分子筛与硅胶的区别
分子筛简介

硅氧四面体 SiO4 和铝氧四面体 AlO4 以 Si 或 Al 原子为中心的正四面体
O2-
Si4+ 或 Al3+
2、环结构
硅 铝 氧四面体通过氧桥连接成环
每个顶点代表一个硅原子或者铝原子 每条边代表一个氧桥
由4个四面体形成四元环,5个四面体形成五元环,依此类推还有六元环、八元环、十元环、十二元环和十八元环等 注意:多元环上的原子可能不在同一平面上,有扭曲和褶皱, 因此同种氧环的孔口的大小是有一定变化的
4、化学组成
由于 Al3+ 三价、AlO4 四面体有过剩负电荷,金属阳离子 Na+ 、K+、Ca2+、Sr2+、Ba2+ 的存在使其保持电中性
1 2 5
低硅 中硅 高硅分子筛
二、分子筛的结构构型
基本结构单元是硅氧四面体 SiO4 和铝氧四面体 AlO4 硅 铝 氧四面体通过氧桥连接成环 环通过氧桥连接成三维空间的多面体 笼 笼通过氧桥连接成分子筛
四面体
环
笼
分子筛
硅 铝 氧三维骨架结构具有大量的孔隙 晶穴、晶孔、孔道 ,可以容纳金属阳离子和水分子 —— 阳离子交换与脱水
4、分子筛结构
不同结构的笼通过氧桥连接成各种结构的分子筛
A型分子筛
骨架: 笼的6个四元环通过氧桥相互连接 连接处形成 笼 主晶穴 孔穴 : 8个 笼和8个 笼围成一个 笼 最大窗孔:八元环,孔径 0.41 nm 孔道: 笼之间通过八元环沿三个晶轴方向互相贯通,形成三维孔道
不同吸附剂对水的吸附等压线
择形 选择 吸附 根据分子大小和形状的选择吸附 根据分子极性和不饱和度的选择吸附
不同气体在4A上的吸附等温线
硅胶-参考资料

摘要:硅胶是由硅酸凝胶mSiO2·nH2O适当脱水而成的颗粒大小不同的多孔物质。
具有开放的多孔结构,比表面(单位质量的表面积)很大,能吸附许多物质,是一种很好的干燥剂、吸附剂和催化剂载体。
硅胶的吸附作用主要是物理吸附,可以再生和反复使用提问编辑摘要硅胶是由硅酸凝胶m SiO2·n H2O适当脱水而成的颗粒大小不同的多孔物质。
具有开放的多孔结构,比表面(单位质量的表面积)很大,能吸附许多物质,是一种很好的干燥剂、吸附剂和催化剂载体。
硅胶的吸附作用主要是物硅胶理吸附,可以再生和反复使用。
在碱金属硅酸盐(如硅酸钠)溶液中加酸,使之酸化,再加入一定量的电解质进行搅拌,即生成硅酸凝胶;或者在较浓的硅酸钠溶液中加酸或铵盐也能生成硅酸凝胶。
将硅酸凝胶静置几小时使之老化,然后用热水洗去可溶性盐类,在60~70℃下烘干并在约300℃时活化,即可得硅胶。
将硅酸凝胶用氯化钴溶液浸泡后再烘干和活化,可得变色硅胶。
用它作干燥剂时,吸水前是蓝色,吸水后变红色,从颜色的变化可以看出吸水程度,以及是否需要再生处理。
硅胶还广泛用于蒸气的回收、石油的精炼和催化剂的制备等方面。
目录[隐藏]1 基本性质2 简单分类3 安全性能4 有机硅胶5 室温硫化硅橡胶简介及分类6 室温硫化硅橡胶用途7 参考资料硅胶-基本性质产品名称:硅胶CA登记号:英文名:Silicagel硅胶主要用途:用作气相色谱试剂、薄层色谱试剂及催化剂,也用于气体干燥、气体吸收、液体脱水等。
一般来说,硅胶按其性质及组分可分为有机硅胶和无机硅胶两大类。
无机硅胶是一种高活性吸附材料,通常是用硅酸钠和硫酸反应,并经老化、酸泡等一系列后处理过程而制得。
硅胶******************************************************************************* ************************************************ 硅胶根据其孔径的大小分为:大孔硅胶、粗孔硅胶、B型硅胶、细孔硅胶。
分子筛是什么

二十世纪五十年代,伴随着工业革命的大潮,碳材料的应用越来越广泛,从最初的过滤杂质逐渐发展到分离不同组份。
与此同时,随着技术的进步,人类对物质的加工能力也越来越强,在这种情况下,碳分子筛应运而生。
那么,分子筛是什么?为此,安徽天普克环保吸附材料有限公司为大家总结了相关信息,希望能够为大家带来帮助。
分子筛是一种包含有精确和单一的微小孔洞的材料,可用于吸附气体或液体。
足够小的分子可以通过孔道被吸附,而更大的分子则不能。
与一个普通筛子不同的是它在分子水平上进行操作。
例如,一个水分子小到可以通过但比它大一点的分子就不行。
因此,分子筛常用用来作干燥剂。
一个分子筛能吸附高达其自身重量22%的水分。
分子筛常被应用到石油工业,特别是用来纯化气体。
例如可用硅胶吸附天然气中的汞对铝制管道和其他液化设备的腐蚀。
安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。
公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。
二期工程将建成4000吨分子筛生产线。
公司全面推行ISO9001质量管理体系,建有现代化的实验室和质量控制中心。
现有工程技术人员20人,其中工程师8人。
