06级线代试卷试卷B
2006-2007(2)高等数学试题(B卷)(90)解答

域. 解: 积分区域如图(略)………………………………………………2 分
òò xydxdy = ò
D
2
1
dx ò xydy …………………………………………4 分
1
x
x 3 x = ò ( - ) dx ………………………………………6 分 1 2 2
2
=
9 ……………………………………………………7 分 8
2.设 L 为正向圆周 x 2 + y 2 - 2 x = 0 ,计算 ò ( 1 - y 3 ) dx + x 3 dy .
L
解: 记 D : x 2 + y 2 - 2 x £ 0 ,由格林公式有 1 - y ) dx + x dy = òò (3 x ò (
L
D
3
n = 0 ¥ ¥ ¥
解:
å (2n + 1) x 2 n = å ( x2 n +1 )¢ = (å x2 n +1 )¢ …………………………3 分
n = 0 n = 0 n = 0
x ¢ …………………………………………5 分 =( ) 1 - x 2
=
2 1 + x …………………………………………6 分 2 (1 - x 2 )
六. (本题满分 8 分) 设 W 是由曲面 z = 2 - x 2 - y 2 及 z = x 2 + y 2 所围成的有界闭区域,求 W 的 体积. 解:
W 在 xOy 面上的投影区域为 D : x 2 + y 2 £ 1 ……………………2 分
W 的体积为
V = òòò dv = ò
2005-2006线代统考试卷B

2005-2006(二)学期线性代数试卷(B 卷)(适用于各专业)姓名___________班级_______学号__________成绩________(考试时间:2小时)一、选择(每小题5分,共25分)1.向量组12,,,n ααα(2n ≥)线性相关的充分必要条件是该向量组中 (A ) 有一个零向量 (B ) 每一个向量都可由其余的向量线性表示 (C ) 有一个向量可由其余的向量线性表示(D ) 有两个向量的对应分量成比例2.设A 是79⨯矩阵,齐次线性方程组=0Ax 的基础解系含有4个解向量,则矩阵A 的行向量组的秩等于(A ) 2 (B ) 3 (C ) 4 (D ) 53.已知A 、B 都是可逆的对称矩阵,则不一定对称的矩阵是(A ) ()1-AB (B ) BA AB + (C ) B A + (D ) 11--+B A4.已知()()22B A B A B A -=+-,则矩阵A 、B 必定满足(A )A =B (B )AB =BA (C )AB 是对称矩阵 (D )A 、B 都是对角矩阵 5.A 是n 阶方阵,2A I =,则(A )A 为正交矩阵 (B)1A A -= (C ) trA= 2n (D) A 是实对称矩阵 其中 trA 是A 对角线上元素的和。
二、解答下列各题(2,3,4每题6分,第1题7分共25分)1.已知齐次线性方程组 123123123(152)11100(113)17160(7)14130a x x x a x x x a x x x -++=⎧⎪-++=⎨⎪-++=⎩有非零解,问a 应取什么值?1.若方阵A 满足30A =,验证:12()I A I A A --=++2.122,112αβ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设T A αβ=,求4A 。
⎪⎪⎪⎭⎫ ⎝⎛----1211013653.设5阶方阵A 的特征值是1,1,2,2,3,求|A-4I |.三、(10分)求下列矩阵的逆矩阵:123221343⎛⎫ ⎪ ⎪ ⎪⎝⎭四、(15分)求下列齐次线性方程组的基础解系以及系数矩阵的秩,并用基础解系表示方程组的通解:⎪⎩⎪⎨⎧=++-=++-=++-01117840246303542432143214321x x x x x x x x x x x x五、 (10分)求下列向量组的秩和一个极大无关组,并将其余向量用此极大无关组线性表 示:1234(1,1,0),(2,1,3),(3,1,2),(5,0,7)αααα=-=== 六、(15分)求下列矩阵的特征值和特征向量并判别是否可以对角化。
华工2006-2007线性代数试题及解答

华南理工大学期末考试《 2006线性代数 》试卷A一、填空题(每小题4分,共20分)。
0.已知正交矩阵P 使得100010002T P AP ⎛⎫⎪=- ⎪ ⎪-⎝⎭,则2006()T P A E A P +=1.设A 为n 阶方阵,12,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则det( 2A )=2.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有无数多个解的充分必要条件是:rank(A)=rank(A,B)<n 3.4.若向量组α=(0,4,2),β=(2,3,1),γ=(t ,2,3)的秩为2,则t=-85.231511523()5495827x D x xx -=-,则0)(=x D 的全部根为:1、2、-3二、 选择题(每小题4分,共20分)1.行列式001010100⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅的值为( c )。
