频率和时间测量及仪器26页PPT
合集下载
第章频域测量技术

第6章 频域测量
频谱分析仪依托中频滤波器辨别各频率成份,检波器测 量信号功率,依托本振和显示横坐标旳相应关系得到信号频 率值。 实际中旳频谱仪旳构成构造要比图7.1复杂得多,为 了取得高旳敏捷度和频率辨别力,要采用屡次变频旳措施,以 便在几种中间频率上进行电压放大。
第6章 频域测量 6.1.2 频域测量旳分类
根据实际应用旳需求,频域分析和测量旳对象和目旳也各不 相同,一般有下列几种: (1)频率特征测量:
主要对网络旳频率特征进行测量,涉及幅频特征、相频特征、 带宽及回路Q值等。 (2) 选频测量:
利用选频电压表,经过调谐滤波旳措施,选出并测量信号中 某些频率分量旳大小。
第6章 频域测量
3)稳幅电路 稳幅电路旳作用是降低寄生调幅。 扫频振荡器在产生扫频信号旳过程中,都会不同程度地变化着 振荡回路旳Q值,从而使振荡幅度随调制信号旳变化而变化,即产 生了寄生调幅。克制寄生调幅旳措施诸多,最常用旳措施是从扫频 振荡器旳输出信号中取出寄生调幅分量并加以放大,再反馈到扫频 振荡器去控制振荡管旳工作点或工作电压,使扫频信号旳振幅恒定。 4)输出衰减器 输出衰减器用于变化扫频信号旳输出幅度。 在扫频仪中,衰减器一般有两组:一组为粗衰减,一般是按每 挡10dB或20dB步进衰减;另一组为细衰减,按每挡1dB或2dB步进衰 减。多数扫频仪旳输出衰减量可达100dB。
第6章 频域测量
6.2.1频率特征测试仪旳基本构成和工作原理 频率特征测试仪简称扫频仪,它是利用示波管直接显示被测二
端网络频率特征曲线旳仪器,是描绘表征网络传递函数旳仪器。频 率特征测试仪是在静态逐点测量法旳基础上发展起来旳一种迅速、 简便、实时、动态、多参数、直观旳测量仪器,它被广泛地应用于 电子、通信工程等领域,例如,家用电器(电视机、收录机等)和通 信设备(收、发信机等)旳测量、调试都离不开扫频仪。
第五章频率及时间测量

的相对误差。
25
第五章 时间、频率和相位的测量
将式
N 1 1 、 T fc 代入式
N
N
f xT T
fc
f x N T
fx
N
T
得
f x 1 fc
fx
f xT fc
(5.2-11)
若考虑极限情况,测量频率的最大相对误差应写为
f x fx
1 f xT
fc fc
(5.2-12)
由上式可看出:提高频率测量的准确度措施是:
2
第五章 时间、频率和相位的测量
时间的定义: 2)、原子时(AT): 秒定义为:“秒是铯133原子(Cs133)基态的两个超
精细能级之间跃迁所对应的辐射的9 192 631 770个周 期所持续的时间。” 误差:10-14 3)、协调世界时 (UTC):
采用原子时的速率(对秒的定义)通过闰秒方法使原 子时和世界时接近的时间尺度。是一种折衷的产物。
28
第五章 时间、频率和相位的测量
本例如选T=10 s,则仪器显示为0 000.000 0 kHz, 把最高位丢了。造成虚假现象。原因是由于实际的仪 器显示的数字都是有限的,而产生了溢出造成的。
所以,选择闸门时间的原则是: 在不使计数器产生溢出现象的前提下,应取闸门 时间尽量大一些,减少量化误差的影响,使测量的准 确度最高。
T Tx
△t1
△t2
图5.2-2 脉冲计数误差示意图
19
第五章 时间、频率和相位的测量
下图T为计数器的主门开启时间,Tx为被测信号周期, Δt1为主门开启时刻至第一个计数脉冲前沿的时间(假设 计数脉冲前沿使计数器翻转计数),Δt2为闸门关闭时刻 至下一个计数脉冲前沿的时间。设计数值为N(处在T区
《频率时间的测量》

