2017年全国成人高考数学真题及答案-文史类word

合集下载

2017成人高考高起点文科数学真题和答案解析

2017成人高考高起点文科数学真题和答案解析

本试卷第Ⅰ卷(选择题)和第Ⅱ卷(费选择题)两部分,共4页,时间120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必先在答题卡上讲姓名、座号、准考证号填写清楚……的准考证号、姓名、考场号和座号。

2、在答第Ⅰ卷时,用2B铅笔将答题卡对应题目的答案标号涂黑,修改时用其他答案。

答案不能答在试卷上。

3、在答第Ⅱ卷时必须使用0.5毫米的黑色签字笔作答,答案必须写在答题卡上,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案,不能用胶带纸和修正带。

不按以上要求作答的答案无效。

4、如需作图,考生应先用铅笔绘图,确认无误后,用0.5毫米的黑色签字笔再描一遍。

5、本试卷中,tanα表示角α的正切,cosα表示角α的余切。

第Ⅰ卷(选择题,共85分)一、选择题:本大题共17小题,每小题5分,共85分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

(1)设集合A={0,1},B={0,1,2},则A∩B=A.{0,1}B.{0,2}C.{1,2}D.{0,1,2}答案:A2.函数y=2sinxcosx的最小正周期是A.π/2B.πC.2πD.4π答案:B3.等差数列{an}中,若a1=2,a3=6,a7=A.14B.12C.10D.8答案:A4、若甲:x>1,e2>1,则()。

A.甲是乙的必要条件,但不是乙的充分条件B.甲是乙的充分条件,但不是乙的必要条件C.甲不是乙的充分条件,也不是乙的必要条件D.甲是乙的充分必要条件答案:B5、不等式|2x-3|≤1的解集为()。

A.{x|1≤x≤3}B.{x|x≤-1或x≥2}C.{x|1≤x≤2}D.{x|2≤x≤3}答案:C6、下列函数中,为偶函数的是()。

A.y=log2xB.y=x2+xC.y=6/xD.y=x2答案:D7、点(2,4)关于直线y=x的对称点的坐标是()。

A.(-2,4)B.(-2,-4)D..(-4,-2)答案:C8、将一颗骰子抛掷1次,得到的点数为偶数的概率为()。

(完整版)2017年成人高考高起专《数学》真题及答案

(完整版)2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=( )A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x 4的最小正周期是( )A.8πB.4πC.2πD.2π 3.函数y=√x(x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1} 4.设a,b,c 为实数,且a>b,则( )A.a -c>b -cB.|a|>|b|C.a 2>b 2D.ac>bc 5.若π2<θ<π,且sin θ=13,则cos θ=( )A .2√23 B.− 2√23 C. − √23 D. √236.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x 2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 8.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x -y+1=0B.x+y -5=0C.x -y -1=0D.x -2y+1=09.函数y=1x 是( ) A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x -y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。

2017年成人高考高起专《数学》真题及答案

2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=( )A.{x|x0}B.{x|x1}C.{x|x1}D.{x|0或1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若<<,且sin=,则=( )A B. C. D.6.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是( )A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为( )A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。

《2017年成人高考专升本《高等数学一》真题及答案

《2017年成人高考专升本《高等数学一》真题及答案
《2017 年成人高考专升本《高等数学一》真题及答案
一、选择题:1~10 小题。每小题 4 分,共 40 分.在每个小题给出的四个选 项 中,只有一项是符合题目要求的。把所选项前的字母填在题后的括号内。
第1题
答案:C 第2题
答案:C
第 1 页 共 11 页
第3题
答案:D 第4题
答第 21 题
答案:
第 22 题 答案:
第 7 页 共 11 页
第 23 题 答案:
第 8 页 共 11 页
第 23 题 答案:
第 24 题 答案:
第 9 页 共 11 页
第 25 题 答案:
第 26 题 答案:
第 10 页 共 11 页
第 27 题 答案:
第 28 题 答案:
第 11 页 共 11 页
答案:0 第 15 题
答案: 第 16 题 答案:8
第 5 页 共 11 页
第 17 题 答案: 第 18 题 答案: 第 19 题
答案: 第 20 题 答案:
第 6 页 共 11 页
三、解答题:21~28 题,前 5 小题各 8 分,后 3 小题各 10 分。共 70 分.解答 应写出推理、演算步骤。
答案:B 第6题
答案:B 第7题
答案:A 第8题
答案:A
第 3 页 共 11 页
第9题
答案:C 第 10 题
答案:C 二、填空题:11~20 小题。每小题 4 分,共 40 分.把答案填在题中横线上。
第 11 题 答案:
第 4 页 共 11 页
第 12 题
答案:y=1 第 13 题
答案:f(-2)=28 第 14 题