DA , 1,B ,-1C ,(1)2(1)n n -- D ,(1)2(1)n n +-2.对矩阵n m A ⨯施行一次行变换相当于( A )。
A , 左乘一个m 阶初等矩阵,B ,右乘一个m 阶初等矩阵C , 左乘一个n 阶初等矩阵,D ,右乘一个n 阶初等矩阵3.若A 为m ×n 矩阵,()r A r n =<,{|0,}nM X AX X R ==∈。
则( C )。
DA ,M 是m 维向量空间,B , M 是n 维向量空间C ,M 是m-r 维向量空间,D ,M 是n-r 维向量空间4.若n 阶方阵A 满足,2A =0,则以下命题哪一个成立( A )。
DA , ()0r A =,B , ()2n r A =C , ()2n r A ≥,D ,()2n r A ≤5.若A 是n 阶正交矩阵,则以下命题那一个不成立( D )。
A ,矩阵A T 为正交矩阵,B ,矩阵1A -为正交矩阵C ,矩阵A 的行列式是±1,D ,矩阵A 的特征根是±1三、解下列各题(每小题6分,共30分) 1.若A 为3阶正交矩阵,*A 为A 的伴随矩阵, 求det (*A )2.计算行列式111111111111a a a a。
06级信本高等代数试题

06级信本高等代数试题(A )一、单项选择(每小题3分,共15分)1、下列矩阵正定的是( )A 、121232123⎛⎫ ⎪ ⎪ ⎪⎝⎭B 、122244246⎛⎫ ⎪ ⎪ ⎪⎝⎭C 、122255253--⎛⎫ ⎪- ⎪ ⎪-⎝⎭D 、725212525⎛⎫⎪⎪ ⎪⎝⎭2、下列3R 的子集是其子空间的是( )A 、12323{(,,)|,0}i x x x x R x x ∈+=B 、12323{(,,)|,0}i x x x x R x x ∈+≠C 、12323{(,,)|,0}i x x x x R x x ∈+≤D 、12323{(,,)|,0}i x x x x R x x ∈+≥ 3、212(,)x x Q ∀∈,下列法则为2Q 的线性变换的是( ) A 、1212(,)x x x x σ=+ B 、122(,)(,0)x x x σ= C 、121(,)(0,sin )x x x σ= D 、2121(,)(,0)x x x σ=4、设3=λ为可逆矩阵A 的特征值,则13)31(-A 有特征值( )A 、181B 、127C 、91D 、315、下列]2,2[-C 中向量为单位向量的是( ) A 、1 B 、x 43 C 、2x D 、22二、填空(每小题3分,共15分)1、一切实n 元二次型可分为 个等价类2、2[]C x 作为实数域上的线性空间其维数是 ,其基为3、向量12αα+关于基312,,ααα的坐标是4、)(,2P L ∈τσ,),(),(x y y x -=σ,(,)(0,)x y x τ=,则(,)x y στ=5、在3R 中,定义内积31(,)i i i ix y αβ==∑,则)0,1,0(与(0,0,1)的夹角为三)01('、求可逆线性替换PY X =,使实二次型21233121323(,,)28124f x x x x x x x x x x =+--化为标准形,并求其正惯性指数,判断其是否正定.四)01('、求10121123(,,,)12100111L ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭的一组基与维数.五)51('、设22100x y x y z u W R z u x y z u ⨯⎧⎫+++=⎛⎫⎧⎪⎪=∈⎨⎨⎬ ⎪-+-=⎝⎭⎩⎪⎪⎭⎩,21110(,)1011W L ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭为22R ⨯的两个子空间,求1212,W W W W + 的一组基与维数.六(10)'、3),,(P z y x ∈∀,令(,,)(2,2,32)x y z x y z x y z x y z σ=++-+-+ ①证明)(3P L ∈σ;②求σ关于基)0,0,1(),0,1,1(),1,1,1(321===ααα的矩阵.七)51('、设321,,εεε是欧氏空间V 的一组标准正交基,)(V L ∈σ,并且1123()22σεεεε=--,2123()22σεεεε=-+-,3123()22σεεεε=--+①证明σ是V 上的对称变换;②求σ的特征值与特征向量;③求V 的一组标准正交基,使σ关于此基的矩阵为对角矩阵. 