产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。
我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。
公司热忱欢迎国内外客商与我们真诚合作。
我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。
分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。
安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。
常用极性、非极性吸附剂

【求助】常用极性、非极性吸附剂!作者: wzhahassxmc 收录日期: 2009-12-28 发布日期: 2009-12-28吸附剂很多,请大家提供下常用的性能好的极性吸附剂有哪些、非极性吸附剂有哪些,微观的吸附原理是什么?希望能把原理写明白,谢谢!作者:li2004虽然吸附现象早已为人们发现和熟知,但是作为工业上应用则是近几十年的事情。
从理论上讲,固体物质的表面对于流体都具有一定的物理吸附作用,但要达到工业上的使用要求,还需要有一个选择与评价的问题,这是吸附操作中首先要解决的问题。
1.对工业吸附剂的要求(1)要有巨大的内表面积和大的孔隙率也就是说,吸附剂必须是具有高度疏松结构和巨大暴露表面的多孔物质。
只有这样,才能给吸附提供很大的表面。
吸附剂的有效表面包括颗粒的外表面和内表面,而内表面总是比外表面大得多,例如硅胶的内表面高达600m2/g,活性炭的内表面可高达1000m2/g。
这些内部孔道通常都很小,有的宽度只有几个分子的直径,但数量极大,这是由吸附剂的孔隙率决定的。
因此,要求吸附剂要有很大的孔隙率。
除此之外,还要求吸附剂具有合适的孔隙和分布合理的孔径,以便吸附质分子能到达所有的内表面而被吸附。
(2)对不同的气体要具有选择性的吸附作用工业上应用吸附剂的目的,就是为了对某些气体组分有选择地吸附,从而达到分离气体混合物的目的。
因此要求所选的吸附剂对所要吸附的气体具有很高的选择性。
例如活性炭吸附二氧化硫(或氨)的能力,远大于吸附空气的能力,故活性炭能从空气与二氧化硫(或氨)的混合气体中优先吸附二氧化硫(或氨),达到净化废气的目的。
(3)吸附容量要大吸附剂的吸附容量是指一定温度下,对于一定的吸附质浓度,单位质量(或体积)的吸附剂所能吸附的最大吸附质质量。
吸附容量大小的影响因素很多,它包括吸附剂的表面大小,孔隙率大小和孔径分布的合理性,还与分子的极性以及吸附剂分子上官能团的性质有关。
(4)要有足够的机械强度和热稳定性及化学稳定性吸附剂是在湿度、温度和压力条件变化的情况下工作的,这就要求吸附剂有足够的机械强度和热稳定性,对于用来吸附腐蚀性气体时,还要求吸附剂有较高的化学稳定性。
分子筛知识概述

分子筛知识概述(一)分子筛的品种型号分子筛(又称合成沸石)是一种硅铝酸盐多微孔晶体,它是由SiO和AIO四面体组成和框架结构。
在分子筛晶格中存在金属阳离子(如Na,K,Ca等),以平衡四面体中多余的负电荷。
分子筛的类型按其晶体结构主要分为:A型,X 型,Y型等A型:主要成分是硅铝酸盐,孔径为4A(1A=10-10米),称为4A(又称纳A 型)分子筛;用Ca2+交换4A分子筛中的Na+,形成5A的孔径,即为5A(又称钙A型)分子筛;用K+交换4A分子筛的Na+,形成3A的孔径,即为3A(又称钾A型)分子筛。
X型:硅铝酸盐的晶体结构不同(硅铝比大小不一样),形成孔径为9—10A的分子筛晶体,称为13X(又称钠X型)分子筛;用Ca2+交换13X分子筛中的Na+,形成孔径为9A的分子筛晶体,称为10X(又称钙X型)分子筛Y型:Y型分子筛具有X型分子筛烃似的晶体结构,但化学组成不同(硅铝比较大)通常用于催化领域。
(二)分子筛的主要特性1、物理特性:比热:约0.95KJ/KgXK(0.23Kcal/KgX℃导热系数(脱水物):2.09KJ/MXK(0.506Kcal/mX℃水吸附热:约3780KJ/Kg(915Kcal/Kg)2、热稳定性和化学稳定性:分子筛能承受600—700℃的短暂高温,但再生温度一般在400℃以下。
分子筛可在PH值5-10范围的介质中使用;在盐溶液中能交换某些金属阳离子。
3、分子筛的特性分子筛是一类结晶的硅铝酸盐,由于它具有均一的孔径和极高的比表面积,所以具有许多优异的特点。
(1)按分子的大小和形状不同的选择吸附作用,即只吸附那些小于分子筛孔径的分子。
(2)对于小的极性分子和不饱和分子,具有选择吸附性能,极性越大,不饱和度越高,其选择吸附性越强。
(3)具有强烈的吸水性。
哪怕在较高的温度、较大的空速和含水量较低的情况下,仍有相当高的吸水容量。
3.1、基本特性:a)分子筛对水或各种气,液态化合物可逆吸附及脱附。
气相色谱柱的分类

一. 气相色谱柱的分类色谱柱是由柱管和固定相组成,按照拄管的粗细和固定相的填充方式分为(1)填充柱;(2)毛细管柱。