到t2时刻之间的时间间隔,表示矩形脉 冲持续的时间长度。
0
t1 Δt
t2
t
由此可见,“时刻”和“间隔”二
者的含义和测量方法都是不同的。
Page 4
6.1.1 时间和频率的基本概念
频率的定义和标准
基本定义
事物在1秒钟内完成的周期性变化
的次数叫做频率,常用 f 表示。
Page
5
6.1.1 时间和频率的基本概念
fc(周期为Tc)有关。理论上可以证明,闸门时间的相对误差ΔT/T在数值上 等于晶振频率的相对误差Δfc /fc,即: T f c
T fc
Page
28
6.2.2 电子计数法测频的误差分析
电子计数法测频的相对误差公式
f c f x 1 (| || |) fx f xT fc
从上式可知,为了减小电子计数法的测量误差,应该采取以下
(μs) 、纳秒(ns) 和皮秒(ps) 。
它们的换算关系是:1s = 103ms = 106μs = 109ns = 1012ps
Page
3
6.1.1 时间和频率的基本概念
从科学意义上讲,时间的实际上有 两个含义: 1.时刻; 2.时间的间隔。
u
如图所示,t1是矩形脉冲开始的时刻,
t2是消失的时刻。而Δt= t1-t2是指t1时刻
第六章 频率测量
6.1 概述
6.1.1 时间和频率的基本概念
时间的定义和标准
基本定义
时间是国际单位制中的七个基 本物理量之一,它的基本单位是秒, 用s表示。
Page
2
6.1.1 时间和频率的基本概念
早期一般把地球自转一周所需的时间定为一天,而它的1/86400 则定义为1秒,这种方法由于自转速度受到季节等因素的影响,需要 经常进行修正。 后来则出现了以原子秒( Atomic seconds )为基础的时间标准, 定义1秒为铯原子基态的两个超精细能级之间跃迁的辐射9292631770 个周期的时间,其准确度可达到2×10-11。 在电子电器测量中,往往使用较小的单位,如毫秒(ms)、微秒
0
t1 Δt
t2
t
由此可见,“时刻”和“间隔”二
者的含义和测量方法都是不同的。
Page 4
6.1.1 时间和频率的基本概念
频率的定义和标准
基本定义
事物在1秒钟内完成的周期性变化
的次数叫做频率,常用 f 表示。
Page
5
6.1.1 时间和频率的基本概念
fc(周期为Tc)有关。理论上可以证明,闸门时间的相对误差ΔT/T在数值上 等于晶振频率的相对误差Δfc /fc,即: T f c
T fc
Page
28
6.2.2 电子计数法测频的误差分析
电子计数法测频的相对误差公式
f c f x 1 (| || |) fx f xT fc
从上式可知,为了减小电子计数法的测量误差,应该采取以下
(μs) 、纳秒(ns) 和皮秒(ps) 。
它们的换算关系是:1s = 103ms = 106μs = 109ns = 1012ps
Page
3
6.1.1 时间和频率的基本概念
从科学意义上讲,时间的实际上有 两个含义: 1.时刻; 2.时间的间隔。
u
如图所示,t1是矩形脉冲开始的时刻,
t2是消失的时刻。而Δt= t1-t2是指t1时刻
第六章 频率测量
6.1 概述
6.1.1 时间和频率的基本概念
时间的定义和标准
基本定义
时间是国际单位制中的七个基 本物理量之一,它的基本单位是秒, 用s表示。
Page
2
6.1.1 时间和频率的基本概念
早期一般把地球自转一周所需的时间定为一天,而它的1/86400 则定义为1秒,这种方法由于自转速度受到季节等因素的影响,需要 经常进行修正。 后来则出现了以原子秒( Atomic seconds )为基础的时间标准, 定义1秒为铯原子基态的两个超精细能级之间跃迁的辐射9292631770 个周期的时间,其准确度可达到2×10-11。 在电子电器测量中,往往使用较小的单位,如毫秒(ms)、微秒
《频谱分析仪讲》课件

航空航天
在航空航天领域, 频谱分析仪被广泛 应用于飞行器通信 和雷达系统的频谱 分析和故障诊断。
电磁兼容性 测试
频谱分析仪可以用 于评估电磁兼容性, 检测和分析电子设 备之间的干扰情况。
音频分析
音频分析包括音频 信号的频谱分布、 谐波失真、杂散和 噪声等特性的分析。
五、频谱分析仪的市场现状与趋势
1 全球频谱分析仪市
分析范围不足
分析范围可以通过选用具有更大频率范围的 频谱分析仪来解决。
信号干扰
信号干扰可能会影响频谱分析结果,可以通 过优化测量环境、屏蔽干扰源等方式来解决。
校准问题
频谱分析仪的校准非常重要,可以定期进行 校准或选择具备自动校准功能的仪器。
七、总结与展望
频谱分析仪的发展 历程
频谱分析仪经过多年的发展, 已经成为电子测量领域中不 可或缺的重要工具。
未来发展方向
未来频谱分析仪将继续向更 高频率、更高精度、更智能 化的方向发展。
重点关注领域
未来频谱分析仪在5G通信、 物联网、射频芯片等领域将 发挥重要作用。
Res BW、VID BW、 RBW
Res BW指的是分辨带宽, VID BW指的是视频带宽, RBW指的是实时带宽。
信噪比、动态范围、 相位噪声
这些参数描述了频谱分析 仪的性能,包括信号与噪 声的比例、动态范围以及 相位噪声水平。
四、频谱分析仪的典型应用
无线电通信
频谱分析仪用于无 线电通信系统的频 谱监测、无线电干 扰分析等应用。
《频谱分析仪讲》PPT课 件
#ห้องสมุดไป่ตู้频谱分析仪讲
一、频谱分析仪的基本概念
频谱分析仪的定义
频谱分析仪是一种测量电信号频谱分布的仪器,用于分析信号的幅度和频率特性。
第三章 时间频率计量