(完整)2017年全国高考文科数学试题及答案-全国卷2,推荐文档

(完整)2017年全国高考文科数学试题及答案-全国卷2,推荐文档

2017年普通高等学校招生全国统一考试(全国卷2)数学(文史类)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合{1,2,3},{2,3,4}A B ==,则A B =UA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2. (1)(2)i i ++=A.1i -B. 13i +C. 3i +D.33i + 3. 函数()sin(2)3f x x π=+的最小正周期为 A.4π B.2π C. π D. 2π 4. 设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a5. 若1a >,则双曲线2221x y a-=的离心率的取值范围是 A. 2+∞(,) B. 22(,) C. 2(1,) D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. 90πB. 63πC. 42πD. 36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+ 的最小值是A. -15B.-9C. 1 D 9 8. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A. 乙可以知道两人的成绩B. 丁可能知道两人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的1a =-,则输出的S=A.2B.3C.4D.511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25 12. 过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分.13. 函数()2cos sin f x x x =+的最大值为 .14. 已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = 15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:(一)必考题:共60分。

2017年成人高考高数真题及答案解析

2017年成人高考高数真题及答案解析

2017年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

1.当0→x 时,下列变量是无穷小量的为( ) A.21xB.x2 C.x sin D.()e x +ln 2.=⎪⎭⎫⎝⎛+→xx x 21lim 0( ) A.e B.1-e C.2e D.2-e3.若函数()⎪⎩⎪⎨⎧=≠=-0,0,21x a x e x f x,在x=0处连续,则常数a=( ) A.0 B.21C.1D.2 4.设函数()x x x f ln =,则()='e f ( ) A.-1 B.0 C.1 D.25.函数()x x x f 33-=的极小值为( ) A.-2 B.0 C.2 D.46.方程132222=++z y x 表示的二次曲面是( ) A.圆锥面 B.旋转抛物面 C.球面 D.椭球面7.若()1210=+⎰dx k x ,则常数=k ( ) A.-2 B.-1 C.0 D.18.设函数()x f 在[]b a ,上连续且()0>x f ,则( ) A.()0>dx x f ba ⎰B.()0<dx x f ba ⎰C.()0=⎰dx x f ba D.()dx x f ba⎰的符号无法确定9.空间直线231231-=-+=-z y x 的方向向量可取为( ) A.(3,-1,2) B.(1,-2,3) C.(1,1,-1) D.(1,-1,-1)10.一直a 为常数,则幂级数()∑∞=+-121n nan ( ) A.发散 B.条件收敛 C.绝对收敛 D.敛散性与a 的取值有关 二、填空题:11~20小题,每小题4分,共40分。

将答案填写在答题卡相应题号后。

11.()=--→2sin 2lim2x x x _________12.曲线121++=x x y 的水平渐进方程为_________ 13.若函数()x f 满足()21='f ,则()()=--→11lim 21x f x f x _________ 14.设函数()xx x f 1-=,则()='x f _______15.()⎰-=+22cos sin ππdx x x _______16.⎰+∞=+0211dx x __________ 17.一直曲线22-+=x x y 的切线l 斜率为3,则l 的方程为_________ 18.设二元函数()y x z +=2ln ,则=∂∂xz_________ 19.设()x f 为连续函数,则()='⎪⎭⎫ ⎝⎛⎰xdt t f 0__________ 20.幂级数∑∞=03n n nx 的收敛半径为_________三、解答题:21~28题,共70分,接答应写出推理、演算步骤21.求201sin lim x x e x x --→22.设⎪⎩⎪⎨⎧+=+=3211ty tx ,求dx dy23.已知x sin 是()x f 的一个原函数,求()⎰'dx x f x24.计算dx x⎰+401125.设二元函数122+-+=y x y x z ,求yx zx z ∂∂∂∂∂2及26.计算二重积分⎰⎰+Ddxdy y x 22,其中区域(){}4,22≤+=y x y x D27.求微分方程2x dxdyy 的通解28.用铁皮做一个容积为V 的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小2017年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】C【解析】00sin sin lim 0==→x x2.【答案】C【解析】222021lim 21lim e x x xx xx =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅→→3.【答案】B【解析】因为函数()x f 在0=x 处连续,则()()21021lim lim 00====-→→f a e x f x x x4.【答案】D【解析】因为()()1ln ln ln +='+='x x x x x f ,所以()21ln =+='e e f 5.【答案】A【解析】因为()332-='x x f ,令()0='x f ,得驻点11-=x ,12=x ,又()x x f 6='' ()0<61-=-''f ,()0>61=''f ,所以()x f 在12=x 处取得极小值,且极小值()2311-=-=f6.【答案】D【解析】可将原方程化为13121222=++z y x ,所以原方程表示的是椭球面。

