jackson电动力学习题答案

合集下载

电动力学习题及答案

电动力学习题及答案
第二章 静电场习题解答
根据前面的内容讨论知道:在所考虑区域内 没有自由电荷分布时,可用Laplace's equation求 解场分布;在所考虑的区域内有自由电荷分布时, 且用Poisson‘s equation 求解场分布。
如果在所考虑的区域内只有一个或多个点电 荷,区域边界是导体或介质界面,这类问题又如 何求解场分布? 这就是本节主要研究的一个问 题。解决这类问题的一种特殊方法称为 — 镜象 法。
电场。右半空间的电场是Q及S面上的感应电荷面密
度 感 共同产生的。以假想的点电荷Q'等效地代替感 应电荷,右半空间的电势必须满足以下条件:
1 2 Q ( x a, y 0, z 0) 0 R 0 x 0 0 (1) (2) (3)
由(4)式得
b 2 Q Q a 将(6)式代入(5)式得
2
(6)
b 2 (a R02 ) ( R02 b 2 ) a
1 2 2 2 即b (a R0 )b R0 0 a
2
解此二次方程,得到
2 R0 b a b a
将此代入(6)式,即有
Q Q R0 Q Q a
c、
Q


4
-Q 5 +Q 4
+Q 6 7
-Q
B
Q
A
1 -Q
3 -Q 2 +Q
要保证 A B 0 则必须有7个象电荷,故电势为
1 1 1 1 1 1 1 1 ( ) 4 0 r r1 r2 r3 r4 r5 r6 r7
一般说明:只要 满足2 偶数的情形,都可用 镜象法求解,此时象电荷的个数等于 (2 ) 1 ,

电动力学课后答案

电动力学课后答案

电动⼒学课后答案第五章多电⼦原⼦1.选择题:(1)关于氦原⼦光谱下列说法错误的是:BA.第⼀激发态不能⾃发的跃迁到基态;B.1s2p 3P2,1,0能级是正常顺序;C.基态与第⼀激发态能量相差很⼤;D.三重态与单态之间没有跃迁(2)氦原⼦由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产⽣的谱线条数为:BA.0;B.3;C.2;D.1(3)氦原⼦由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产⽣的谱线条数为:CA.3;B.4;C.6;D.5(4)氦原⼦有单态和三重态两套能级,从⽽它们产⽣的光谱特点是:DA.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不⼀定是三线.(5)若某原⼦的两个价电⼦处于2s2p组态,利⽤L-S耦合可得到其原⼦态的个数是:CA.1;B.3;C.4;D.6.(6)设原⼦的两个价电⼦是p电⼦和d电⼦,在L-S耦合下可能的原⼦态有:CA.4个;B.9个;C.12个D.15个;(7)若镁原⼦处于基态,它的电⼦组态应为:CA.2s2s B.2s2p C.3s3s D.3s3p(8)有状态2p3d3P 2s3p3P的跃迁:DA.可产⽣9条谱线B.可产⽣7条谱线C 可产⽣6条谱线D.不能发⽣课后习题1.He 原⼦的两个电⼦处在2p3d态。

问可能组成哪⼏种原⼦态?(按LS耦合)解答:l1 = 1 l2 = 2 L = l1 + l2, l1 + l2?1, ……, | l1? l2| = 3, 2, 1 s1 =1/2 s2 =1/2 S = s1 + s2, s1 + s2?1, ……, |s1 ? s2| = 1, 0 这样按J = L+S, L+S?1, ……, |L?S| 形成如下原⼦态:S = 0 S = 1L = 1 1P13P0,1,2L =2 1D23D1,2,3L = 3 1F33F2,3,43.Zn 原⼦(Z=30) 的最外层电⼦有两个。

电动力学习题解答6

电动力学习题解答6

第六章 狭义相对论1. 证明牛顿定律在伽利略交换下是协变的,麦克斯韦方程在伽利略变换下不是协变的。

证明:根据题意,不妨分别取固着于两参考系的直角坐标系,且令t =0时,两坐标系对应轴重合,计时开始后,'∑系沿Σ系的x 轴以速度v 作直线运动,根据伽利略变换有:vt x x -=',y y =',z z =',t t ='1)牛顿定律在伽利略变换下是协变的以牛顿第二定律22dt d m x F =为例,在Σ系下,22dtd m xF =Θvt x x -=',y y =',z z =',t t ='∴''']',','[],,[22222222F x x F ==+===dtd m dt z y vt x d m dt z y x d m dt d m 可见在'∑系中牛顿定律有相同的形式22''dt d m x F =,所以牛顿定律在伽利略变换下是协变的。