第三章 时间频率测量(电子计数法)
3.1 概述
一、基本概念 时间是一个基本的物理量,单位是秒(s)。 在单位时间内周期运动重复、循环、振动的 次数称为频率,单位是赫兹(Hz)。 时间间隔是连续流逝的时间中两个瞬时之间 的间隔,可用时间坐标轴上的线段来表示。 作为线段中任何一点的瞬间称为时刻。 时标是能给各个事件赋予时刻的时间参考标 尺的简称。
二、时标的沿革 (1)世界时 以地球的自转运动为基础。 时间单位是平太阳秒,等于一个平太阳日的 1/86400。 (2)历书时 以地球绕太阳的公转运动周期为基础。 时间单位是历书秒,它是从1899年12月31 日12时起始的回归年的1/31556925.9747。
(3)国际原子时 时间单位是原子秒,等于铯-133原子基态的 两个超精细能级之间跃迁所对应的辐射的 9192631770个周期的持续时间。 国际原子时与世界时之差,正以每年大约1s 的速度不断扩大。 (4)协调世界时 其时刻尽量和世界时一致,时间间隔秒与原 子秒保持严格一致。通过增减一整秒(闰秒) 的办法进行协调。
所以测量低频时不宜采用直接测频方法,宜采用测 周期的方法,再换算成被测信号的频率,从而提高 测量的精确度
fc/fc=5*10-9
由右图知: fx一定时,闸门 时间越大,测量 精确度越高; T 一定时, fx越 大,测量精确度 越高;但以标准 频率误差为极限
T=0.1s
五、外差法扩大频率测量范围
一、时间基准的产生 频率是每秒内信号变化的次数。要准确测量频率必须 首先要确定一个准确的时间间隔。一般选用高稳定度 石英晶体谐振器来产生时间基准。 设石英晶体振荡器产生的 脉冲周期为T0,经过一系 列分频后可得到基准标准 的时基,如10ms, 0.1s, 1s, 10s等。如图所示,T= N0T0,N0是时基T内含有 晶振本身振荡周期的整数 倍数。
3.1 概述
一、基本概念 时间是一个基本的物理量,单位是秒(s)。 在单位时间内周期运动重复、循环、振动的 次数称为频率,单位是赫兹(Hz)。 时间间隔是连续流逝的时间中两个瞬时之间 的间隔,可用时间坐标轴上的线段来表示。 作为线段中任何一点的瞬间称为时刻。 时标是能给各个事件赋予时刻的时间参考标 尺的简称。
二、时标的沿革 (1)世界时 以地球的自转运动为基础。 时间单位是平太阳秒,等于一个平太阳日的 1/86400。 (2)历书时 以地球绕太阳的公转运动周期为基础。 时间单位是历书秒,它是从1899年12月31 日12时起始的回归年的1/31556925.9747。
(3)国际原子时 时间单位是原子秒,等于铯-133原子基态的 两个超精细能级之间跃迁所对应的辐射的 9192631770个周期的持续时间。 国际原子时与世界时之差,正以每年大约1s 的速度不断扩大。 (4)协调世界时 其时刻尽量和世界时一致,时间间隔秒与原 子秒保持严格一致。通过增减一整秒(闰秒) 的办法进行协调。
所以测量低频时不宜采用直接测频方法,宜采用测 周期的方法,再换算成被测信号的频率,从而提高 测量的精确度
fc/fc=5*10-9
由右图知: fx一定时,闸门 时间越大,测量 精确度越高; T 一定时, fx越 大,测量精确度 越高;但以标准 频率误差为极限
T=0.1s
五、外差法扩大频率测量范围
一、时间基准的产生 频率是每秒内信号变化的次数。要准确测量频率必须 首先要确定一个准确的时间间隔。一般选用高稳定度 石英晶体谐振器来产生时间基准。 设石英晶体振荡器产生的 脉冲周期为T0,经过一系 列分频后可得到基准标准 的时基,如10ms, 0.1s, 1s, 10s等。如图所示,T= N0T0,N0是时基T内含有 晶振本身振荡周期的整数 倍数。
Agilent频谱仪介绍PPT课件