二. 填充柱气相色谱固定相在影响色谱柱分离效果的诸多因素中选择适当的色谱固定相是关键。
必须使待测各组分在选定的固定相上具有不同的吸附或分配,才能达到分离的目的。
(一)气-液色谱(分配色谱)固定相气-液色谱的固定相是由高沸点物质固定液和惰性担体组成。
1. 担体(或载体)是一种化学惰性的多孔固体颗粒,支持固定液,表面积大,稳定性好(化学、热),颗径和孔径分布均匀;有一定的机械强度,不易破碎。
(1)担体的种类和性能:硅藻土型:红色硅藻土担体—强度好,但表面存在活性中心,分离极性物质时色谱峰易拖尾;常用于分离非、弱极性物质。
白色硅藻土担体—表面吸附性小,但强度差,常用于分离极性物质。
非硅藻土型担体:有氟担体,适用于强极性和腐蚀性气体的分析;玻璃微球,适合于高沸点物质的分析;高分子多孔微球既可以用作气-固色谱的吸附剂,又可以用作气-液色谱的担体。
(2)担体的预处理:除去其表面的活性中心,使之钝化。
酸洗法(除去碱性活性基团);碱洗法(除去酸性活性的基团);硅烷化(消除氢键结合力);釉化处理(使表面玻璃化、堵住微孔)等。
2.固定液——涂在担体上作固定相的主成分(l)对固定液的要求:化学稳定性好:不与担体、载气和待测组分发生反应;热稳定性好:在操作温度下呈液体状态,蒸气压低,不易流失;选择性高:分配系数K 差别大;溶解性好:固定液对待测组分应有一定的溶解度。
(2)组分与固定液分子间的相互作用:组分与固定液分子间相互作用力通常包括:静电力、诱导力、色散力和氢键作用力。
在气-液色谱中,只有当组分与固定液分子间的作用力大于组分分子间的作用力,组分才能在固定液中进行分配。
选择适宜的固定液使待侧各组分与固定液之间的作用力有差异,才能达到彼此分离的目的。
(3)固定液的分类:固定液有四百余种,常用相对极性分类。
什么是分子筛

沸石分子筛 沸石分子筛的特点是它有相当均匀的孔径,如0.3nm、0.4nm、0.5nm、
0.6nm、0.7nm 、0.8nm、0.9nm、1.0 nm细孔,比孔径小的分子,可以通 过微孔孔口进入孔穴内,吸附于孔穴表面,并在一定条件下解吸放出;比 孔径大的分子则不能进入,从而把分子直径大小不同的混合分离开来,分 子筛由此而得名。
2、热稳定性和化学稳定性: 分子筛能承受600—700℃的短暂高温,但再生温度一般在 400℃以下。
分子筛可在PH值5-10范围的介质中使用;在盐溶液中能交换某些金属阳离子。 3、分子筛的特性
分子筛是一类结晶的硅铝酸盐,由于它具有均一的孔径和极高的比表面积, 所以具有许多优异的特点。 (1)按分子的大小和形状不同的选择吸附作用,即只吸 附那些小于分子筛孔径的分子。 (2)对于小的极性分子和不饱和分子,具有选择吸 附性能,极性越大,不饱和度越高,其选择吸附性越强。 (3)具有强烈的吸水性。 哪怕在较高的温度、较大的空速和含水量较低的情况下,仍有相当高的吸水容量。
第四页,编辑于星期三:十点 八分。
• Zeolite通常特指Si-Al分子筛。 Molecular sieve 指具有筛分分子能力的
材料。对于SAPO,一般用molecular sieve, 也用于碳分子筛(非晶体)。
第五页,编辑于星期三:十点 八分。
二 分子筛的分类
• 分子筛按来源分为有天然沸石和合成沸石两 种。天然沸石大部分由火山凝灰岩和凝灰质 沉积岩在海相或湖相环境中发生反应而形成。 目前已发现有1000多种沸石矿,较为重要的 有35种,常见的有斜发沸石、丝光沸石、毛 沸石和菱沸石等。主要分布于美、日、法等 国,中国也发现有大量丝光沸石和斜发沸石 矿床。
分子筛两塔脱水工艺研究

分子筛两塔脱水工艺研究摘要:分子筛脱水是目前国内外应用较广泛,技术较成熟的脱水工艺。
脱水后干气含水量可低至10-6。
该法操作简单,占地面积小,对进料气的温度、压力和流量变化不敏感。
本文对生产中常用的分子筛两塔脱水工艺进行研究,主要包括分子筛选型,分子筛两塔脱水工艺,及时序控制过程等内容进行研究。
关键词:分子筛两塔脱水工艺1 分子筛介绍分子筛是一种人工合成的无机吸附剂。
它是具有骨架结构的碱金属或碱土金属的硅铝酸盐晶体,分子式为:M2/nO•Al2O3•xSiO2•yH2O。
根据分子筛晶体结构的内部特征不同,常用的分子筛可分为A型和X型两类。
其中,A型分子筛具有与沸石构造类似的结构物质,所有吸附均发生在晶体内部孔腔内,孔腔直径为0.4nm,由理论孔径为0.42nm的通道联接;X型分子筛能吸附所有能被A型分子筛吸附的分子,并且具有较高的容量。
13X型分子筛可吸附芳香烃这样的大分子。
各类分子筛的pH值约为10,在pH值5~12范围内是稳定的。
在处理酸性天然气时,若吸附液的pH值小于5,就应采用抗酸分子筛。
分子筛表面具有较强的局部电荷,因而对极性分子和不饱和分子有很高的亲和力,水是强极性分子,分子直径为0.27~0.31nm,比通常使用的分子筛孔径小,所以分子筛是干燥气体和液体的优良吸附剂。
其特点如下。
具有高效吸附特性。
分子筛在低水汽分压、高温、高气体线速度等苛刻的条件下仍然保持较高的湿容量。
这是因为分子筛的表面积大于一般吸附剂,可达700~900m2/g。