八(10)'、设1234{,,,}αααα是欧氏空间V 的一组标准正交基,证明:1121(2βαα=++34)αα+,212341()2βαααα=--+,312341()2βαααα=-+-,412341()2βαααα=+--也是欧氏空间V 的一组标准正交基.06级信本高等代数试题(A )答案与评分标准一、单项选择(每小题3分,共15分)D, A, B, C, B .二、填空(每小题3分,共15分)1、(1)(2)2n n ++;2、4,1,,,i x ix ;3、(0,1,1);4、(,0)x -;5、2π.三)01('、解:二次型的矩阵046402622A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭对矩阵A 作合同变换04618201600402220020622002001100100100010010110001311211----⎛⎫⎛⎫⎛⎫⎪ ⎪⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--→→ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, (5分)令100110211X Y ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,则二次型的标准形为222123162y y y --+;正惯性指数为1 ;且不正定. (5分)四)01('、解:取22R ⨯的一组基11122122,,,E E E E ,则111221221112101211230213(,,,)(,,,)1210011111012011E E E E ⎛⎫⎪⎛⎫⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭(5分) 11121112021302131101000020110000⎛⎫⎛⎫⎪ ⎪⎪ ⎪→ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭,故其基为1012,1210⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝⎭,维数为2. (5分)五)51('、解:由0x y z u x y z u +++=⎧⎨-+-=⎩的基础解系可得1W 的基为1001,1001⎛⎫⎛⎫ ⎪ ⎪--⎝⎭⎝⎭, (5分)则1210011110(,,,)10011011W W L ⎛⎫⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,而101110000110010110110011011000⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪→ ⎪ ⎪-⎪ ⎪-⎝⎭⎝⎭, (5分)则1212dim()3,dim()1W W W W +== ,基分别为100111,,100110⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭;011110011011⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. ( 5分) 六(10)'、①证明:(,,)(2,2,32)x y z x y z x y z x y z σ=++-+-+213(,,)121112x y z ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,令213121112A ⎛⎫⎪=-- ⎪ ⎪⎝⎭,P b a P Y X ∈∀∈∀,,,3,有=+)(bY aX σ)()()(Y b X a bYA aXA A bY aX σσ+=+=+则)(3P L ∈σ; (5分) ②1123()(4,0,4)444σαααα==-+,2123()(3,1,2)234σαααα=-=-+,3123()(2,1,3)32σαααα==-+,故σ关于},,{321ααα的矩阵423432441B ⎛⎫ ⎪=--- ⎪ ⎪⎝⎭. (5分)七)02('、证明:①σ关于标准正交基321,,εεε的矩阵是122212221A --⎛⎫⎪=-- ⎪ ⎪--⎝⎭,因A A T =,所以σ是对称变换; (5分) ②解0||)(=-=A xE x f A 得特征值1233,3λλλ===-,对123λλ==,解(3)0E A X -=,基础解系12(1,1,0),(1,0,1)ηη=-=-,得其对应线性无关的特征向量为112213,ξεεξεε=-+=-+,对33λ=-,解(3)0E A X --=,基础解系3(1,1,1,)η=,得属于13-=λ的特征向量3123ξεεε=++; (5分)③令11ξβ=,)1,21,21(),(),(1111222--=-=ββββξξβ,则得标准正交基3212211626161,2121εεεγεεγ+--=+-= ,3213313131εεεγ++=,σ关于此基的矩阵是(3,3,3)diag -. (5分)八、(10)'证 由于1234{,,,}αααα是欧氏空间V 