2017年成人高考高起专数学真题及答案解析(可编辑修改word版)

2017年成人高考高起专数学真题及答案解析(可编辑修改word版)

2 2 32017 年成人高等学校高起点招生全国统一考试数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150 分。

考试时间150 分钟。

第I 卷(选择题,共85 分)一、选择题(本大题共17 小题,每小题5 分,共85 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)x2.函数y=3sin4的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y= x(x ‒ 1)的定义城为( )A.{x|x ≥ 0}B.{x|x ≥ 1}C.{x|0 ≤ x ≤ 1}D.{x|x ≤ 0或x ≥ 1}4.设a,b,c 为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.a2>b2D.ac>bcπ15.若2<θ<π,且sinθ=3,则cos θ=( )2 2 2 2A. B. ‒3 C. ‒ 3 D. 36.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=019.函数y=x是( )A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5 个不同的点,以这5 个点中任意3 个为顶点的三角形共有( )A.60 个B.15 个C.5 个D.10 个11.若lg5=m,则lg2=( )x 2 = 1 A. 5mB.1-mC.2mD.m+112.设 f(x+1)=x(x+1),则 f(2)= ( )A.1B.3C.2D.613. 函数 y=2x 的图像与直线 x+3=0 的交点坐标为( )1111A.(-3,-6)B.(-3,8)C.(-3,6)D.(-3,-8)y 214. 双曲线3 -的焦距为( ) A.1B.4C.2D.x 2 y 215. 已知三角形的两个顶点是椭圆 C :25+16=1 的两个焦点,第三个顶点在 C 上,则该三角形的周长为( ) A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=()A.100B.40C.10D.2017.若 1 名女生和 3 名男生随机地站成一列,则从前面数第 2 名是女生的概率为( )1A.41B.31C.23D.4第Ⅱ卷(非选择题,共 65 分)二、填空题(本大题共 4 小题,每小题 4 分,共 16 分) 18.已知平面向量 a=(1,2),b=(-2,3),2a+3b=.19. 已知直线 1 和 x-y+1=0 关于直线 x=-2 对称,则 1 的斜率为= .20. 若 5 条鱼的平均质量为 0.8kg,其中 3 条的质量分别为 0.75kg,0.83kg 和 0.78kg ,则其余 2条的平均质量为kg.2121.若不等式|ax+1|<2 的解集为{x|-3<x<2},则 a=.三.解答题(本大题共 4 小题,共 49 分.解答应写出推理、演算步骤)22. (本小题满分 12 分)设{a n }为等差数列,且a 2 + a 4 ‒ 2a 1=8. (1)求{a n }的公差 d;(2)若a 1=2,求{a n }前 8 项的和S 8.223.(本小题满分 12 分)设直线 y=x+1 是曲线 y=x 3+3x 2+4x+a 的切线,求切点坐标和 a 的值。

(完整word版)2017年全国高考文科数学试题及答案-全国卷3,推荐文档

(完整word版)2017年全国高考文科数学试题及答案-全国卷3,推荐文档

2017年普通高等学校招生全国统一考试文科数学符合题目要求的。

1.已知集合A={1,2,3,4} , B={2,4,6,8}2 .复平面内表示复数z=i( - 2+i)的点位于12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是 A. 月接待游客逐月增加 B. 年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在 7,8月一、选择题:本大题共12小题,每小题 5分,共60分。

