人教版八年级数学下册 第1讲 二次根式的性质与化简
人教版八年级下册数学知识点汇总
人教版八年级下册数学知识点汇总第十六章二次根式。
1. 二次根式的概念。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
- 注意:被开方数a必须是非负数,否则√(a)无意义。
例如√(-2)就不是二次根式。
2. 二次根式的性质。
- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。
- (√(a))^2=a(a≥slant0)。
例如(√(5))^2 = 5。
- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。
如√(3^2) = 3,√((-3)^2)=| - 3|=3。
3. 二次根式的乘除。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。
例如√(2)×√(3)=√(2×3)=√(6)。
- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。
如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。
4. 二次根式的加减。
- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。
例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。
- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。
例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。
第十七章勾股定理。
1. 勾股定理。
- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。
- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
人教版八年级下册数学知识点汇总
八年级下册第十六章:二次根式(1))0a ≥号,a 叫做被开方数.2,即:2可以省略 .(2) 二次根式有意义的条件:被开方数为非负数,即:被开方数大于或等于0.在实数范围内有意义的条件为: . 由20x -≥,可以得出:2x ≥.20x ≥,x 属于任意实数.在实数范围内有意义的条件:30x ≥,0x ⇒≥.在实数范围内有意义的条件:10121202x x x x x -≥≤⎧⎧⇒⇒-<≤⎨⎨+>>-⎩⎩. (分析:分子、分母都要有意义,分式有意义:分母不为0)(3) 负数没有平方根也没有算术平方根,0的平方根是0,0的算术平方根是0.(4) 正数的立方根是正数,负数的立方根是负数,0的立方根是0.(5) 一个正数有两个平方根,互为相反数. 一个正数有一个算术平方根方根,且为正根. (6) 二次根式的双重非负性:0a ≥0≥.21a =-,则a 的取值范围是: .根据二次根式的双重非负性,()2120a -≥,则210a -≥,所以:12a ≥. (7)()20a a=≥.例如:21.5=;(22224520=⨯=⨯=.提示:2=2倍根号5”.(8()()()0000a a a a a a >⎧⎪===⎨⎪-<⎩.4==5== .11=-=;14==;π==-;110==. (9)代数式:用基本运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接起来的式子叫做代数式.例如:3,x ,x y +)0x ≥,ab -,()0st t≠,3x 都是代数式.(10)二次根式的乘法法则:一般地,=()0,0a b ≥≥,=.=; 3=== ;2612==⨯=;33===;14===== ;⑥((32-=⨯-=-=-=-=-;====;(11=()0,0a b ≥>,=()0,0a b ≥>利用它可以进行二次根式的化简 .====;=====;==; 53=== ;⑤===;(12)最简二次根式:最简二次根式是指满足下列两个条件的二次根式①被开方数不含分母;②被开方数中不含开的尽方的因数或因式..(13)化简最简二次根式的一般方法:①将被开方数中能开得尽方的因数或因式进行开方.====.②化去根号下的分母,即:分母有理化.====;=====;====;==.(14)二次根式的加减:一般地,二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并.注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并.例:==;==;==;-==;同类二次根式:根指数相同、化简后被开方数相同的二次根式;=.注:合并被开方数相同的二次根式与合并同类项类似,将它们的“系数”相加减,最简结果,不能合并.(15)二次根式的混合运算:①二次根式的混合运算顺序与实数的运算顺序一样,先乘方,再乘除,后加减,有括号先算括号里面的,同级运算从左往右依次计算; ②在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用 .例: ① ⎛÷ ⎝解原式(=÷(2=+2==②)23-解原式22223⎡⎤--=-⎢⎥⎣⎦()5329=---229=-+9=注:运算结果是根式的,应表示为最简二次根式 .(16 解:2150126=+ ; 令:12a =,6b =;61212.25224b a a ≈+=+≈第十七章:勾股定理(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222a b c =+ . 勾股定理的证明方法:全世界共有370多种证明方法.其中赵爽正弦图、毕达哥拉斯证法、美国第20任总统詹姆斯加菲尔德的证法比较出名;勾股定理的变式:① 222c a b =+;②()()222a cbc b c b =-=+- ;③ ()()222b c a c a c a =-=+-;④c =⑤a =⑥b =(2)勾股定理逆定理:如果三角形三边长a ,b ,c 满足222a b c =+,那么这个三角形是直角三角形 .(3)定理:经过证明被确认正确的命题叫做定理 .(4)我们把题设、结论正好相反的两个命题叫做互逆命题;如果把其中一个叫做原命题,那么另一个叫做它的逆命题 .(例如:勾股定理与勾股定理逆定理) (5)常见的勾股数(勾股数是正整数):①3、4、5,222345⇒+= ; ②5、12、13,22251213⇒+=; ③6、8、10,2226810⇒+=; ④7、24、25,22272425⇒+=;注:只要三角形的三边长都是勾股数的k (k 为正整数)倍时,构成的三角形仍然是直角三角形.(6)蚂蚁吃食物最短路径问题:①如下图,是一个边长为2的正方体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程. (注:表面爬行)情况一: 情况二: 情况三:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为AB = 42 + 22 =20 =25AbacCBAAAB = 42 + 22 =20 =25AAB = 42 + 22 =20 =25②如下图,是一个长为2,宽为4,高为8的长方体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程. (注:表面爬行)情况一: 情况二: 情况三:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为10.③如下图,是一个底面半径为2,高为8的圆柱体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程.(注:表面爬行)情况一: 情况二:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为(7)如图:直角三角形的两直角边长分别为a 、b ,斜边为c .