育界提出了“课题学习”(Problem Situation Learning)。“课题学习”于1989年作为中学数学教学内容写进了《中学数学学习指导要领》,自1993年4月开始在初中二、三年级中开始实施。
为了配置“课题学习”的实施,1993年日本出版了6套初中数学科书,共设置255个课题。大阪教育大学松宫哲夫先生提出了CRM(Composite Real Mathematics)型课题学习,特别重视课题的现实性,积极主张从现实世界中的问题情境出发进行课题学习。提出“湖水中的数学”、“高层建筑中的数学”、“田径场中的数学”、“交通安全中的数学”、“铁路运输中的数学”等课题。
日本第15届中央教育审议会在1996年提出了要在中小学设置综合课程的建议,经过论证后修订了中小学《学习指导纲要》,规定小学(从三年级开始)和初中从2002年开始,高中从2003年开始正式开设综合学习课程。综合活动课程不是课外活动,而是利用教学时间进行的正式课程。它没用既定的教学目标和教科书。各校根据自己的兴趣等选择学习内容。
4.法国——多样化途径(初中)有指导的学生个人实践活动(高中)。
1994年,法国开始进行中小学校的课程改革,增加了“多样化途径”课程,并于1995年-1996年首次在初二年级实施。
1999年,法国政府又规定,将这一实验从初二推向初三,规定在初三年级增加“综合实践课程”,并且设为必修课。
2002年,法国几乎所有的高中二年级都开始进行“有指导的学生个人实践活动”。