在每小题给出的四个选项中,只有一项是A . 1B . 2C . 3D . 4,贝U A B 中元素的个数为A .第一象限B .第二象限C .第三象限D .第四象限 3 .某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016 年D. 各年17月至12月,波动性更小,变化比较平稳6 .函数 f ( x )= sin(x + )+cos( x -)的最大值为36A . 6B . 154.已知 4 sin e-cos3 ,贝U sin 2 =72A .B .—993x 2y 60 5.设x ,y 满足约束条件 x A 0y 0A .--3,0]B .3,2]7JI2 7 C. — D .99D. 0,3]C .D.,贝U z =x - y 的取值范围是C. 0,2]17 .函数y=1 + x+ sin/的部分图像大致为x8 .执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A. 5B. 4C. 3D. 29 .已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. nB.C.」D.」4 2 410 .在正方体ABCD ABC D 中,E为棱CD的中点,则iiiiA. A i E丄DC iB. AE丄BDC. A i E丄BC iD. AE丄AC1—+—= 2 2ii .已知椭圆 c :xy _+ 2_2 1一—,(a >b >0)的左、右顶点分别为a bfJ丁直线bx ay 2ab 0相切,则 C 的离心率为A 1, A,且以线段A 1A 2为直径的圆与A 6=十3+ -+ 21 A .B .C.D.333312 .已知函数2一x1x 1——f (x) x 2x a(ee )有唯一零点,贝Ua =11 1A .B .C .D . 12 32二、填空题:本题共 4小题,每小题 5分,共20分。

2017成人高考专升本《高等数学》真题及参考答案评分标准

2017成人高考专升本《高等数学》真题及参考答案评分标准

2017年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

1.当0→x 时,下列变量是无穷小量的为()A.21x B.x2 C.xsin D.()e x +ln 2.=⎪⎭⎫ ⎝⎛+→xx x 21lim 0()A.eB.1-e C.2e D.2-e 3.若函数()⎪⎩⎪⎨⎧=≠=-0,0,21x a x e x f x,在x=0处连续,则常数a=()A.0B.21 C.1 D.24.设函数()x x x f ln =,则()='e f ()A.-1B.0C.1D.25.函数()x x x f 33-=的极小值为()A.-2B.0C.2D.46.方程132222=++z y x 表示的二次曲面是()A.圆锥面B.旋转抛物面C.球面D.椭球面7.若()1210=+⎰dx k x ,则常数=k ()A.-2B.-1C.0D.18.设函数()x f 在[]b a ,上连续且()0>x f ,则()A.()0>dx x f ba ⎰ B.()0<dx x f ba ⎰C.()0=⎰dx x f ba D.()dx x f ba ⎰的符号无法确定9.空间直线231231-=-+=-z y x 的方向向量可取为()A.(3,-1,2)B.(1,-2,3)C.(1,1,-1)D.(1,-1,-1)10.一直a 为常数,则幂级数()∑∞=+-121n nan ()A.发散B.条件收敛C.绝对收敛D.敛散性与a 的取值有关二、填空题:11~20小题,每小题4分,共40分。

将答案填写在答题卡相应题号后。

11.()=--→2sin 2lim2x x x _________12.曲线121++=x x y 的水平渐进方程为_________13.若函数()x f 满足()21='f ,则()()=--→11lim 21x f x f x _________14.设函数()xx x f 1-=,则()='x f _______15.()⎰-=+22cos sin ππdx x x _______16.⎰+∞=+0211dx x __________17.一直曲线22-+=x x y 的切线l 斜率为3,则l 的方程为_________18.设二元函数()y x z +=2ln ,则=∂∂xz_________19.设()x f 为连续函数,则()='⎪⎭⎫ ⎝⎛⎰xdt t f 0__________20.幂级数∑∞=03n n nx 的收敛半径为_________三、解答题:21~28题,共70分,接答应写出推理、演算步骤21.求201sin limx x e x x --→22.设⎪⎩⎪⎨⎧+=+=3211ty tx ,求dx dy 23.已知x sin 是()x f 的一个原函数,求()⎰'dxx f x24.计算dx x⎰+41125.设二元函数122+-+=y x y x z ,求yx zx z ∂∂∂∂∂2及26.计算二重积分⎰⎰+Ddxdy y x 22,其中区域(){}4,22≤+=y x y x D27.求微分方程2x dxdyy的通解28.用铁皮做一个容积为V 的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小2017年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】C【解析】00sin sin lim 0==→x x 2.【答案】C【解析】222021lim 21lim e x x xx xx =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+⋅→→3.【答案】B【解析】因为函数()x f 在0=x 处连续,则()()21021lim lim 00====-→→f a e x f x x x 4.【答案】D【解析】因为()()1ln ln ln +='+='x x x x x f ,所以()21ln =+='e e f 5.【答案】A【解析】因为()332-='x x f ,令()0='x f ,得驻点11-=x ,12=x ,又()x x f 6=''()0<61-=-''f ,()0>61=''f ,所以()x f 在12=x 处取得极小值,且极小值()2311-=-=f 6.【答案】D【解析】可将原方程化为13121222=++z y x ,所以原方程表示的是椭球面。