[ Max Mixer Lvl: -10dBm 频谱仪混频器工作电平,Ref Lvl- AttenuationMixer Lvl
2021/3/9
11
频谱分析仪操作菜单
-------------基本参数设置
BW/
Avg
[ Res BW] Auto/Man
频谱仪分辨带宽, 1Hz~8MHz/步进变化。
激活Marker用于两个信号幅度/频率差值参数测试
[ Delta Pair] Ref/ 移动Delta Marker位置的方式(改变Ref 或Marker)
[ Span Pair] Span/center 设置Delta Marker测量的频率差值或中心值
[ Off ]
将Marker测量关闭
[ Select Marker] 1,2,3,4 选择激活测量的Marker
[ Function off]
关闭Marker测量功能
[ Marker Count]
频率计数器功率,提高信号频率测量分辨率和精度
2021/3/9
17
频谱分析仪操作菜单
-------------基本测量功能
Marker
[ Mkr CF] [ MKr CF step] [ MKr Start] [ MKr stop] [ MKr Ref Lvl ]
噪声,杂散
2021/3/9
3
完整的信号分析内容
带内测试项目
带外测试项目
频道内
{(In-channel) 频道外 (out of channel)
信号频率 信号功率/时间,平均/峰值功率 调制精度
邻道功率比(ACPR)
谐波 远端杂波
2021/3/9
4
第四章-频率和相位的测量

本章要点
• 本章主要介绍测量频率的方法,以及电子 数字频率计的结构与原理。用电子数字频 率计测量频率,是今后测量频率的主要手 段,也是频率计的发展方向。
• 相位计和整步表是电力系统运行中常用仪 表,本章对其作一般性介绍,以供相关专 业使用。
第一节 频率的测量方法
一、工频的测量
1、用电动系频率表测量工频
李沙育图形或混频后的频率求得被测频率。
差拍法 混频法
李沙育图形测频 率
2.无源测量法
• 无源测量法是指测量电路不需要另加电源,直接 用被测信号进行测量如文氏电桥测频率 和谐振回 路测频率。
( R1
1
jX
C1
)
R4
( 1/
R2
1
jX
C2
)
R3
1 f X 2πRC
文氏电桥测频率
fX
1 2π LC
k1IUC0 cos (
L 1/ C0 R2 (L 1/ C0 ) 1
^
M 2 k2II2 cos(90 ) cos(II2 )
k2 IU
R0 R0 R2
I2
sin
1
R2 (L 1/ C)
• 由于两个力矩方向相反,当平衡时两者相等。联
立可得:
3.量化误差:
• 计数闸门开启时间不刚好是被测信号周期的整数 倍,而且脉冲到达时刻不刚好是闸门开启时刻, 因此在相同的开启时间内,可能会有正负一个数 的误差。
量化误差示意图
计数闸门开启时 间不刚好是被测信号 周期的整数倍造成的 量化误差。
在时间 T 内脉冲个 数为7.5,测出数可能为 6。
计数开始不刚好是第 一个脉冲到达时刻,造 成的量化误差。
• 本章主要介绍测量频率的方法,以及电子 数字频率计的结构与原理。用电子数字频 率计测量频率,是今后测量频率的主要手 段,也是频率计的发展方向。
• 相位计和整步表是电力系统运行中常用仪 表,本章对其作一般性介绍,以供相关专 业使用。
第一节 频率的测量方法
一、工频的测量
1、用电动系频率表测量工频
李沙育图形或混频后的频率求得被测频率。
差拍法 混频法
李沙育图形测频 率
2.无源测量法
• 无源测量法是指测量电路不需要另加电源,直接 用被测信号进行测量如文氏电桥测频率 和谐振回 路测频率。
( R1
1
jX
C1
)
R4
( 1/
R2
1
jX
C2
)
R3
1 f X 2πRC
文氏电桥测频率
fX
1 2π LC
k1IUC0 cos (
L 1/ C0 R2 (L 1/ C0 ) 1
^
M 2 k2II2 cos(90 ) cos(II2 )
k2 IU
R0 R0 R2
I2
sin
1
R2 (L 1/ C)
• 由于两个力矩方向相反,当平衡时两者相等。联
立可得:
3.量化误差:
• 计数闸门开启时间不刚好是被测信号周期的整数 倍,而且脉冲到达时刻不刚好是闸门开启时刻, 因此在相同的开启时间内,可能会有正负一个数 的误差。
量化误差示意图
计数闸门开启时 间不刚好是被测信号 周期的整数倍造成的 量化误差。
在时间 T 内脉冲个 数为7.5,测出数可能为 6。
计数开始不刚好是第 一个脉冲到达时刻,造 成的量化误差。
第01章电子测量基础知识50页PPT