以两直角边为边长的正方形的面积等于以斜边为边长的正方形的面积.即:123S S S +=,或222a b c +=.AB =82+4π()2 =64+16π2 =44+π2AB =82+4π()2 =64+16π2 =44+π2A8AB = 62 + 82 =100 =10AB AB = 122 + 22 =148AAB = 62 + 82 =100 =10bac S 3S 2S 1(8)三角形面积的计算方法:海伦秦九韶公式(知道三角形的三边长可以直接求面积).2a b cP ++=(其中,,a b c 为三角形的三边长 );S =.例:在下列ABC ∆中,边长如图所示,计算其面积. 解:由海伦秦九韶公式得:6810122P ++==ABC S ∆∴==24==(9)如图,AB BC ⊥,3,4,12,13,AB BC CD AD ====求四边形ABCD 的面积. 解:(法一)连接AC在Rt ABC ∆中,根据勾股定理得:5AC ===22222251216913AC CD AD +=+===∴根据勾股定理得逆定理得:ACD ∆是直角三角形. AC CD ∴⊥,即:90ACD ∠=︒. ∴S 四边形ABC ACD S S ∆∆=+ 111134512362222AB BC AC CD =⋅+⋅=⨯⨯+⨯⨯=.解:(法二)连接AC在Rt ABC ∆中,根据勾股定理得:5AC ===在ACD ∆中,由海伦秦九韶公式得:51213152P ++==A C D S ∆∴=30== ∴S 四边形113034306303622ABC ACD S S AB BC ∆∆=+=⋅+=⨯⨯+=+=. 6108CBA341213DCBA第十八章:平行四边形(1)平行四边形:两组对边分别平行的四边形叫做平行四边形.平行四边形用“”表示,如平行四边形ABCD 记作“ABCD ”.即:若AB ∥CD ,AD ∥BC ,则四边形ABCD 是平行四边形. (2)平行四边形的性质:①平行四边形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC .AB =CD ,AD =BC .②平行四边形的两组对角相等.即:BAD BCD ∠=∠,ABC ADC ∠=∠.平行四边形的邻角互补.即:180BAD ABC ∠+∠=︒,180BCD ABC ∠+∠=︒. ③平行四边形的对角线互相平分.即:OA OC =,OB OD =.(3)平行四边形的两条对角线将平行四边形分成四个面积相等的三角形.即:14AOBBOCCODAODABCDSSSSS ====.4444ABCDAOBBOCCODAODSSS SS====.(4)两平行线间的距离处处相等. (5)平行四边形的面积:底⨯高.(6)平行四边形的判定:①两组对边分别相等的四边形是平行四边形. ②两组对角分别相等的四边形是平行四边形. ③对角线互相平分的四边形是平行四边形. ④一组对边平行且相等的四边形是平行四边形. ⑤两组对边分别平行的四边形叫做平行四边形. (7)三角形中位线定理:三角形的中位线平行且等于第三边的一半. 在ABC ∆中,点D 是AB 的中点,点E 是AC 的中点,所以DE 是ABC ∆的中位线.即:12DE BC =,DE ∥BC .(8)梯形中位线定理:梯形的中位线平行且等于上底与下底和的一半. 在梯形ABCD 中,点E 是AB 的中点,点F 是DC 的中点,所以EF 是梯形ABCD 的中位线.即:2AD BCEF +=,EF ∥AD ∥BC .(9)矩形:有一个角是直角的平行四边形叫做矩形. (10)矩形的性质:①矩形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②矩形的四个角都是直角.即:90BAD BCD ABC ADC ∠=∠=∠=∠=︒. ③矩形的对角线相等且互相平分.即:AC BD =,12OA OC AC ==,12OB OD BD ==.ODCB AED CBAFEDCBAODCBAA OB ∆,BOC ∆,COD ∆,AOD ∆都是等腰三角形. (11)矩形的面积:长⨯宽.即:S AB BC =⋅.(12)在直角三角形中,斜边上的中线等于斜边的一半.如:在Rt ABC ∆中,90ABC ∠=︒,BD 是斜边AC 的中线,则12BD AD DC AC ===.(13)矩形的判定:①对角线相等的平行四边形是矩形. ②有三个角是直角的四边形是矩形.③对角线相等且互相平分的四边形是矩形. ④有一个角是直角的平行四边形叫做矩形. (14)菱形:有一组邻边相等的平行四边形叫做菱形. (15)菱形的性质:①菱形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②菱形的四条边都相等.即:AB BC CD AD ===. ③菱形的对角线互相垂直平分,且每一条对角线平分一组对角.即:AC BD ⊥,12OA OC AC ==,12OB OD BD ==. 1122ABD CBD ADB CDB ABC ADC ∠=∠=∠=∠=∠=∠.1122BAC DAC BCA DCA BAD BCD ∠=∠=∠=∠=∠=∠.A OB ∆,BOC ∆,COD ∆,AOD ∆都是全等的三角形. 即:AOB ∆≌BOC ∆≌COD ∆≌AOD ∆AOB BOC COD AOD S S S S ====14S 菱形ABCD .(16)菱形的面积:两条对角线乘积的12.即:12S AC BD =⋅.(17)菱形的判定:①有一组邻边相等的平行四边形叫做菱形.②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形. ④对角线互相垂直平分的四边形是菱形.(18)正方形:有一组邻边相等且有一个角是直角的平行四边形是正方形.正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形;既是矩形又是菱形的四边形是正方形. (19)正方形的性质:①正方形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②正方形的四条边都相等.即:AB BC CD AD ===.正方形的四个角都是直角.即:90BAD BCD ABC ADC ∠=∠=∠=∠=︒ ③正方形的对角线相等且互相垂直平分,且每一条对角线平分一组对角.即: A C B D ⊥,AC BD =,12OA OC AC ==,12OB OD BD ==. DCBAODCB AODCB A114522ABD CBD ADB CDB ABC ADC ∠=∠=∠=∠=∠=∠=︒.114522BAC DAC BCA DCA BAD BCD ∠=∠=∠=∠=∠=∠=︒.A OB ∆,BOC ∆,COD ∆,AOD ∆都是全等的三角形. 即:AOB ∆≌BOC ∆≌COD ∆≌AOD ∆AOB BOC COD AOD S S S S ====14S 正方形ABCD .(20)正方形的面积:边长⨯边长或对角线乘积的一半.即:S AB BC =⋅或12S AC BD =⋅. (21)正方形的判定:①有一组邻边相等且有一个角是直角的平行四边形是正方形.②有一组邻边相等的矩形是正方形.③有一个角是直角的菱形是正方形.④对角线相等且互相垂直平分的四边形是菱形. ⑤对角线相等的菱形是正方形. ⑥对角线互相垂直的矩形是正方形.(22)平行四边形的中点四边形是平行四边形;菱形的中点四边形是矩形;矩形的中点四边形是菱形;正方形的中点四边形是正方形. (23)平行四边形不是轴对称图形;矩形是轴对称图形,有2条对称轴;菱形是轴对称图形,有2条对称轴;正方形是轴对称图形,有4条对称轴.第十九章:一次函数(1)常量与变量:在某一变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量.(2)函数:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说y 是x 的函数,x 是自变量. (3)函数值:函数值是指自变量在其取值范围内取某个值时,函数与之对应的唯一确定的值.