2017年成人高考高数一真题及答案

2017年成人高考高数一真题及答案

24.设√ = t,则 x = 2 , = 2,0 ≤ ≤ 2
4
2
2
1

= ∫
= ∫ (1 −
)
1+
0 1 + √
0 1+t
0
1
2
= 2,|20 − ln(1 + ) |20 = 2 ∗ (2 − 3)
= 4 − 23
25.因为 = 2 2 + − + 1,所以
20.幂级数∑∞
=0 3 的收敛半径为
三、解答题(21-28 题,共 70 分)
21. limx→0
−sin −1
2
2


22.设 x=1+t
3
y=1+t
dy
求dx
23.已知sin 是函数f(x)的一个原函数,求∫ ′ ()
4
24.计算∫0
1
1+√


2
25.设二元函数z = x 2 2 + − + 1,求及
3
dy
27.y dx = 2
y
dy
= 2
dx
1
1
两边同时积分,2 y 2 = 3 3 + 1
3y 2 = 2 3 + 1
y2 =
2 3
+ 1
3
28.设圆柱形的底面半径为 r,高为 h,则V = 2 ℎ
所用铁皮面积S = 2 + 2ℎ
dS
令dr = 4πr − 2πh = 0
26. 计算二重积分∬ √ 2 + 2 ,其中区域 = *(, )| 2 + 2 ≤ 4+。

2017年成人高考高起点数学文真题及答案

2017年成人高考高起点数学文真题及答案

2017年成人高考高起点数学文真题及答案一、选择题(本大题共 17 小题,每小题 5 分,共 85 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M = {1,2, 3, 4,5),M = {2, 4,6),则M ∩ M =( ) A.{2, 4} B. {2, 4, 6} C.{1, 3, 5} D.{1,2,3,4,5,6}2.函数M = 3 sin M的最小正周期是( )4A.8MB.4MC.2MD.2M33.函数M = √M (M − 1)的定义域为( ) A.{M | M ≥ 0} B.{M |M ≥ 1}C.{M |0 ≤ M ≤ 1}D.{M |M ≤ 0 或 M ≥ 1}4. 设a , b , c 为实数,且ab ,则( ) A. a c b c B. a bC. a 2 b 2D. ac bc M < M < M ,且sin M = 1,则cos M = ( )2 3A.2√2 B.− 2√2 C.− √2 D.√2 3 3 3 36.函数M = 6 sin M cos M的最大值为( ) A.1 B.2 C.6 D.37.下图是二次函数M = M 2+ MM + M的部分图像,则 ( ) A. M > 0, M > 0 B. M > 0, M < 0 C. M < 0, M > 0 D. M < 0, M < 08.已知点M (4, 1), M (2, 3),则线段MM的垂直平分线方程为( ) A.M − M + 1 = 0 B.M + M − 5 = 0 C.M − M − 1 = 0 D.M − 2M + 1 = 09.函数M = 1是( )M A.奇函数,且在(0, +∞)单调递增5.若B.偶函数,且在(0, +∞)单调递减C. 奇函数,且在(−∞, 0)单调递减D. 偶函数,且在(−∞, 0)单调递增10. 一个圆上有 5 个不同的点,以这 5 个点中任意 3 个为顶点的三角形共有( ) A.60 个 B.15 个 C.5 个 D.10 个 11.若lg5 = M ,则lg 2 = ( ) A.5M B.1 − M C.2M D.M + 1 12.设M (M + 1) − M (M + 1),则M (2) = ( ) A.1 B.3 C.2 D.613.函数M = 2M的图像与直线M + 3 = 0的交点坐标为( )A. (−3, − 1)B. (−3, 6 1)C.(−3, 8 1) D. (−3, − 6 1) 814.双曲线M 2 − M 2= 1的焦距为( )3A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆M : M 2 + M 2= 1的两个焦点,第三个顶点在M上,则该三角形的周长为( )25 16 A.10 B.20 C.16 D.26 16.在等比数列的中,若M 3M 4 = 10,则M 1M 6 + M 2M 5 = ( ) A.100 B.40 C.10 D.2017. 1 名女生和 3 名男生随机站成一列,则从前面数第 2 名是女生的概率为( )A.1B. 1C. 1D. 3 4 3 2 4二、填空题(本大题共 4 小题,每小题 4 分。