2)麦克斯韦方程在伽利略变换下不是协变的以真空中的麦氏方程t ∂-∂=⨯∇/B E 为例,设有一正电荷q 位于O 点并随'∑系运动,在'∑系中q 是静止的,故:r r qe E 20'4'πε=, (1)0'=B (2)于是方程'/'''t ∂-∂=⨯∇B E 成立,将(1)写成直角分量形式:])'''(')'''(')'''('[4''23222'23222'232220z y x z y x z z y x y z y x x q e e e E ++++++++=πε 由伽利略变换关系,在∑中有:y x z y vt x yz y vt x vt x qe e E 23222232220])[(])[({4++-+++--=πε }])[(23222z z y vt x ze ++-+ ])()()[(])[(34232220z y x y vt x vt x z z y z y vt x q e e e E --++-+-++--=⨯∇∴πε可见E ⨯∇不恒为零。

电动力学题库答案

电动力学题库答案

一.有一电荷均匀体分布的刚性小球,总电荷Q,半径,以角速度0R ω绕自身某直径旋转a) 求它的磁矩b) 假定认为电子是上述的一个小球,由电子经典半径,其固有磁矩,试证明:如果把自旋理解为经典球自转,将与狭义相对论相矛盾。

cm R 130108.2−×≈高斯尔格实/109.020−×≈m c) 解:a) 如图,小球绕z 轴旋转,则φθωπωπρe Rsin R 43Q R R 43Q v j 33=×==Z 022f R 00f e 5QR dr d sin r )j r (221dv j x 21m 0ωθθππ=××=×=∫∫∫b) 设2020109.0m 5QR −×==实ω则220109.05QR −××=ω其中Q 是电子电量= 库仑19106.1−×而电子赤道表面的线速度vC /10108.2101.6/10109.05QR 109.05R v 111519-3200200秒〉米米库仑特斯拉)(焦耳≈××××××=××==−−−−ω 所以这是违反相对论的。

二.一枚铜币以其边缘为支点立于竖直方向的磁场B=20KG 中,给它一轻微的推力让其倒下,试估计倒下所需要的时间,设铜的,密度。

cm /1065Ω×=σ39−=gmcm ρ解:分析: 如果没有磁场,则铜币一旦偏离竖直位置,就会在重力矩的作用下有加速的倒下,若有磁场时,在人为让它偏离后,运动过程中,磁场使铜币感应而产生磁矩,磁矩在外场中有力矩,磁力矩阻此铜币倒下,二个力矩在运动中平衡,所以迟延了铜币倒下的时间,设在倒下的过程中,币面与竖直面的夹角为θ,磁场对铜币的感应可以看成许多小电流圈,考虑小圆环,r+dr,通过该环的磁通θπθφsin )(2B r =感生电动势==dtd φεdtd Bco r θθπ2感应电流hdr dtd Br hdr r dt d B r Rdi σθθσπθθπεcos 21/2cos 2===h 是铜币的厚度hdr电流环的磁力矩hdr dL m =铜币的总磁力矩(设铜币的半径为)0r h dt d B r dr hr dtd B dL L r r m m σθθπσθθπ22403220cos 81cos 2100===∫∫说明:磁力矩使铜币转向原来的竖直位置,因为电或磁偶极子在外场中总趋于能量最低的位置,在本题中磁偶极子是因外场感应而引起的,在运动过程中是变化的,例如处在竖直位置时,B m v m ⋅==,0,这跟纯磁偶极子不同,为要的运动中的电流圈磁矩不变,必须加外电流。

电动力学课后习题解答(参考)

电动力学课后习题解答(参考)

∂ ∂y
∂ ∂z
=
(
∂Az ∂y

∂Ay ∂z
)ex
+
(
∂Ax ∂z

∂Az ∂x
)ey
+
(
∂Ay ∂x

∂Ax ∂y
)ez
Ax(u) Ay(u) Az(u)
=
(
∂Az du
∂u ∂y

∂Ay du
∂u ∂z
)ex
+
(
∂Ax du
∂u ∂z

∂Az du
∂ ∂
u x
)ey
+
(
∂Ay du
∂u ∂x

(dl2
·
dl1)
11、平行板电容器内有两层介质,它们的厚度分别为l1和l2,电容率为ε1和ε2,今在两板接上电 动势为E的的电池,求
(1)电容器两板上的自由电荷密度ωf (2)介质分界面上的自由电荷密度ωf 若介质是漏电的,电导率分别为σ1和σ2,当电流达到恒定时,上述问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向,
[∇
1 r
·
∇]m
=
−(m
·
∇)∇
1 r
∴ ∇ × A = −∇ϕ
7、有一个内外半径分别为r1和r2的空心介质球,介质的电容率为ε,使介质内均匀带静止自由 电荷ρf ,求 (1)空间各点的电场 (2)极化体电荷和极化面电荷分布 解:1) S D · dS = ρf dV ,(r2 > r > r1)
R
)
=
(∇
·
m)∇
1 r
+(m源自·m)∇1 r