如果当x a =时,y b =,那么b 叫做当自变量的值为a 时的函数值.(4)解析式:像23y x =-+这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式.(5)函数的图象:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. (6)描点法画函数图象的步骤:①列表; ②描点; ③连线;(7)判断分析函数图象的突破点:①明确两坐标轴所表示的意义;②明确图象上的点所表示的意义;③弄清图象上的转折点、最高(低)点所表示的意义;④弄清上升线和下降线所 表示的意义.(8)函数的表示方法:解析式法;列表法;图象法.例1:小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y 与时间x 之间的对应关系. 第(1)段:小明从家到食堂,相距0.6km ,用时8min . 第(2)段:小明在食堂用餐,用时()25817min -=. 第(3)段:小明从食堂到图书馆,食堂与图书馆相距()0.80.60.2km -=,用时()28253min -=.食堂与家相距()0.800.8km -=.第(4)段:小明在图书馆看书,用时()582830min -=. 第(5)段:小明从图书馆到家,用时()685810min -=,速度()0.8100.08/min v km =÷=.例2:画出函数21y x =+的图象.第三步:连线(9)正比例函数:一般地,形如()0y kx k =≠(k 是常数)的函数,叫做正比例函数,其/miny /中k 叫做比例系数或斜率.例:①0.2y x =-; ②2xy =; ③22y x =; ④24y x =. 在上面式子中: ①②是正比例函数;③④不是正比例函数.(10)正比例函数()0y kx k =≠的图象性质:①正比例函数()0y kx k =≠的图象是一条经过原点的直线.②当0k >时,函数图象从左往右上升,y 随x 的增大而增大(增函数),函数图象经过第一、三象限.③当0k <时,函数图象从左往右下降,y 随x 的增大而减小(减函数),函数图象经过第二、四象限.④k 越大,直线越倾斜(越陡).⑤正比例函数()0y kx k =≠的图象经过点()0,0和()1,k .(11)一次函数:一般地,形如()0y kx b k =+≠(,k b 是常数)的函数,叫做一次函数.当0b =时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数. (12)一次函数()0y kx b k =+≠的图象性质: ①一次函数()0y kx b k =+≠的图象是一条直线.②当0k >时,函数图象从左往右上升,y 随x 的增大而增大(增函数). ③当0k <时,函数图象从左往右下降,y 随x 的增大而减小(减函数). ④当0b >时,函数图象交y 轴的正半轴. ⑤当0b =时,函数图象经过原点. ⑥当0b <时,函数图象交y 轴的负半轴.⑦k 越大,直线越倾斜(越陡).正比例函数和一次函数的图象都是直线,画函数图象时只需要找两个点,即两点作图法.(13)函数的平移:x :左+右-;y :上+下-.例:6y x =-向上平移5个单位长度得到:65y x =-+. 6y x =-向下平移3个单位长度得到:63y x =--.2y x =-向左平移3个单位长度得到:()2326y x x =-+=--.2y x =-向右平移2个单位长度得到:()2224y x x =--=-+.22y x =--向左平移2个单位,向下平移3个单位得到:()222329y x x =-+--=--. 32y x =-+向右平移2个单位,向上平移3个单位得到:()3223311y x x =--++=-+.(14)在一次函数()11110y k x b k =+≠和()22220y k x b k =+≠中:①当12k k =时,1y ∥2y . ②当121k k =-时,12y y ⊥.例:直线21y x =--与26y x =-+互相平行;直线21y x =--与162y x =+互相垂直. (15)直线与x 轴相交0y =;直线与y 轴相交0x =(16)待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.例:已知一次函数的图象过点()3,5和()4,9--,求这个一次函数的解析式.解:设这个一次函数的解析式为()0y kx b k =+≠.函数图象经过点()3,5和()4,9--∴3549k b k b +=⎧⎨-+=-⎩解得:21k b =⎧⎨=-⎩∴这个一次函数的解析式为21y x =-.(17)一次函数与方程、不等式:①一次函数与方程的关系:函数值y 为某一特定值时,求自变量x 的值. ②一次函数与不等式的关系:函数值y 为某一范围时,求自变量x 的取值范围.(18)两个一次函数图象相交时,它们有相同的横坐标,相同的纵坐标.例:求函数5y x =+与0.525y x =+的交点坐标. 解:50.525x x +=+ 20x =把20x =代入5y x =+中得20525y =+=.∴函数5y x =+与0.525y x =+的交点坐标为()20,25. (19)一次函数的实际应用:①方案选择问题 ②租车问题. 两个问题的考察实则是考察自变量的取值范围 例题:重点掌握人教版教材109页的第15题.第二十章:数据的分析(1)算术平均数:一般地,我们把n 个数12,,,n x x x ⋅⋅⋅,的和与n 的比值,叫做这n 个数的算术平均数,简称平均数,记作“__x ”.即__12nx x x x n++⋅⋅⋅+=.(2)加权平均数:一般地,若n 个数12,,,n x x x ⋅⋅⋅的权分别是12,,,n w w w ⋅⋅⋅,则__112212n nnx w x w x w x w w w ++⋅⋅⋅+=++⋅⋅⋅+叫做这n 个数的加权平均数.(3)在求n 个数的平均数时,如果1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次,(这里12k f f f n ++⋅⋅⋅+=),那么这n 个数的平均数为__1122k kx f x f x f x n++⋅⋅⋅+=.也叫做12,,,k x x x ⋅⋅⋅这k 个数的加权平均数,其中12,,,k f f f ⋅⋅⋅分别叫做12,,,k x x x ⋅⋅⋅的权.(4)中位数:将-组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则最中间两个数的平均数就是这组数据的中位数.(5)众数:把一组数据中出现次数最多的那个数据叫做这组数据的众数.注:一组数据的众数可能不止一个,也可能没有众数.(6)平均数、中位数、众数都刻画了数据的集中趋势,但它们各有特点.平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,因此在现实生活中较为常用.但它受极值(一组数据中与其余数据差异很大的数据)的影响较大.当一组数据中某些数据多次重复出时,众数往往是人们关心的一个量,众数不易受极端值的影响.中位数只需要很少的计算,它也不易受极端值的影响.(7)方差:设__x 是n 个数据12,,,n x x x ⋅⋅⋅的平均数,各个数据与平均数只差的平方的平均数,叫做这n 个数据的方差.用“2s ”表示,即:222______2121n s x x x x x x n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 方差越大,数据的波动越大,方差越小,数据的波动越小.(8)标准差:方差的算术平方根称为标准差.s =(9)极差:一组数据中的最大值与最小值的差称为极差.。
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
人教版八年级数学下册课件 16-1-2 二次根式的性质(1)
B
)
A.