2017年高考真题——数学文(全国Ⅰ卷)+Word版含答解析(参考版)

2017年高考真题——数学文(全国Ⅰ卷)+Word版含答解析(参考版)

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A. 2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)【答案】C【解析】由2(1)2i i +=为纯虚数知选C.4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .1 2C .2 3D .3 2【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D. 6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是【答案】A【解析】由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ.故A 不满足,选A. 7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D.8..函数sin21cos xy x=-的部分图像大致为【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 201cos 2y =>-,排除A.故选C.9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D【解析】由题意选择321000n n->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D.11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

成人高考高起专数学真题及答案

成人高考高起专数学真题及答案

2017年成人高等学校高起点招生全国统一考试数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=( )A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,,6)2.函数y=3sin x 4的最小正周期是( )π π π π 3.函数y=√x (x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1}4.设a,b,c 为实数,且a>b,则( )>b-cB.|a|>|b|C.a 2>b 2 >bc 5.若π2<θ<π,且sin θ=13,则cos θ=( )A .2√23 B.− 2√23 C. − √23 D. √23 6.函数y=6sinxcosc 的最大值为( )7.右图是二次函数y=x 2+bx+c 的部分图像,则>0,c>0 8.已知点A(4,1),B(2,3),则线段AB +1=0 +y-5=0 =0 +1=09.函数y=1x 是( )A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )个 个 个 个11.若lg5=m,则lg2=( )+1 12.设f(x+1)=x(x+1),则f(2)= ( )13.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )16.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )17.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为,其中3条的质量分别为,和,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a a }为等差数列,且a 2+a 4−2a 1=8.(1)求{a a }的公差d;(2)若a 1=2,求{a a }前8项的和a 8.23.(本小题满分12分)设直线y=x+1是曲线y=a 3+3a 2+4x+a 的切线,求切点坐标和a 的值。

2017年全国高考文科数学试题及答案-全国卷3(2)(K12教育文档)

2017年全国高考文科数学试题及答案-全国卷3(2)(K12教育文档)

2017年全国高考文科数学试题及答案-全国卷3(2)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年全国高考文科数学试题及答案-全国卷3(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年全国高考文科数学试题及答案-全国卷3(2)(word版可编辑修改)的全部内容。

2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上.写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={1,2,3,4},B={2,4,6,8},则AB中元素的个数为A.1 B.2 C.3 D.4【答案】B【解析】由题意可得:。

本题选择B选项.2.复平面内表示复数z=i(–2+i)的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B【解析】由题意:.本题选择B选项.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由折线图,7月份后月接待游客量减少,A错误;本题选择A选项。