电动力学课后答案

电动力学课后答案

第五章多电子原子1.选择题:(1)关于氦原子光谱下列说法错误的是:BA.第一激发态不能自发的跃迁到基态;B.1s2p 3P2,1,0能级是正常顺序;C.基态与第一激发态能量相差很大;D.三重态与单态之间没有跃迁(2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:BA.0;B.3;C.2;D.1(3)氦原子由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产生的谱线条数为:CA.3;B.4;C.6;D.5(4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:DA.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.(5)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:CA.1;B.3;C.4;D.6.(6)设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:CA.4个;B.9个;C.12个D.15个;(7)若镁原子处于基态,它的电子组态应为:CA.2s2s B.2s2p C.3s3s D.3s3p(8)有状态2p3d3P 2s3p3P的跃迁:DA.可产生9条谱线B.可产生7条谱线C 可产生6条谱线D.不能发生课后习题1.He 原子的两个电子处在2p3d态。

问可能组成哪几种原子态?(按LS耦合)解答:l1 = 1 l2 = 2 L = l1 + l2, l1 + l2−1, ……, | l1− l2| = 3, 2, 1 s1 =1/2 s2 =1/2 S = s1 + s2, s1 + s2−1, ……, |s1 − s2| = 1, 0 这样按J = L+S, L+S−1, ……, |L−S| 形成如下原子态:S = 0 S = 1L = 1 1P13P0,1,2L =2 1D23D1,2,3L = 3 1F33F2,3,43.Zn 原子(Z=30) 的最外层电子有两个。

电动力学习题集答案-1

电动力学习题集答案-1

电动力学第一章习题及其答案1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立.2. 若a为常矢量, k z z j y y i x x r )'()'()'(-+-+-=为从源点指向场点的矢量,k E,0为常矢量,则)(2a r ⋅∇=a r a r a r a r a r r r dr dr ⋅=⋅=⋅∇=⋅∇=⋅∇22))()(222,=⨯∇r0'''=---∂∂∂∂∂∂z z y y x x e e e zyxxxx, 3)z'-(z )y'-(y )x'-(x =++=⋅∇∂∂∂∂∂∂z y x r ,)()(=⨯∇⋅=⨯⋅∇r a r a ,0)(3211=⨯=⨯=⨯∇+⨯∇=⨯∇∇r r r r r r r r r rrr,a k j i r a za ya xa z y x =++=⋅∇∂∂∂∂∂∂)]z'-(z [)]y'-(y [)]x'-(x [)(,r r rr r rrr r r r 23113=+⋅-=⋅∇+⋅∇=⋅∇ ,=⨯∇⋅∇)(A __0___. =⋅⋅∇)]sin([0r k E )cos(0r k E k ⋅⋅, 当0≠r 时,=⨯∇)/(3r r __0__. =⋅∇⋅)(0r k i e E )exp(0r k i E k i ⋅⋅, =⨯∇)]([r f r _0_. =⋅∇)]([r f r dr r df r r f )()(3+3. 矢量场f的唯一性定理是说:在以s 为界面的区域V 内,若已知矢量场在V 内各点的旋度和散度,以及该矢量在边界上的切向或法向分量,则f在V内唯一确定.4. 电荷守恒定律的微分形式为0=∂∂+⋅∇tJ ρ,若J为稳恒电流情况下的电流密度,则J满足0=⋅∇J.5. 场强与电势梯度的关系式为,ϕ-∇=E.对电偶极子而言,如已知其在远处的电势为)4/(30r r P πεϕ ⋅=,则该点的场强为()⎪⎪⎭⎫ ⎝⎛-⋅=350341r P rr r P Eπε.6. 自由电荷Q 均匀分布于一个半径为a 的球体内,则在球外)(a r >任意一点D的散度为 0,内)(a r <任意一点D的散度为 34/3a Q π.7. 已知空间电场为b a rrb r r a E ,(32 +=为常数),则空间电荷分布为______.8. 电流I 均匀分布于半径为a 的无穷长直导线内,则在导线外)(a r >任意一点B的旋度的大小为 0 , 导线内)(a r <任意一点B的旋度的大小为20/a Iπμ.9. 均匀电介质(介电常数为ε)中,自由电荷体密度为f ρ与电位移矢量D的微分关系为f D ρ=⋅∇ , 束缚电荷体密度为Pρ与电极化矢量P 的微分关系为P P ρ-=⋅∇,则P ρ与f ρ间的关系为fP ρρεεε0--=.10. 无穷大的均匀电介质被均匀极化,极化矢量为P,若在介质中挖去半径为R 的球形区域,设空心球的球心到球面某处的矢径为R,则该处的极化电荷面密度为R R P /⋅-.11. 电量为q的点电荷处于介电常数为ε的均匀介质中,则点电荷附近的极化电荷为q )1/(0-εε.12. 某均匀非铁磁介质中,稳恒自由电流密度为f J,磁化电流密度为M J ,磁导率μ,磁场强度为H ,磁化强度为M ,则=⨯∇H f J ,=⨯∇M M J ,M J 与f J 间的关系为()f M J J1/0-=μμ.13. 在两种电介质的分界面上,E D ,所满足的边值关系的形式为()f D D n σ=-⋅12,()012=-⨯E E n.14. 介电常数为ε的均匀各向同性介质中的电场为E . 如果在介质中沿电场方向挖一窄缝,则缝中电场强度大小为E . 15. 介电常数为ε的无限均匀的各项同性介质中的电场为E ,在垂直于电场方向横挖一窄缝,则缝中电场强度大小为RR P P P P n n P ⋅-=--=--=)0cos ()(12θ,/0sin 00011201212εεθεετττE E E E E E E E D D n n =⇒⎩⎨⎧===⇒⎩⎨⎧=-=-缝缝. 16. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,则锥体中的场强与介质中的场强之比为_1:1_.17. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质附近导体壳上的自由电荷密度之比为εε/0.18. 在两种磁介质的分界面上, B H,所满足的边值关系的矢量形式为()fH H n α=-⨯12,()012=-⋅B B n.19. 一截面半径为b 无限长直圆柱导体,均匀地流过电流I ,则储存在单位长度导体内的磁场能为__________________.20. 在同轴电缆中填满磁导率为21,μμ的两种磁介质,它们沿轴各占一半空间。