随着相对湿度进一步降低,分子筛的湿容量与其他干燥剂相比相对地提高,如图2.1-1所示。
因而分子筛用于天然气深度脱水时较其他吸附剂优越。
2 分子筛脱水装置及工艺设计2.1.关键工艺参数的选取1)吸附周期分子筛脱水塔吸附剂床层的吸附周期(脱水周期)应根据湿气中水含量、床层空塔流速和高径比(不应小于2.5)、再生能耗、吸附剂寿命等进行综合比较后确定。
对于两塔流程,分子筛脱水塔床层吸附周期一般设计为8~24h,通常取吸附周期8~12h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Date: 2009-04-06/MLN
Technical Information Sheet
Adsorption materials, comparison between Silica Gel and Molecular Sieves For Rotary Heat Exchangers with a high moisture transfer capability different adsorption materials are used. The two main types of adsorption materials used for moisture transfer in normal comfort ventilation applications are Silica gel and Molecular Sieve. Silica gel: Silica gel is a partially dehydrated form of polymeric colloidal silicic acid. Silica gel has an amorphous micro-porous structure with a distribution of pore opening sizes of roughly 3-60 angstroms. These interconnected pores form a vast surface area that will attract and hold water by adsorption and capillary condensation, allowing silica gel to adsorb up to 40% of its weight in water. Silica gel is extremely efficient at temperatures below 25°C (77°F) (see Figures 1 and 2), but will lose some of its adsorbing capacity as temperatures begin to rise (Figure 3). Much of silica gel's popularity is due to its non-corrosive, nontoxic nature and its having received US government approval for use in food and drug packaging. Molecular sieves: Molecular sieves (also known as Synthetic Zeolite) adsorb moisture more strongly than silica gel. This can be seen by the high initial slope of the adsorption isotherm for molecular sieve as compared to the other desiccants (Figure 2). Where a very low relative humidity is required, molecular sieves are often the most economic desiccant because of their high adsorption capacity at low relative humidity. Also, molecular sieves will not give up moisture as readily as silica gel as temperatures rise (Figure 3). Molecular sieve contains a uniform network of crystalline pores and empty adsorption cavities, which give it an internal adsorptive surface area of 700 to 800 sq. m per g (1/2 the total volume of the crystals). Molecular sieve can adsorb up to 25% of its weight in water. Because of its uniform structure,