2
1 2
2
C.
2
1 2
2
B.
17 2 4
17 2 D. 4
随堂练习
3.化简 |a-3|+( 1 a )2 的结果为( D )
A.-2
B.2
C.2a-4
D.4-2a
随堂练习
4. 计算:(1)( 3 )2;
(2)(3 2 )2.
解:(1)( 3 )2=3; (2)(3 2)2=32×( 2 )2=9×2=18.
规律方法:二次根式具有双重非负性,即对于二次根式 a 来说, a≥0,且 a≥0.它常与 a2,| a | 等一起进行考查.
随堂练习
1.下列计算正确的是( A ) A.-( 6 )2=-6 C.( 16 )2=±16
B.( 3 )2=9
2
D.
16 25
16 25
随堂练习
2.把
4
1 4
写成一个正数的平方的形式是(
典例精析
例 2 若 a 2 (b 3)2 0 , 则 (a b)2 022 ____1____.
解析:∵ a 2≥0 , (b 3)2≥0 , a 2 (b 3)2 0 , ∴ a 2 0 , (b 3)2 0 , 解得 a 2 , b 3 , ∴ (a b)2 022 (1)2 022 1.
被开方数大于或等于零.
合作探究
思考:二次根式 a 中被开方数 a 的取值范围是 a≥0,那么 a 的取值范围是 什么? 当 a>0 的时候, a 表示 a 的算术平方根,则 a >0;
当 a=0 的时候, a 表示 0 的算术平方根,则 a =0.
当 a≥0 时, a 是非负数,即 a ≥0.
八年级数学二次根式课件-二次根式
(a≥0). =ቊ-a(aa≥(a<0),0).
(3)双重非负性: a ≥ 0(a≥0).
数学
八年级 下册
人教版
第一单元
1.(1)一个数的平方是16,则这个数是 ±. 4
(2)7的平方根是 ± 7
;
13的算术平方根是 13
.
2.下列各式中是二次根式的是( C )
3
A. 8
B. -1 C. 3
D. x(x<0)
数学
八年级 下册
人教版
第一单元
2.下列式子中不是代数式的为( B )
A. x+2(x≥-2) B.5a+8=7
C.2 020
D.3ba+-21(a≠13)
数学
八年级 下册
人教版
第一单元
3.若x= y-3- 6-2y+2,则|x-y|的值是( B )
A.5
B.1
C.-1 D.2
数学
八年级 下册
人教版
∴y=2 022,
∴xy
=
2 2
002221.
数学
八年级 下册
拓展题:已知 a-17+ 17-a=b+8. (1)求a和b的值; (2)求a2-b2的平方根. 解:(1)由ቊa1-7-17a≥≥00,,解得a=17, ∴b=-8, ∴a=17,b=-8; (2)a2-b2=172-82=225, ∵225的平方根是±15, ∴a2-b2的平方根是±15.
解:∵0<x<2,∴x-2<0,x-3<0. ∴ x2-4x+4+ x-3 =2-x+3-x=5-2x.
数学
八年级 下册
人教版
第一单元
【变式2】已知y= x-2+ 2-x+ 38,求 2xy的值.
6 2
八年级数学下册第16章 微专题1 二次根式化简的六种常用方法
=
x+y y=
y(x+y) x+y .
返回导航
微专题1 二次根式化简的六种常用方法
方法4 根据隐含条件化简含有字母的二次根式 4.已知 x+y=-10,xy=8,求 xy+ xy的值. 解:∵x+y=-10,xy=8,∴x<0,y<0.
∴
xy+
xy=
xyy2 +
xxy2=-
yxy-
xy x
=-1y-1x xy=-x+ xyy xy=180× 8=522.
第十六章 二次根式 微专题1 二次根式化简的六种常用方法
微专题1 二次根式化简的六种常用方法
方法1 直接应用二次根式性质法则化简 1.【教材改编】把下列二次根式化成最简二次根式:
(1) 3×9;
解: 3×9= 3× 9=3 3;
(2) 1.5; 解: 1.5=
32=
3= 2
3× 2×
2= 2
26;
返回导航
微专题1 二次根式化简的六种常用方法
(2)化简: (x-2)2- x2-2x+1. 解:原式= (x-2)2- (x-1)2=|x-2|-|x-1|, 当 x<1 时,原式=2-x-(1-x)=2-x-1+x=1; 当 1≤x≤2 时,原式=2-x-(x-1)=2-x-x+1=3-2x; 当 x>2 时,原式=x-2-(x-1)=x-2-x+1=-1.
∴
xy+
xy的值为5
2
2 .
返回导航
微专题1 二次根式化简的六种常用方法
方法 5 巧用整体思想进行计算与求值
5.(2021·包头)若 x= 2+1,则代数式 x2-2x+2 的值为( C )
A.7
B.4
C.3
D.3-2 2
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
新人教版八年级下册数学知识点归纳
新人教版八年级下册数学学问点归纳二次根式【学问回忆】1.二次根式:式子a 〔a ≥0〕叫做二次根式。
2.最简二次根式:必需同时满意以下条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。
4.二次根式的性质:〔1〕〔a 〕2=a 〔a ≥0〕; 〔2〕 5.二次根式的运算:〔1〕因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.〔2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. 〔3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.a 〔a >0〕==a a 2a -〔a <0〕0 〔a =0〕;ab =a ·b 〔a≥0,b≥0〕;b ba a=〔b≥0,a>0〕. 〔4〕有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的安排律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是〔 〕 A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例5、数a ,b ,假设2()a b -=b -a ,那么 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简及计算 例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把〔a -b 〕-1a -b 化成最简二次根式例4、先化简,再求值:11()ba b b a a b ++++,其中51+,51-.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 〔1〕、根式变形法当0,0a b >>时,①假如a b >>a b <<例1、比较的大小。
人教版八年级数学下册课件 16-3 第1课时 二次根式的加减
b
2a+3b
如果把a,b用二次根式来替代,能得到什么呢?