电动力学答案chapter2

电动力学答案chapter2

-5-
电动力学习题解答参考
第二章 静电场
4
均匀介质球 容率为 ε 2
电容率为 ε 1
的中心置一自由电偶极子 Pf
r
球外充满了另一种介质

求空间各点的电势和极化电荷分布
提示
同上题
φ=
r r Pf ⋅ R 4πε 1 R 3
+ φ ' ,而 φ ' 满足拉普拉斯方程

ε1
∂φ内 ∂R
= ε2
∂φ 外 ∂R 2 Pf cosθ l 1 + ∑ lAl R0 Pl 3 4πε 1 R0 2 Pf cosθ B − ∑ (l 1 l l 2 Pl 3 4πε 1 R0 R0
Qf
4πεR
与球面上的极化电荷所产生的电势的
叠加 后者满足拉普拉斯方程 解 一. 高斯法 在球外 而言
R > R0 ,由高斯定理有
r r ε 0 ∫ E ⋅ ds = Q总 Q f + Q P = Q f
对于整个导体球
束缚电荷 Q P = 0)
r ∴E =
Qf 4πε 0R 2 Qf 4πε 0 R + C.(C是积分常数
导体球是静电平衡
是一个常数
ϕ外
R = R0
= ϕ 0 − E 0 R0 cosθ
b 0 b1 + cosθ = C R0 R02
∴ − E 0 R0 cosθ +
b1 3 cosθ = 0即 b1 = E 0 R0 2 R0
-3-
电动力学习题解答参考
第二章 静电场
ϕ外 ϕ0
又由边界条件 −
3 b0 E 0 R0 E 0 Rcosθ + + cosθ R R2

电动力学习题解答

电动力学习题解答

第二章静电场1.一个半径为 R 的电介质球,极化强度为 PKr / r 2 ,电容率为。

( 1)计算约束电荷的体密度和面密度:( 2)计算自由电荷体密度;( 3)计算球外和球内的电势;( 4)求该带电介质球产生的静电场总能量。

解:( 1) p P K(r / r 2 )K [(1/ r 2 ) r r (1/ r 2 )]K / r 2pn ( P 2P 1 ) e rPr RK / R( 2) D 内0 E P P/()fD 内P /()K /(0 )r2( 3) E 内D 内 / P /()E 外 D 外f dVKR e r4 0 r 2 e r(20 )r外E 外 drKR(0 )rrRE 外 drK(ln R )内E 内 drrrR( 4) W1 1K 2R4 r 2 dr12K 2 R 24 r 2drD E dV222 R422 ()r 2( 0)r2 R(1)( K) 22.在平均外电场中置入半径为R 0 的导体球,试用分别变量法求以下两种状况的电势: ( 1)导体球上接有电池,使球与地保持电势差 0 ;( 2)导体球上带总电荷 Q解:( 1)该问题拥有轴对称性, 对称轴为经过球心沿外电场E 0 方向的轴线, 取该轴线为极轴,球心为原点成立球坐标系。

当 RR 0 时,电势知足拉普拉斯方程,通解为(a n R nb n 1 )P n (cos )n R n因为无量远处 E E 0 ,E 0 R cosE 0 RP 1 (cos )所以a 00 , a1E 0 , a n0, (n 2)当RR 0 时,所以E 0 R 0 P 1 (cos )b nP n (cos )n 1nR 0即: 0b 0 / R 0 0,b 1 / R 02 E 0 R 0所以b 0 R 0 (0 ), b 1 E 0 R 03, b n 0, (n 2)0 E 0 R cos R 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )(2)设球体待定电势为0 ,同理可得0 E 0 R cosR 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )当RR 0 时,由题意,金属球带电量Qn R RdS2Q(E 0 cosR 02E 0 cos ) R 0 sin d d4R 0 ()所以 (0 ) Q / 4R0 E 0 R cos Q / 4 0 R(E 0 R 03 / R 2 ) cos (RR 0 )Q / 4 0 R ( R R 0 )3. 平均介质球的中心置一点电荷Q f ,球的电容率为,球外为真空, 试用分别变量法求空间电势,把结果与使用高斯定理所得结果比较。