的一组标准正交基,故1111112233444444(,)(,)(,)(,)1ββββββββ====+++=11111111121344444444(,)0,(,)0ββββ=--+==-+-=, (5分) 11111111142344444444(,)0,(,)0ββββ=+--==+--=, 11111111243444444444(,)0,(,)0ββββ=-+-==--+=,所以1234{,,,}ββββ也是欧氏空间V 的一组标准正交基. (5分)06级信本高等代数试题(B )一、单项选择(每小题3分,共15分)1、n 元实二次型X AX '正定⇔( )A 、0A >B 、()r A n =C 、符号差0s =D 、正惯性指数p n = 2、dim ((0,1,1,1),(1,1,0,1),(1,0,1,0),(1,2,1,2))L ----=( ) A 、1 B 、2 C 、3 D 、43、)(3P L ∈σ,),,0(),,(y x z y x =σ,则2σ的值域与核的维数分别是( )A 、1,2B 、2,1C 、0,3D 、3,04、设2λ=为可逆矩阵A 的特征值,则311()2A -有特征值( )A 、12B 、14C 、18D 、1165、下列]1,1[-C 中向量为单位向量的是( ) A 、1 B 、x C 、2x D 、22二、填空(每小题3分,共15分)1、一切n 元复二次型可分为 个等价类2、33⨯R 中的所有下三角矩阵所做成33⨯R 的子空间,其维数为3、向量(1,1,1)关于基11213,,εεεεε++的坐标是4、设σ为[]n P x 上的导数变换,核1(0)σ-= ,值域([])n P x σ=5、设12,,,n ααα 是欧氏空间的标准正交基,(,)i j αα= 三)01('、求非退化线性替换PY X =,使实二次型21232121323(,,)242f x x x x x x x x x x =-+-化为标准形,并求其正惯性指数,判断其是否正定.四)01('、求10022214(,,,)11111111L ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭的一组基与维数.五)01('、设1212(1,2,1,0),(1,1,1,1),(2,1,0,1),(1,1,3,7)ααββ==-=-=-,1212(,),(,)U L W L ααββ==,求,U W U W + 的维数与一组基.六)51('、设P 是数域,3),,(P z y x X ∈'=∀,令110(),011101X AX A σ⎛⎫ ⎪== ⎪ ⎪-⎝⎭,①证明)(3P L ∈σ;②求σ关于基)0,1,2(),0,1,1(),1,1,1(321=α=α=α的矩阵. 七)51('、设R 是实数域,在欧氏空间3R 中,3()L R σ∈,并且123123123123(,,)(22,22,22)x x x x x x x x x x x x σ=++++++①证明σ是3R 上的对称变换; ②求σ的特征值与特征向量;③求3R 的一组标准正交基,使σ关于此基的矩阵为对角矩阵. 八、(10)'设123{,,}ααα是欧氏空间V 的一组标准正交基,证明:11231(22)3βααα=++,21231(22)3βααα=-+,31231(22)3βααα=+-也是欧氏空间V 的一组标准正交基.06级信本高等代数试题(B )答案与评分标准一、单项选择(每小题3分,共15分)D ,B ,A ,C ,D二、填空(每小题3分,共15分)1、1n +;2、6;3、(1,1,1)-;4、1,[]n P P x -;5、1,0,i ji j=⎧⎨≠⎩三)01('、解:二次型⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321321321011112120),,(),,(x x x x x x x x x f其矩阵是⎪⎪⎪⎭⎫⎝⎛----=011112120A ,对A 施行合同变换⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----101111001100010003100112001101010104100010001011112120 (5分) 所以Y X ⎪⎪⎪⎭⎫⎝⎛-=101111001二次型的标准形为:2322213y y y -+- 正惯性指标是1,非正定。
课程资料:西南财经大学2006线性代数(2)及答案

西南财经大学2006 — 2007学年第二学期 财 税 专业 本 科 2005 级( 2 年级 2 学期) 人力资源 专业 本 科 2005 级( 2 年级 2 学期)学 号 评定成绩 (分) 学生姓名 担任教师《 线形代数 》 期末 A 卷考题库( 下述 —— 四 题 全 作计100分, 两小时完卷 )考试日期: 2006 1 11 遵守考场纪律,防止一念之差贻误终生一、填空(每小题2分,共10分)5x 1 2 31.在多项式()f x = 1 x -2 1 2 中,4x 的系数项为 ,3x 的系数1 2 x 3 -1 1 2 2x 项为 。