当a= 2 ,b= 8 时,得2a+3b= 2 2 3 8 .
因为 3 8 3 22 2 6 2,由前面知两者可以合并.
你又发现
了什么?
2a+3b=2 2+6 2=8 2
我们发现:要将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
归纳总结
将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
注意:判断几个二次根式是否可以合并,一定都要
化为最简二次根式再判断.
合并的方法与合并同类项类似,把根号外的因数(式)
相加,根指数和被开方数(式)不变.如:
m a n a m n a
例题讲解
例1 若最简根式
3 − 2 与 3 可以合并,
2
4 5 , 3 5, 2 5 .
化简后被开方数相同
获取新知
知识点一:同类二次根式
同类二次根式:几个二次根式化成最简二次根式后,它们
的被开方数相同, 这些二次根式就称为同类二次根式
备注:
1.同类二次根式首先必须是最简二次根式;
2.同类二次根式再次必须是被开方数相同
例题讲解
例1 下列根式中,与 3 不是同类二次根式的是( C )
第十六章 二次根式
16.3 第1课时 二次根式的加减
知识回顾
问题1 满足什么条件的根式是最简二次根式?
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
问题2 化简下列两组二次根式,每组化简后有什么共同特点?
(1) 8 ,18 ,0.5;
人教版八年级数学下第十六章二次根式专题一 二次根式的性质及其运算习题课件
八年级 数学 下册 人教版
3.已知实数 a 满足|2 018-a|+ a-2 019=a,求 a-2 0182 的值. 解:由题意得 a-2 019≥0, ∴a≥2 019,∴2 018-a<0. ∴原式可以变形为 a-2 018+ a-2 019=a. ∴ a-2 019=2 018. ∴a-2 019=2 0182. ∴a-2 0182=2 019.
八年级 数学 下册 人教版
解:∵点 C 与点 B 关于点 A 对称,
∴|AC|=|AB|,即 1-x= 2-1,
∴x=2- 2,
2
2
∴|x- 2|+x=|2- 2- 2|+2- 2
2(2+ 2) =|2-2 2|+(2- 2)(2+ 2)
=2 2-2+2+ 2=3 2.
∴x+1x=6,
∴x+1x2=36,x2+x12=34, ∴ x2+x12+14= 34+14= 48=4 3.
八年级 数学 下册 人教版
10.(荆门中考)先化简,再求值:
a2-b2
a-b a
a2-2ab+b2·a+b-a-b,其中 a=1+ 3,b=1- 3.
(a+b)(a-b) a-b a 解:原式= (a-b)2 ·a+b-a-b
八年级 数学 下册 人教版
2.已知 x,y 为实数,且 y= x2-9- 9-x2+4,求 x-y 的值. 解:依题意有 x2-9≥0,9-x2≥0, ∴x2-9=0, ∴x=±3,y=4. 当 x=3 时,x-y=3-4=-1; 当 x=-3 时,x-y=-3-4=-7. ∴x-y 的值为-1 或-7.
(5)(3+ 2)2(3- 2)-(3- 2)2(3+ 2); 解:原式=(3+ 2)(3- 2)[(3+ 2)-(3- 2)] =(9-2)×2 2 =14 2.
人教版数学八年级下册16.1.2二次根式的性质(教案)
(三)实践活动(用时10分钟)
-复杂化简:对于\( \sqrt{\frac{24}{3}} \)的化简,学生可能会直接得到\( \sqrt{8} \),而忽视\( \frac{\sqrt{24}}{\sqrt{3}} = \sqrt{\frac{24}{3}} = \sqrt{8} \)中的正确步骤。
四、教学流程
(一)导入新课(用时5分钟)
3.培养学生的数学建模能力:引导学生将实际问题转化为二次根式的数学模型,培养学生运用数学知识解决实际问题的能力。
4.培养学生的数学抽象素养:通过对二次根式性质的探究,使学生理解数学概念的本质,提高数学抽象思维。
三、教学难点与重点
1.教学重点
-二次根式的性质:理解并掌握二次根式的乘法、除法、平方和开方性质,能熟练应用于解题。
其次,我发现有些学生对乘法性质和除法性质容易混淆,尤其是在应用时。为了帮助学生更好地掌握这两个性质,我计划在下一节课中增加一些对比练习,让学生通过实际操作,感受两者之间的区别和联系。
此外,关于二次根式的化简,我觉得在讲解过程中需要更加注重步骤的详细解释。有些学生对于多层嵌套的二次根式化简感到困惑,我将在以后的课堂中多举例,并引导学生逐步分解和化简,以提高他们的解题能力。
-二次根式的化简:掌握运用性质对二次根式进行化简的方法,提高解题效率。
-实际问题的建模:学会将实际问题转化为二次根式的数学模型,培养数学应用能力。
(完整)人教版八年级下册数学第16章《二次根式》讲义第1讲二次根式认识、性质
第1讲 二次根式认识、性质第一部分 知识梳理知识点一: 二次根式的概念形如()的式子叫做二次根式。
必须注意:因为负数没有平方根,所以是为二次根式的前提条件知识点二:二次根式()的非负性()表示a 的算术平方根, 即0()。
非负性:算术平方根,和绝对值、偶次方。
非负性质的解题应用: (1)、如若,则a=0,b=0; (2)、若,则a=0,b=0; (3)、若,则a=0,b=0。
知识点三:二次根式的性质第二部分 考点精讲精练考点1、二次根式概念 例1、下列各式:122211,2)5,3)2,4,5)(),1,7)2153x a a a --+---+其中是二次根式的是_________(填序号). 例2、下列各式哪些是二次根式?哪些不是?为什么?(121 (219-(321x +(439 (56a - (6221x x ---例3)))2302,12203,1,2xx y y x x x x y +=--++f p 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 例4、下列各式中,属于二次根式的有( )例5、若21x +的平方根是5±_____=.1、下列各式中,一定是二次根式的是( )A B C D2中是二次根式的个数有______个 3、下列各式一定是二次根式的是( )A B C D4、下列式子,哪些是二次根式, 1x、 x>0)1x y +、(x≥0,y ≥0) .51+x 、2+1x 、______个。
考点2、根式取值范围及应用例1有意义,则x 的取值范围是例2有意义的x 的取值范围例3、当_____x 时,式子4x -有意义. 例4、在下列各式中,m 的取值范围不是全体实数的是( ) A .1)2(2+-m B .1)2(2-m C .2)12(--m D .2)12(-m例5、若y=5-x +x -5+2019,则x+y=例6、实数a ,b ,c │a -=______.1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3 B 、x≥3 C 、 x>4 D 、x≥3且x≠42x 的取值范围是3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 4、式子x x x 222+-+-有意义,x 为________ 5、yx是二次根式,则x 、y 应满足的条件是( ) A .0≥x 且0≥y B .0>yxC .0≥x 且0>yD .0≥yx 62()x y =+,则x -y 的值为( )A .-1B .1C .2D .37、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值8、当a 1取值最小,并求出这个最小值。