电动力学作业及参考解答

电动力学作业及参考解答

习题与参考答案第1章 电动力学的数学基础与基本理论1.1 A 类练习题1.1.1 利用∇算符的双重性质,证明(1)()A A A ϕϕϕ∇×=∇×+∇×r r r(2)2()()A A A ∇×∇×=∇∇⋅−∇r r r1.1.2 证明以下几个常用等式,其中()x r x x e ′=−r r ()()y z y y e z z e ′′+−+−r r ,a r为常矢量,(,,)u u x y z =。

(1)3r r ′∇⋅=−∇⋅=r r ,(2)0r ∇×=r,(3)r r r r ′∇=−∇=r ,(4)31r r r ∇=−r ,(5)30r r∇×=r, (6)330r r r r ⋅⋅′∇=−∇=r r (0)r ≠,(7)()a r a ∇⋅=r r r,(8)()dA A u u du∇×=∇×r r 。

1.1.3 从真空麦克斯韦方程出发,导出电荷守恒定律的微分形式和真空中的波动方程。

1.1.4证明均匀介质中的极化电荷密度与自由电荷密度满足关系式0(1/)p f ρεερ=−−。

1.1.5 已知电偶极子电势304p R R ϕπε⋅=r r ,试证明电场强度53013()[4p R R p E R Rπε⋅=−r r r r r 。

1.1.6 假设存在孤立磁荷(即磁单极),试改写真空中的麦克斯韦方程组以包括磁荷密度m ρ和磁流密度m J r的贡献。

答案:D ρ∇⋅=ur , m B ρ∇⋅=u r , m B E J t ∂∇×=−−∂u r u r u r , D H J t∂∇×=+∂ur uu r ur 。

1.1.7 从麦克斯韦方程出发导出洛伦茨规范下的达朗贝尔方程,并证明洛伦茨规范中的ψ满足齐次波动方程,即222210c tψψ∂∇−=∂。

1.1.8 证明:(1)在静电情况下,导体外侧的电场总是与表面垂直;(2)在稳恒电流的情况下,导体内侧的电场总是平行于导体表面。

电动力学习题解答第四章 电磁波的传播

电动力学习题解答第四章 电磁波的传播

∴θ 2 = 30o
2− ∴R =( 2
3 2 2 )2 = 2 −
3
2 + 2 3 2+ 3
2
2
T=
4ε 0
2
2 2
3 2
= 23
( ε0
2+ 2
ε0
2 3)2 2
2+ 3
3 有一可见平面光波由水入射到空气 入射角为 60 证明这时将会发生全反射 并求 折射波沿表面传播的相速度和透入空气的深度 设该波在空气中的波长为
-4-
电动力学习题解答
第四章 电磁波的传播
振可以分解为两个偏振方向垂直 同振幅 同频率 相位差为π 2 的线偏振的合成
6 平面电磁波垂直直射到金属表面上 试证明透入金属内部的电磁波能量全部变为焦耳热
证明 设在 z>0 的空间中是金属导体 电磁波由 z<0 的空间中垂直于导体表面入射
已知导体中电磁波的电场部分表达式是
v E
写成分量式
∂E z ∂y
− ∂E y ∂z
=
∂E z ∂y
− ik z E y
= iωµ0 H x
− k2 2
x
− ω1
−ω2 2
t)
其中 k1 = k + dk, k2 = k − dk;ω1 = ω + dω,ω2 = ω − dω

r E
=
r 2E0
(xr) cos(kx
− ωt) cos(dk

x


⋅t)
用复数表示
r E
=
r 2E
0
(
xr)
cos(dk

x

电动力学答案完整

电动力学答案完整

电动力学答案完整有一内外半径分别为r1 和r2 的空心介质球,介质的电容率为ε,使介质内均匀带静止电荷?f求 1 空间各点的电场;2 极化体电荷和极化面电荷分布。