20x y z +-=2.当k = 时,线性方程组 20x ky z +-= 有非零解。
350x z -= 3.设矩阵11112A --⎛⎫=⎪⎝⎭,则1()A *-= 。
1 2 3 04.设矩阵A = 0 -1 0 3 ,则A 中四个列向量构成的向量组是线性 ,1 -2 2 1 0 0 0 5且()R A = 。
5.设四阶矩阵A 与B 相似,矩阵A 的特征值为11112345,,,,则行列式1BE --= 。
二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。
每小题2分,共20分)1 3 1λ 0 -11.设行列式1D = 2 2 3 ,2D = 0λ 0 ,若1D =2D ,则λ的取值为3 1 5 -1 0 λ ( )。
(A )0,1 (B )0,2 (C )1,-1 (D )2,-1 2.设A ,B 为n 阶方阵,A ≠0,且0AB =,则( ) (A ) 0BA = (B ) 222()A B A B -=+ (C ) 0B = (D ) 0B =或0A =3,已知A 、B 、C 均为可逆方阵,则1000000C B A -⎛⎫ ⎪⎪ ⎪⎝⎭=( )。
(A )111000000C B A ---⎛⎫⎪ ⎪ ⎪⎝⎭ (B )11100000A B C ---⎛⎫⎪ ⎪ ⎪⎝⎭ (C )111000000A B C ---⎛⎫⎪ ⎪ ⎪⎝⎭ (D )111000000B C A ---⎛⎫⎪ ⎪ ⎪⎝⎭4.若A 为n 阶对称矩阵,且A 可逆,则有( )。
武汉大学数学与统计学院 2005-2006第一学期《线性代数》B卷(供72学时用)

武汉大学数学与统计学院2005-2006第一学期《线性代数》B 卷(供72学时用)姓名 学号 专业 成绩一、计算题:(以下5题,每题8分,共40分) 1.设()11,1,1αT=()21,2,3αT=()31,3,t αT=,求t 使得线性相关.2.已知矩阵,求A 的伴随阵*A . 3.已知111222333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 求22005A A 和.4.计算:211121314222122324233132334244142434100001111x x x x x x x x D x x x x x x x x x x x x x x x x x x x x x x x x +=+++.及矩阵211213142212232423132334241424341111x x x x x x x x x x x x x x A x x x x x x x x x x x x x x ⎛⎫+ ⎪+ ⎪= ⎪+ ⎪ ⎪+⎝⎭的秩. 5.设n 阶方阵A 的各行元素之和均为,当A 可逆,且时,求的各行元素之和.二、解答题和证明题(以下6题,共60分):1.(10分)求解齐次线性方程组: 12341234123412343 0253 044319022 0x x x x x x x x x x x x x x x x --+=⎧⎪--+=⎪⎨-++=⎪⎪--+=⎩.2.(10分)求矩阵X ,使满足AX =A +2X , 其中301110014A ⎛⎫ ⎪= ⎪ ⎪⎝⎭.3.(10分)设线性空间3R 中的六个向量如下:1α=⎪⎪⎪⎭⎫ ⎝⎛--221,2α=⎪⎪⎪⎭⎫ ⎝⎛-031,3α=⎪⎪⎪⎭⎫ ⎝⎛-601,4α=⎪⎪⎪⎭⎫ ⎝⎛-283,1β=⎪⎪⎪⎭⎫ ⎝⎛-210,2β=⎪⎪⎪⎭⎫⎝⎛--652(1)求出由1α,2α,3α,4α生成的子空间L(1α,2α,3α,4α)的维数,并选出一个基; (2)对1β和2β中属于L (1α,2α,3α,4α)者,给出其在(1)中所选的基下的坐标. 4.(15分)设A 的一个特征值为1, 其中A =.(1)求常数;(2)求可逆矩阵P ,使AP 为对角阵;(3)设向量=(5, 3, 3),计算A (k 为正整数).5.(10分)已知A 是n 阶可逆矩阵, 证明A T A 是n 阶正定矩阵. 6.(5分)设是n m ⨯矩阵,B 是m n ⨯矩阵(n m ≤),其中I 是n 阶单位矩阵,若AB I =,证明B 的列向量组线性无关.(2005-2006上)线性代数B 卷参考解答: 一、计算题:1.对实数,令:得方程组, 其系数行列式,即t=5时,方程组有非零解,相应,线性相关.2.由初等变换求得101110123321A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,则*1011012321A A A -⎛⎫ ⎪==- ⎪ ⎪--⎝⎭.3.记,,因此所以2()()()A αβαβαβαβT T TT ==,而,则26A A =;同理可求:20052004()()()()()()()AαβαβαβαβαβαβαβαβαβT T T T T T T T T =⋅⋅⋅=⋅⋅⋅==20046A .4. 