最新部编人教版初中八年级下册数学知识点总结
八年级数学(下册)知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.二次根式有意义的条件: 大于或等于0。
3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。
6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a ≥0,b ≥0);=(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(x例3、 在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b < 例1、比较35与53的大小。
第01讲二次根式的性质
第01讲二次根式的性质第1讲二次根式的性质知识导航1.二次根式的概念与被开方数中字母的取值范围;2.二次根式的双重非负性;3.开平方与平方两种运算的关系【板块一】二次根式的概念与基本性质方法技巧一般地,我们把形如(a0)的式子叫做二次根式,”称为二次根号.开平方时,被开方数a的取值范围是a0,二次根式有两个非负性,也叫二次根式的双重非负性,即被开方数a的取值范围是a0,算术平方根的结果0.题型一判断式子是否为二次根式【例1】下列式子中是二次根式的有();;-;;;(x>1);A.2个 B.3个 C.4个 D.5个【分析】形如(a0)的式子叫做二次根式,被开方数a的取值范围是a0;不符合被开方数a的取值范围是a0,是开3次方,为二次根式,故选C.【解答】C题型二二次根式有意义的字母的取值范围【例2】在下列式子:;(x-2)0;中,x不可以取2的是()A.只有 B.只有 C.和 D.和【分析】二次根式中被开方数大于等于零,零指数幂的底数不为零,分母的值不为零.,x-20,则x2;(x-2)0,x-20,则x2;中,x-20,解得x2,故x不可以取2的是和,故选C【解谷】C题型三二次根式的双重非负性【例3】若x,y为实数,y=,则4y-3x的平方根是.【分析】,故只有x2-4=0,即x=±2,又x-2≠0,x=-2,y==-,4y-3x=-1-(-6)=5,故4y-3r的平方根是±.【解答】士.【例4】已知|7-9m|+(n-3)2=9m-7-,求(n-m)2019的值.【分析】非负数有三种呈现形式:绝对值,平方,算术平方根,几个非负数的和一定是非负数,若几个非负数的和为0,则这几个非负数均为0.【解答】+(n-3)2=9m-7-,+(n-3)2+=9m-70,9m-7+(n-3)2+=9m-7,(n-3)2+=0,n-3=0,m-4=0,n=3,m=4,(n-m)2019=(-1)2019=-1.题型四二次根式中的隐含条件的运用【例5】若实数x,y,m适合关系式+=·,求m的值.【分析】由(x+y)-200,20-(x+y)0,所以x+y=20.再利用两个二次根式的和等于0,即每一个被开方数等于0.【解答】x+y-200,20-(x+y)0,x+y=20.+=0,≥0,0,3x+3y-m=0,m=3(x+y)=3×20=60.针对练习11.x取何值时,下列各式有意义(1);(2);-;(4).【解答】(1)x>;(2)x4且x-5;(3)1x≤2;(4)x5且x6.2.代数式++的最小值是()A.0 B.1+ C.1 D.不存在【解答】B.3.方程+=0的解是.【解答】,或4.已知x,y为实数,且满足-(3y-1)=0,则(xy)2019=.【解答】-15.如果x,y,z为实数,且满足++z2-z+=0,求(y+z)x2的值.【解答】|4x-4y+1|++(z-)2=0,又≥0,0,(z-)20,4x-4y+1=0,2y+z=0,z-=0,x=-,y=-,z=,(y+z)x2=(-+)(-)2=.6.若m适合关系式:-=-,求m的值.【解答】由条件得x+y-1160,116-(x+y)0,116≤x+y116,x+y=116,=-,≥0,-0,,+得5(x+y)+18=2m,2m=5×116+18,m=299.【板块二】二次根式的两个基本性质的综合运用方法技巧二次根式的两个性质()2=a(a≥0)和=,可以运用上述两个性质进行有关计算和化简.题型五=的运用【例1】已知0<a<1,化简-=.【分析】a=()2,=,又0<a<1,()2<,即<.原式=-=-=+-(-)=2.【解答】2.【例2】若化简-的结果为2x-5,则x的取值范围是.【分析】根据x的取值化简绝对值和二次根式的性质分析.-=-=2x-5,则-=x-1+x-4,即1-x0,x-40,解得1x≤4.【解答】1x≤4.题型六()2=a(a0)的运用【例3】已知ABC的三边a,b,c满足关系式a+b+c-2-4-6+4=0,试求ABC的周长.【分析】根据式子的结构特点,运用a=()2配方,然后利用非负性解题.【解答】a+b+c-2-4-6+4=0,(a-5)-2+1+(b-4)-4+4+(c-1)-6+9=0,(-1)2+(-2)2+(-3)2=0,a-5=1,b-4=4,c-1=9.a=6,b=8,c=10,ABC的周长为6+8+10=24.题型七二次根式的规律探究【例4】观察分析,探求出规律,然后填空:,2,,2,,,…,(第n个数).【分析】由题意可知,被开方数是2的倍数,由此即可求解=,2=,=,2=,=,第6个数是=2,第n个数是.【解答】2,.【例5】观察下列各式:=2;=3;=4;,请你猜想⑴=,=;(2)计算(请写出推导过程):;(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来.【分析】先将被开方数化为假分数,再用二次根式的性质化简.【解答】=5,=6;(2)===14;=(n+1)(n1).题型八求值【例6】已知:x=2-,求代数式x2-4x-6的值.【分析】由x=2-得x-2=-,两边平方可得二次式.【解答】x=2-,x-2=-,(x-2)2=(-)2,x2-4x+4=10,x2-4x=6,x2-4x-6=0.【例7】已知x=2-,那么x4-8x3+16x2-x+1的值是.【分析】由x=2-得出x2-4x-1=0,用x2-4x-1除x4-8x3+16x2-x+1,得出商和余数,利用:被除数=除数×商十余数,将多项式化简,再代值计算.【解答】由x=2-得x-2=-,两边平方,得x2-4x+4=5,x2-4x-1=0,x4-8x3+16x2-x+1=(x2-4x-1)(x2-4x+1)+(-x+2)=2-x=.