解???sD?ds?4?3f??3fdV3,f 即:D?4?r2?∴E???r?r?r1?? ?r3?r13??33?r,???Qf4?33E?ds??r2?r1??f???s?0 3?0,∴E???r32?r13??3f3?0r?r,??r> r1时,E?0 ?????????0??P??0?eE??0E????? 0?E?0 ?????0r????f?3?????r13????r? 3r?r???p∴????r3?r13???????P??????0???? ?f33?r???p?P1n?P2n 考虑外球壳时,r= r2 ,n 从介质 1 指向介质 2 ,P2n=0 ??P1n?????0? ?r3?r133?p3?r??frr?r2?? r?r???1?0?231?f ??3r2?33考虑内球壳时,r= r1 ???????0??r3?r133?p3?r??fr?0r?r1 平行板电容器内有两层介质,它们的厚度分别为l1 和l2,电容率为ε1和ε,今在两板接上电动势为Ε 的电池,求电容器两板上的自电荷密度ωf 介质分界面上的自电荷密度ωf 若介质是漏电的,电导率分别为σ 1 和σ 2 当电流达到恒定时,上述两问题的结果如何?解:在相同介质中电场是均匀的,并且都有相同指向则???l1E1?l2E2?E??D1n?D2n??1E1??2E 2?0(介质表面上?f?0) 故:E1??2El1?2?l2?1,E2??1El1?2?l2?1 又根据D1n?D2n??f,在上极板的交面上,D1?D2??f1D2是金属板,故D2=0 ?1?2El1?2?l2?1即:?而??f1?D1? f2?0 f3?D1??D2???D2?,??∴??1?2El1?2?l2?1f3???f1 ???j若是漏电,并有稳定电流时,E?可得?????jE1?1?1 ,??????jE2?2 ?2j2 ?j1l?l?E2?1?2又??1 ?j?j?j?j,(稳定流动)2n12?1n 得:j1?j2?El1?1??D3??l2?2j1?2E?E???1?l1?2 ?l2?1?1 ,即? ?1E?E?j2?2??2l1?2?l2?1???D2???1?2 El1?2?l2?1f上??2?2El1?29?l2?1f 下?f中?D2?D3??2?1??1?2l1?2?l2?1E 、内外半径分别a和b的无限长圆柱形电容器,单位长度电荷为?f,板间填充电导率为?的非磁性物质。

电动力学第三版题解

电动力学第三版题解
3
r ex r ∂ ∇ × A(u ) = r∂x Ax (u )
r ey ∂ r ∂y Ay (u )
r ez r r r r r r ∂ ∂ A A ∂ ∂Ax r A ∂ A ∂ A r r ∂ y y x z z =( − )e x + ( − )e y + ( − )e z = ∂ ∂ ∂ ∂ ∂ ∂ ∂ z y z z x x y r Az (u )
S
若 S → ∞, 则 ( xj ) ⋅ dS = 0, ( j 同理
(
r ∂ρ ) ∂t

r
r
r
S
= 0)
y
= ∫ j y dV ' , (
r ∂ρ ) z = ∫ j z dV ' ∂t

r r r dP = ∫ j ( x ' , t )dV ' V dt
r r r r r m ×R m⋅R r 的旋度等于标量 ϕ = 的梯 6. 若 m 是常矢量 证明除 R 0 点以外 矢量 A = R3 R3
首先 算符 ∇ 是一个微分算符 其具有对其后所有表达式起微分的作用 对于本题
v v ∇ 将作用于 A和B
又 ∇ 是一个矢量算符 因此 具有矢量的所有性质
利用公式 c × ( a × b ) = a ⋅ (c ⋅ b ) − (c ⋅ a )b 可得上式 后两项是 ∇ 作用于 B
v
v
v
v v v
v v v
而 dl φ = (φ i dl x + φ j dl y + φ k dl z )
l l

r

-3-
电动力学习题解答
第一章
电磁现象的普遍规律

Jackson上部分习题和解答

Jackson上部分习题和解答

4π 0r
This is the potential of a point charge q at the origin. Hence the complete charge distribution can be written as
ρ = qδ3(r) − qα3 e−αr 8π
The first term corresponds to the proton charge, and the second to the negatively charged electron cloud in the 1s orbital around the proton.
We may obtain the charge distribution by computing ρ = − 0∇2Φ. However, since Φ blows up as r → 0, we must be a bit careful. We first consider r > 0
ρ
=

The potential outside a single cylindrical conductor located at the origin is given
by the familiar expression
Q Φ = − log r
2π 0
which may be obtained by integrating the electric field
0∇2Φ
=
q −