Page 1 of 4
molecular sieve will not give up moisture as readily as silica gel as temperatures rise. Being synthetic rather than naturally occurring, molecular sieve is higher in cost per unit, but due to its extremely large range of adsorptive capabilities, it might often be the best value. Lack of government approval has limited a more widespread use of molecular sieve, presumably due to the industry's unwillingness to fund an expensive government study. Independent testing suggests that molecular sieve does meet all government requirements.
Figure 1: Adsorption Rate (H2O) of Various Adsorbents
Page 2 of 4
Figure 2: Equilibrium Capacity (H2O) of Various Adsorbents
Figure 3: Equilibrium H2O Capacity
Figures and data are from
Page 3 of 4
Comparison: From a moisture transfer point of view silica gel has a higher capacity than molecular sieve at normally occuring outdoor temperatures and high relative humidity. At high temperatures and/or at low relative humidity’s molecular sieve has a higher capacity than silica gel. Since the comfort ventilation application, where an adsorption rotor is the natural choice, is for precooling and moisture removal of warm supply air with high relative humidity (typical summer conditions in many Asian countries), silica gel is the best alternative. Molecular sieve has an advantage over silica gel in that the former has a very uniform pore size and for example at the commonly used size 4 angstrom molecular sieve will only adsorb molecules smaller than 4 angstrom (such as water, ammonia, methanol, ethanol, sulfurated hydrogen, sulphur dioxide, carbon dioxide, ethylene, propylene etc.) but larger molecules are not adsorbed. Virus and bacteria are comparatively large in size (virus is about 100-3000 angstrom and bacteria about 100 times bigger) so they will not be adsorbed by neither molecular sieve nor silica gel. A small advantage for molecular sieve could be that some odours (not ammonia however) are not adsorbed. Silica gel is accepted within the food industry.
Page 4 of 4
。