题型九复合二次根式的化简【例8】先阅读下面的解答过程,然后作答:形如的化简,只要我们找到两个非负数a,b,使a+b=m,ab =n,这样()2+()2=m,(=,那么便有==(a>b).例如:化简.首先把化为,这里m=7,n=12;由于4+3=7,43=12,即()2+()2=7,(=,===2+.由上述例题的方法化简:(1);(2);(3).【分析】由例题所给信息知关键是要找到两个合适的非负数.【解答】(1)==;(2)===-;(3)==(=(-1)=-.====1+.解决问题:(1)在括号内填上适当的数:====________;(2)根据上述思路,试将予以化简.【分析】通过完全平方公式,将被开方数化成平方的形式,再根据二次根式的性质,化去里面的一层根号.【解答】(1)====3+;(2)====5-.针对训练21.a,b,++-a-.a,b在数轴上的位置可得a<0a+b<0-a>0b-<0.-a|-|b -|=-a-a-b+-a+b-=-3a.2.=·,-2+.=·3x+10,2-x0,∴-≤x≤2,x-2+=x-2+3x+1=-(x-2)+(3x+1)=2x+3.++1,试化简代数式:|x-1|--.【解答】∵-x≥0,x-≥0,-x=,y>0+0+1,y>1y-1>,=-=-14.当1<x<5时,化简:-.【解答】原式=-=|x-1|-|x-5|,又∵1<x<5,原式=(x-1)-[-(x-5)]=2x-6.5.若x,y为实数,且y=++,求-的值.【解答】∵1-4x≥0,4x-1≥0,∴1-4x=0,∴x=,∴y=,+=2+=.∴原式=-==.6.已知a为偶数,且=,求-的值.【解答】∵=,∴a-1≥0,3-a>0,∴1≤a<3,又∵a为偶数,∴a=2,又∵-=-,∵a=2,a-3<0,∴原式=a-1-=a-1+=2-1+=.7.对于题目“化简求值:+,其中a=”甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解笞是:+=+=+a-=a=,谁的解答是错误的?为什么?【解答】乙的解答是错误的.∵当a=时,-a>0,∴=-a.8.化简:(1);(2).【解答】(1)原式===;(2)原式===(+1)=+.9.已知a+b+c=2+4+6-14,求a(b+c)+b(c+a)+c(a+b)的值.【解答】依题意得(a+1)-2+1+(b+1)-4+4+(c-2)-6+9=0,∴(-1)2+(-2)2+(-3)2=0,∴=1,=2,=3,∴a=0,b=3,c=11.a(b+c)+b(c+a)+c(a+b)=0+33+33=66.10.利用“≥0”解答下列问题:(1)若++=0,求a,b,c的值;(2)若a+b+c=4+6+2,求a,b,c的值.【解答】(1)∵≥0,≥0,≥0.++==0,=0=0,a=1b=4,c =9;(2a-2+b-4+c-6=0,[()2-2+1]+[()-4+4]+[()-6+9]=0,(-1+(-2)+(-3)=0,(-10,(-2)0,(-3)0.-1=0,-2=0-3=0,a=2,b=8,c=18.11.+=a-2017=__.a-2018≥0,即a≥2018,则原方程可化为|2017-a+=aa-2017+=a=2017a-2018=201720172=2018.2018.。
人教版数学八年级下册16.1二次根式(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非整数的平方根的情况?”(例如,计算一个边长为$\sqrt{5}$的正方形的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
4.培养学生的数学抽象素养:让学生从具体的二次根式实例中抽象出一般规律,提升对数学概念的理解和抽象思维能力。
5.激发学生的数学探究精神:鼓励学生在二次根式学习中积极思考、探索,培养他们的创新意识和探究精神。
三、教学难点与重点
1.教学重点
-二次根式的定义:理解二次根式的概念,明确根号下仅含非负实数的表达式。
-二次根式的性质:掌握二次根式的乘除、平方等运算性质,如$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$。
-二次根式的化简:学会通过因式分解、提取公因数等方法化简二次根式,如$\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}$。
-二次根式的乘除法:熟练运用性质进行二次根式的乘除运算,如$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)。
1.培养学生的逻辑推理能力:通过二次根式的性质与运算法则的学习,使学生能够运用逻辑推理分析问题,提高解题的条理性和逻辑性。
2.提升学生的数学运算能力:让学生掌握二次根式的化简、乘除与加减运算,培养他们在数学运算中的准确性和熟练度。
3.增强学生的数学建模意识:通过解决实际问题,使学生能够运用二次根式知识构建数学模型,提高解决实际问题的能力。
初二数学下册《【说课稿】 二次根式的性质》【人教版适用】
人教版八年级数学下册说课稿二次根式的性质一、1、教材的地位及作用“二次根式”是《课程标准》“数与代数”的重要内容。
本章是在前面几章实数的基础上,进一步研究二次根式的概念、性质,和运算。
本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也是以后将要学习的“锐角三角函数”“一元二次方程”和“二次函数”等内容的重要基础。
第一节研究二次根式的概念和性质。
它是学习本章的关键,它也是学习二次根式的化简和运算的依据。
2、教学目标根据大纲的要求和教材结构内容分析,结合八年级学生的实际水平,考虑到学生已有的认知结构心理特征,本节课可确定如下教学目标:(1)知识技能:使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围及简单计算。
(2)数学思考:使学生理解二次根式被开方数的取值范围的重要性(3)解决问题:培养学生根据条件处理问题的能力及分类讨论问题(4) 情感态度:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,发展学生观察、分析、发现问题的能力,培养学生辩证唯物主义观点3、教学重点难点确定被开方数中字母的取值范围。
2、会利用二次根式的性质做相关计算。
二、 教学活动的本质是一种合作,一种交流。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程。
为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。
三、 新课程标准指出:学生是学习的主体。
要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。
本节课主要采用自主学习,合作探究,引领提升的方式,启发式、讲练结合的方法展开教学。
人教版数学八下课件-二次根式
抓住被开方数必须为非 负数,从而建立不等式 或不等式组求出其解集.