1 r2
∂ r2 ∂ ∂r ∂r
e−αr
1α +
r2
q 1∂ = 4π r2 ∂r
e−αr
α2r2 1 + αr +

电动力学课后答案

电动力学课后答案

第一章1. 根据算符的微分性与矢量性推导下列公式uA e u A e u A e du A d duA d u u A zu u A y u u A x u u A z A y A x A u A z u e y u e x u e u ududfu u f u f duu df u f z u u f u f z y u u f u f y x u u f u f x du Ad u u A du A d u u A u du df u f z y x u AA A A A AA A A A A A A AB A BA B A A B A B B A C B A B A B A B B A A C C B A A C B B A C A C B A B A B A A B B C A C B A C B A B C c B A B A B A AA A A AB A B A A B A B B A zz y y x x z y x z y x zy x c c c c c c c c c c ∂∂+∂∂+∂∂=⋅∇=⋅∇∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂+∂∂+∂∂=⋅∇∂∂+∂∂+∂∂=∇∇=∇=∇=∂∂=∂∂∂∂=∂∂∂∂=∂∂⨯∇=⨯∇⋅∇=⋅∇∇=∇∇⋅-∇=⨯∇⨯∇⋅+∇⋅+⨯∇⨯∇=⋅∇=∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇⨯∇⨯+∇⋅=⋅∇==∇=⨯⨯-⋅=⋅⨯⨯+∇⋅=⋅∇==∇=⨯⨯+⋅=⋅⋅∇+⋅∇=⋅∇∇⋅-∇=⨯∇⨯∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇)()()2()(')()()(')(')()(')()(')()1()()()(,, 2.)(21)()()()(2)()2()()()()()()()(,,,)()()()()(,,)()()()()(1)(21)()2()()()()()()1(222故故得解:的函数,证明:是空间坐标设所以:右边为:则左边为令上述公式中则得不再需要的符号将此两项相加,并弃去)(可得令又应用公式:)(结果可得令应用公式:常量表示相当的量应该看成此处)()解:(3333333300033332221')'(')1(;)'(')1(;)'(')1(1)'()1(;)'()1(;)'()1()(')'(';)'(';)'('])'()'()'([)'(;)'(;)'()()1(,)],sin([)()]sin([)(),()(,))((,)(,)()2()0(0')(0)(1'1)(')()''''(1')'()'()'(.3)()3(r r r r z z z r r y y y r r x x x r r r r r z z z r r y y y r r x x x r b r rr rz z z r r y y y r r x x x r rrr z z e r y y e r x x e r rz z z r r y y y r r x x x r a E k a r k E f r k E e r a d r a c r b r a r rrr r d r r c rrr r b r r r r a zA e y A e x A e z A e y A e x A e r x x z z y y x x r duAd u y u u A x u u Ae x u u A z u u A e z u u A y u u A e y A x A e x A z A e z A y A e u A z y x zz y y x x z z y y x x x y z z x y y z x x y z z x y y z x=∇∴--=∂∂--=∂∂--=∂∂-=∇∴--=∂∂--=∂∂--=∂∂-=∇∴--=∂∂--=∂∂--=∂∂=-+-+-=∇∴-=∂∂-=∂∂-=∂∂⋅⨯∇⋅⋅∇⋅∇∇⋅⨯∇⋅∇≠=-∇=⋅∇=⨯∇-=-∇=∇=-∇=∇∂∂+∂∂+∂∂=∇∂∂+∂∂+∂∂=∇-+-+-=⨯∇=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂-∂∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=⨯∇解:均为常矢量及其中及求会对源变数求微商)证明下列结果,并体(为从源点指向场点的方向规定的距离,到场点为该点设;1)'(3'1;1)'(3'1;1)'(3'1)1()1()(010''')(3523352335232333333r r z z r z z z z r z r r y y r y y y y r y r r x x r x x x x r x r r rr d r r r r z z r y y r x x z y x e e e r r c zy x --=⎪⎭⎫ ⎝⎛--∂∂=⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂--=⎪⎭⎫ ⎝⎛--∂∂=⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂--=⎪⎭⎫ ⎝⎛--∂∂=⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂-∇=∇⋅-∇=⋅∇=∇⨯-∇=⨯∇=---∂∂∂∂∂∂=⨯∇ 或 013])'()'()'[(3)1(3352222=⋅∇=--+-+-=∇r r r r z z y y x x r 即 [][][][][][][])cos()()cos()()cos()()cos()()sin()()cos()()cos()cos()cos()sin()()(;)'()'(;)'()'(;)'()'()'()'()'()()()'()'()'())((0)'()'()'()'()'()'()(3)'()'()'()'()'()'())(2(0000000000000r k E k r k k E k E e r k k E k E e r k k E k E e r k E f r k E k r k E k r k E k r k E k r k E e a r a a za z z a z z a z a y a y y a y y a y a x a x x a x x a x z z a y y a x x a r a d ae a e a e a e z z e y y e x x z a y a x a r a c e y x x x y y e x z z z x x e y y y z z z r b zz z y y y x x x r z z e y y e x x e r a y x x y z x z z x y z y y z x z z y y x x z z z z y y y y x x x x z y x z z y y x x z y x z y x z y x z y x⋅⨯=⋅-+⋅-+⋅-=⋅⨯∇⋅⋅=⋅+⋅+⋅=⋅⋅∇=⋅∇∴=∂∂-+=-∂∂=∂∂-+=-∂∂=∂∂-+=-∂∂-+-+-∇=⋅∇=++=-+-+-⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=∇⋅=⎥⎦⎤⎢⎣⎡∂-∂-∂-∂+⎥⎦⎤⎢⎣⎡∂-∂-∂-∂+⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⨯∇=∂-∂+∂-∂+∂-∂=⋅∇-+-+-=4 (1) 应用高斯定理证明:⎰⎰⎰⎰⎰⎰⎰⎰⎰⨯=⨯∇∴⨯⋅-=⨯⋅-=⨯=⨯⋅∇=⨯∇⋅-⨯=⨯∇svsssvvsvfs d f dv f s d a f s d a s d f a dv f a dv f a a a fs d f dv)()()(点乘方程左边得是一个任意常矢量,以证:令(2) 应用斯托柯斯定理证明:⎰⎰⎰⎰⎰⎰⎰⎰⎰=∇⨯∴∇⨯⋅=⋅⨯∇=⋅⨯∇=⋅=⋅=∇⨯LssssLLLsl d s d s d a s d a s d a l d a l d a a a l d s d ϕϕϕϕϕϕϕϕϕ)()(点乘方程右边得是一个任意常矢量,以证:令 5已知一个电荷系统的偶极矩定义为⎰=vdv x t x t p ,,,),()(ρ利用电荷守恒定律0=∂∂+⋅∇t J ρ 证明的变化率为⎰=vdv t x J dt pd ,,),(解:⎰=vdv x t x t p ,,,),()(ρ,x 与时间无关,取的)(t p一个分量为⎰⎰⎰⎰⎰⎰⎰⋅+⋅⋅-=⋅⋅∇+⋅∇-=⋅∇-====vi s i i vi i v i i v i i v i i i i vi i dv J s d J x dv J x dv J x dv J x dv t x x t pdt t dp dv x t x t p ,,,,,,,,,,,,,,,,,)()()(),()()(),()( ρρ考虑到积分区域的表面比电荷所在区域大得多时,表面上的电流为0。