2017年成人高考数学试题及答案

2017年成人高考数学试题及答案

2017年成人高考数学试题及答案一、选择题(每题4分,共40分)1. 已知函数f(x)=2x-3,求f(2)的值。

A. 1B. 4C. 7D. 10答案:B2. 计算下列不等式中x的取值范围:2x+3>5。

A. x>1B. x>-1C. x<1D. x<-1答案:B3. 已知等差数列的首项为3,公差为2,求第5项的值。

A. 13B. 15C. 17D. 19答案:A4. 计算下列三角函数值:sin(30°)。

A. 1/2B. √3/2C. 1/√2D. √2/2答案:A5. 已知圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。

A. 相离B. 相切C. 相交D. 包含答案:C6. 计算下列方程的解:3x-7=14。

A. x=-1B. x=3C. x=5D. x=7答案:C7. 已知矩阵A=[1,2;3,4],求矩阵A的行列式值。

A. -2B. 2C. 5D. 8答案:C8. 计算下列复数的模:z=3+4i。

A. 5B. √7C. √25D. √41答案:D9. 已知函数f(x)=x^2-6x+8,求函数的对称轴。

A. x=-2B. x=3C. x=0D. x=6答案:B10. 计算下列极限:lim(x→0) (sin(x)/x)。

A. 1B. 0C. 2D. ∞答案:A二、填空题(每题4分,共20分)1. 已知等比数列的首项为2,公比为3,求第4项的值:______。

答案:542. 求函数y=x^3-3x^2+2在x=1处的导数值:______。

答案:-23. 计算下列定积分:∫(0到1) x^2 dx:______。

答案:1/34. 已知曲线y=x^2+3x+2与x轴交点的横坐标为:______。

答案:-1, -25. 计算下列概率:从5个红球和3个白球中随机抽取2个球,抽到2个红球的概率:______。

答案:5/12三、解答题(每题10分,共40分)1. 解方程:2x^2-5x+2=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【单选题】设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()
A.{2,4)
B.(2,4,6)
C.(1,3,5)
D.{1,2,3,4.5,6) 【答案】 A
【单选题】函数y=3sin的最小正周期是()
A.8π
B.4π
C.2π
D.2π
【答案】A
【单选题】函数y=的定义城为( )
A.{x|x0}
B.{x|x1}
C.{x|x1}
D.{x|01} 【答案】 B
【单选题】设a,b,c为实数,且a>b,则( )
A.a-c>b-c
B.|a|>|b|
C.>
D.ac>bc
【答案】 A
【单选题】若<<,且sin=,则=( )
A B. C. D.
【答案】 B
【单选题】函数y=6sinxcosx的最大值为( )
A.1
B.2
C.6
D.3
【答案】D
【单选题】右图是二次函数y=+bx+c的部分图像,则( )
A.b>0,c>0
B.b>0,c<0
C.b<0,c>0
D.b<0,c<0
【答案】A
【单选题】已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )
A.x-y+1=0
B.x+y-5=0
C.x-y-1=0
D.x-2y+1=0
【答案】C
【单选题】函数y=是( )
A.奇函数,且在(0,+)单调递增
B.偶函数,且在(0,+)单调递减
C.奇函数,且在(-,0)单调递减
D.偶函数,且在(-,0)单调递增
【答案】C
【单选题】一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )
A.60个
B.15个
C.5个
D.10个
【答案】D
【单选题】若lg5=m,则lg2=( )
A.5m
B.1-m
C.2m
D.m+1
【答案】 B
【单选题】设f(x+1)=x(x+1),则f(2)= ( )
A.1
B.3
C.2
D.6
【答案】 C
【单选题】函数y=的图像与直线x+3=0的交点坐标为( )
A.(-3,-)
B.(-3,)
C.(-3,)
D.(-3,-)
【答案】 B
【单选题】双曲线-的焦距为()
A.1
B.4
C.2
D.
【答案】 B
【单选题】已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,
则该三角形的周长为( )
A.10
B.20
C.16
D.26
【答案】 C
【单选题】在等比数列{
}中,若34162510,a a a a a a =+=则( ) A.100
B.40
C.10
D.20
【答案】 D
【单选题】若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为
( )
A.
B. C. D. 【答案】A
【填空题】已知平面向量a=(1,2),b=(-2,3),2a+3b= .
【答案】 (-4,13)
【填空题】已知直线l 和x-y+1=0关于直线x=-2对称,则l 的斜率为 .
【答案】 -1
【填空题】若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为 kg.
【答案】 0.82
【填空题】若不等式|ax+1|<2的解集为{x|-3/2<x<1/2},则a= .
【答案】 2
【解答题】设{
}为等差数列,且=8. (1)求{
}的公差d; (2)若
=2,求{前8项的和.
【解答题】设直线y=x+1是曲线y=+3+4x+a 的切线,求切点坐标和a 的值。

【解答题】如图,AB 与半径为1的圆0相切于A 点,AB=3,AB 与圆0的弦AC 的夹角为50°.求(1)AC: (2)△ABC 的面积.(精确到0.01)
【解答题】已知关于x,y的方程+4xsin-4ycos=0.
(1)证明:无论为何值,方程均表示半径为定长的圆;
(2)当=时,判断该圆与直线y=x的位置关系.。

相关文档
最新文档