二次根式 的双重非 负性
二次根式 a 中,a≥0且
a ≥0
第二课时
二次根式化简
返回
导入新知
【思考】下列数字谁能顺利通过下面两扇门进入客厅?
0 -4 1
1 2
1
-1
4
1 4
算术平方根之门
a
a
a≥0
平方之门
( a )2
我们都是非 负数哟!
x≥-1且x≠2
x>0
x为全体实数
探究新知 知识点 2 二次根式的双重非负性
【回顾思考】二次根式 a 的被开方数a的取值范围是什么?它 本身的取值范围又是什么?
当a>0时, 表示a的算术平方根,因此 a>0;当a=0时, 表示0的算术平方根,因此 a=0 .这就是说,当a≥0时,a 0. 【新知思考】当x 是怎样的实数时, x2 在实数范围内有意义?
2x 1
解:由题意得
x 2 ≥0, 2x 1
则
2xx21≥>00,,或
x 2≤0, 2x 1<0,
解得x≥2或x<
1 2
,
即当x≥2或x<
1 2
时, x 2 有意义.
2x 1
课堂小结 二次根式
定义
带有二次根号 被开方数为非负数
在有意义 条件下求 字母的取 值范围
探究新知
在前面的问题中,得到的结果分别是: 3, S ,
(1)这些式子分别表示什么意义?
分别表示3,S,65,
h 5
的算术平方根.
(2)这些式子有什么共同特征?
①根指数都为2;
②被开方数为非负数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 二次根式的性质与化简
考点一:二次根式的概念
定义:一般地,我们把形如a (a ≥0)的式子叫做二次根式,“
”称为二次根号,a 叫
做被开方
二次根式应满足两个条件: ①有二次根号“
”,即根指数为2;
②被开方数是正数或0(非负数) 注意:
①表示a 的算术平方根; ②a 可以是数,也可以是式; ③形式上含有二次根号
④a ≥0,
a ≥0 ( 双重非负性);
⑤既可表示开方运算,也可表示运算的结果.
经典题型
1.下列式子,哪些是二次根式,哪些不是二次根式:
2、
3
3、
x
1
、 )0(>x x 、 0、
4
2、 y +x (x ≥0,y ≥0)
2.下列各式中,不是二次根式的是( )
A .
45
B. 3- C . 32+a D.
3
2 D .
3.下列各式中,一定是二次根式的是( )
A.
7- B.3m C. D.2x
考点二:二次根式的双重非负性
a
(1)被开方数 a ≥0 (2)二次根式a ≥0 应用:非负性求值 例如:已知
32552x --+
-=x y 求x 的值。
解:
5250,5202
x x x -≥-≥∴=
经典例题
例1.要使式子
1
1
-+m m 有意义,则m 的取值范围 。
例2.若式子12112+-+-x x 有意义,则x 的取值范围是 。
例3.使代数式
x x 343
1
-++有意义的整数x 有 例4.若3-|2|b a +++(c -4)²,则a -b+c= 。
随堂练习
1.使代数式
4
-x 3
-x 有意义的x 的取值范围是( )
A .x>3
B .x≥3
C . x>4
D .x≥3且x≠4
2.若
2-2-+x x +y=4成立,则xy=( )
A .0
B .6
C .8
D .16
3.若3-m +(n+1)²=0,则m+n 的值为 。
4.已知x,y 为实数,且1-x +3(y -2)²=0,则x -y 的值为( ) A .3
B .-3
C .1
D .-1
考点三:二次根式的性质
(1)二次根式的基本性质: ①a≥0;a ≥0 (双重非负性).
②(
a )2=a (a≥0)(任何一个非负数都可以写成一个数的平方的形式).
③a =a (a≥0)(算术平方根的意义)
经典例题
例1.计算:
)2
3
(
² )(53
² 2
)6
5(
2
2
7)(
例2.计算:
(1)9 (2) 24-)
( (3)25 (4)23-)(
例3.如图:A ,B ,C 三点表示的数分别为a ,b ,c .利用图形化简:
2
2)(b)-(c -|b -a |c a -+
随堂练习
1.计算下列各式的值:
2
7-)(= ;2-Π)(= ;23-)
(∏= 。
2.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简 │a -b│+ 的结果等于( )
A .-2b
B .2b
C .-2a
D .2a
3.如果1≤a≤ 2 ,则44a 2+-a +|a ﹣1|的值是( )
A .1
B .﹣1
C .2a ﹣3
D .3﹣2a
考点四:二次根式的积和商的性质
性质1.积的算术平方根 用“>,<或=”填空:
, 性质2.商的算术平方根 填空:
4×94×916×
2516×25100×36
一般地,二次根式的积与商有如下性质:
积的性质:
(a ≥0,b ≥0,积的算术平方根等于各算术平方根的积);
商的性质:
(a ≥0,b >0商的算术平方根等于各算术平方根的商).
经典例题
例1.化简:
随堂练习
1.化简:
2.商的算术平方根填空:
9
16
=________,9
16=________;1636=________,16
36
=________;9
16______916
;16
36______
1636
=
(1)9×
16;(2)16×81;(3)81×
100;(4
(5)(6)
64b 2
9a
2
.1.化简:
(1
;(2
(3;(4))169()144(-⨯-.
2.化简:
6431)( 81362)(
考点五:最简二次根式
最简二次根式:
(1)根号内不再含有可以开方的因式;
(2)根号内不再含有分母;
(3)结果的分母中不含根号.
经典例题
例1.化简:
1)364;(2)3681;(3)64b 29a 2;(4)
9x
64y 2.(1)12;(2)
54;
(3
;(4)
;(5)1.5;(6)
例2.下列式子中,属于最简二次根式的是( )
A .12 B.
3
2
C.0.3
D.7
随堂练习
1.下列根式中属最简二次根式的是( )
A . B.
21 C.8 D.2
1 2.化简:(1)
2
31 1212)
( 5
210
3)(
3.下列二次根式中,是最简二次根式的是( )
A .12 B.
2
1
C. 22a b
D. b 2a。