电动力学第三版课后答案

电动力学第三版课后答案

第一章 电磁现象的普遍规律
σP
=
P1n
= (ε

ε
0
)
r
3− 3εr
r13
3
ρ f rr
r =r2
=
(1

ε0 ε
)
r23 − r13 3r23
ρf
考虑到内球壳时 r r2
σP
=
−(ε

ε
0
)
r
3− 3εr
r13
3
ρ f rr
r =r1
=0
8 内外半径分别为 r1 和 r2 的无穷长中空导体圆柱 沿轴向流有恒定均匀自由电流 Jf 导体
的磁导率为 µ 求磁感应强度和磁化电流

∫ ∫ l Hr ⋅ dlr = I f
+
d dt
Dr
S

dSr
=I
f
当 r < r1时, I f = 0,故Hr = Br = 0
∫ ∫ 当 r2>r>r1 时
Hr ⋅ dlr = 2πrH =
l
S rj f
⋅ dSr =
j f π (r 2 − r12 )
fy

∂ ∂y
f x )kr]dV
∫=
[
∂ ∂x
(
f
y
kr

fz
rj ) +
∂ ∂y
( f z ir

f x kr) +
∂ ∂z
( f x rj

f yir)]dV
∫ ∫ 又
dSr × fr =
S
[(
S
f z dS y

1.电动力学课后习题答案_第一章

1.电动力学课后习题答案_第一章

电动力学课后习题答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(21∇⋅-∇=⨯∇⨯A 解:(1)由∇的微分性质得()∇⋅A B 可以变成两项,一次对A 作用()∇⋅A A B ,一次对B 作用()∇⋅B A B 。

由∇的矢量性质,()=()()⨯∇⨯∇⋅-⋅∇B A B A B A B ,可得()=()+()∇⋅⨯∇⨯⋅∇B A B A B A B 。

同理()=()+()∇⋅⨯∇⨯⋅∇A A B B A B A ,则:()=()+()=()()()()∇⋅∇⋅∇⋅⨯∇⨯+⋅∇+⨯∇⨯+⋅∇A BA B A B A B B A B A A B A B综上,原式得证。

(2)在(1)的结论式里令=A B ,得A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,即: 21()()2A ⨯∇⨯=∇-⋅∇A A AA2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, u u u d d )(AA ⨯∇=⨯∇ 解:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++= (3)()///()()()xy z x y z u xy z A u A u A u ∇⨯=∂∂∂∂∂∂e e e Az x y y z x x y z yu A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂= z x y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=d d u u=∇⨯A3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。

电动力学习题课遗留问题解答

电动力学习题课遗留问题解答


' J (' J ) |t 'const J J (' J ) |t 'const ' J
代入公式,有
0 J (r , t ) A ]dV ' ' [ | r 4 V r '| 1 1 0 J ( )dV ' 0 (' J |t 'const ' J )dV ' 4 V ' | r r '| 4 V ' | r r ' | 1 1 1 0 J ( )dV ' 0 ' JdV ' 0 (' J |t 'const )dV ' 4 V ' | r r '| 4 V ' | r r ' | 4 V ' | r r ' | J (r ' , t ' ) 1 0 '[ ]dV ' 0 (' J |t 'const )dV ' 4 V ' | r r '| 4 V ' | r r ' |
因为在空间中有一个固定点,有
d 1 1 (r ' , t ' )dV ' dt 4 0 V ' | r r ' | t ' 0 J (r , t ) A ]dV ' ' [ | r 4 V r '| 而 1 0 J ( )dV ' 0 4 V ' | r r '| 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档