第1章 电子测量的基本概念
在科学研究和生产实践中, 常常需要对许多非电量进行 测量。 传感技术的发展为这类测量提供了新的方法和途径。 现在, 可以利用各种敏感元件和传感装置将非电量(如位移、 速度、 温度、 压力、 流量、 物质成分等)变换成电信号, 再 利用电子测量设备进行测量。 在一些危险的和人们无法进行 直接测量的场合, 这种方法几乎成为唯一的选择。 在生产的 自动过程控制系统中, 将生产过程中各有关非电量转换成电 信号进行测量、 分析、 记录并据此对生产过程进行控制是一 种典型的方法, 如图1.1-1所示。Βιβλιοθήκη 第1章 电子测量的基本概念
近几十年来计算技术和微电子技术的迅猛发展为电子测量 和测量仪器增添了巨大活力。 电子计算机尤其是微型计算机 与电子测量仪器相结合, 构成了一代崭新的仪器和测试系统, 即人们通常所说的“智能仪器”和“自动测试系统”, 它们 能够对若干电参数进行自动测量、 自动量程选择、 数据记录 和处理、 数据传输、 误差修正、 自检自校、 故障诊断及在线 测试等, 不仅改变了若干传统测量的概念, 更对整个电子技 术和其他科学技术产生了巨大的推动作用。 现在, 电子测量 技术(包括测量理论、 测量方法、 测量仪器装置等)已成为电 子科学领域重要且发展迅速的分支学科。
第1章 电子测量的基本概念
英国科学家库克(A.H.cook)也认为:“测量是技术生命的 神经系统”。 这些话都极为精辟地阐明了测量的重要意义。 历史事实也已证明: 科学的进步, 生产的发展, 与测量理论、 技术、 手段的发展和进步是相互依赖、 相互促进的。 测量技 术水平是一个历史时期、 一个国家的科学技术水平的一面 “镜子”。 正如美国科学家特尔曼(F.E.Telmen)教授所说: “科学和技术的发展是与测量技艺并行进步、 相互匹配的。 事实上, 可以说, 评价一个国家的科技状态, 最快捷的办法 就是去审视那里所进行的测量以及由测量所累积的数据是如 何被利用的。”
第四章:时间和频率测量技术

(一)时间、频率和周期的基本概念
时间是国际单位制中7个基本物理量之一。它的基本 单位是秒。“时间”有两个含义,一是指“时刻”, 指某事件发生的瞬间。二是指“间隔”,即两个时刻 之间的间隔,表示该事件持续了多久。
频率定义:为相同的现象在单位时间内重复出现的次 数。
f 1/ T 周期:则是指出现相同现象的最小时间间隔。
4.2.1 电子计数器主要电路技术
(一)电路组成及各部分作用: 电子计数器由输入电路、计数显示电路、标准 时间产生电路、逻辑控制电路构成。 1、输入电路:又称为输入通道。其作用是接 受被测信号,并对它进行放大和整形然后送入 主门(闸门)。一般设置2个或3个输入通道, 记作A、B、C。A通道用于测频、自校;B通 道用于测周;B、C通道合起来测时间间隔;A、 B通道合起来测频率比。
秒是 C s 原子基态的两个超精细结构能级 [ F 4, mF 0 ]和[ F 3, mF 0 ]之间跃迁频 率相应的射线束持续9192631770个周期的时间”。 以此为标准定义出的时间标准称为原子时秒。
133
3、协调世界时(UTC)秒: 协调世界时“秒”是原子时和世界时折 中的产物,即用闰秒的方法来对天文时进 行修正。这样,国际上则可采用协调世界 时来发送时间标准,既摆脱了天文定义, 又使准确度提高4—5个数量级。现在,各 国标准时号发播台所发送的就是世界协调 时,我国的中国计量科学院、陕西天文台、 上海天文台都建立了地方原子时,参加了 国际原子时(ATI),与全世界200多台原 子钟连网进行加权修正,作为我国时间标 准由中央人民广播电台发布。
现在已明确:时间标准和频率标准具有同一 性,可以用时间标准导出频率标准,也可 由频率标准导出时间标准,故通常统称为 时频标准。