第1列乘以i x -加到第1i +列(1,2,3,4)i =,则12341234110000100001001x x x x x D x x x ----=421234i=142i=11+010001+001000001001i i x x x x x x ----==∑∑.易知0D A =≠, 则矩阵211213142212232423132334241424341111x x x x x x x x x x x x x x A x x x x x x x x x x x x x x ⎛⎫+ ⎪+ ⎪= ⎪+ ⎪ ⎪+⎝⎭的秩为4. 5.因的各行元素之和为,即,(),或,即.又因为A 可逆,得,即各行元素之和均为.二、解答题和证明题:1.对系数矩阵作初等行变换化:因24()()R A R B ==<,故有无穷多解。
数学B-2答案(2006年6月统考正式试题)

数学B-2答案(2006年6月统考正式试题)试点高校网络教育部分公共基础课全国统一考试高等数学(B)试卷参考解答与评分标准2006年5月一、选择题(满分20分,每小题4分)1.D 2.A 3.C 4.B 5.A二、填空题(满分28分,每小题4分)6.2 7.1 8.1 9. 10.0 11.2 12.(加常数不扣分)三、解答题(满分52分)13.(本题满分7分)解:…………………………… 4分……………………………………………… 7分14.(本题满分8分)解法1:方程两边对求导数……………………………………… 4分整理得……………………………… 6分于是…………………………… 8分解法2:设…………………………… 1分…………………………………… 2分…………………………………… 4分……………………………… 6分于是…………………………… 8分注:公式中丢负号,本题给5分。
15.(本题满分7分)解法1:…………… 2分……………………………… 7分解法2:…………… 2分……………………………… 7分注:丢掉常数只扣1分.16.(本题满分7分)解:(1)………………………………………………… 3分(2)………………………………… 5分(3)………………………………… 6分……………………………… 7分17.(本题满分9分)解:………………………… 4分……………………… 6分………………………………… 8分…………………………………………………… 9分18.(本题满分9分)解:该方程为一阶线性微分方程,通解公式为…………………………………… 2分其中,,因此通解为……………………………… 4分…………………………………………7分………………………………………………9分注:(1)丢掉常数只扣1分,(2)只得出齐次方程通解,给5分。
19.(本题满分5分)解:,………………………… 2分令得,………………………3分当时,;当时,,………………………… 4分因此,函数图形的凸区间是;凹区间是。
线性代数(B)及答案详细解析

一.填空题(3 ' 12 =36 ' ) 1. x 1 2
x
1 2 1 1 ; 2 0 1 x2 x 1 3 2 1
四. 求向量组α 1 =(1,1,3,1), α 2 =(-1,1,-1,3),α 3 =(5,-2,8,-9)的一个极大 无关组,并将其余向量用此极大无关组线性表示. (12' ) 五. 用基础解系表示出线性方程组
x1 2 x2 x3 x4 1 2 x x 4 x 5 x 7 1 2 3 4 x1 x2 x3 2 x4 2 x1 x2 5 x3 4 x4 8
2. 已知 A 1 2 , B 1 2 ,则 2A-B ; A B 3 4 0 3 3. 设 A 是 3 阶方阵,|A|=3,则 |-2A|
3 2
7 2
(12' )
3 2 0 0 3 5 1 3 (6 ' ) 0 0 0 0
满分分值: 100 沐雨芳
10 日 组卷教师: 学生学号:
审定人(签字): 学生姓名:
一. 填空题(3 ' 12 =36 ' ) 1.
x 3 x 2 1;
-4
2. 4.
3. -24 5. 2 7. 线性无关 9. 1 1 , 2 3
共
1 页
南 京 理 工 大 学 课 程 考 试 答 案 ( A)
课程名称:
试卷编号: 组卷日期: 2006 年 学生班级: 6 月 线性代数 考试方式: 闭卷 学分 2 教学大纲编号: 考试时间: 120 分钟
α 1 ,α 2 为其一个极大无关组,且α 3 = α 1 - α 2 . 五.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江科技学院 2006-2007学年第 2 学期考试试卷 B 卷 考试科目 线性代数 考试方式 闭 完成时限 2小时 拟题人 吴阿林 审核人 批准人 07 年06 月18日 院 年级 专业
一、填充题(每题4分,共计20分) 1)在五阶行列式中,乘积项 5145342312a a a a a 的符号应取(正、负) 号。
2)已知,321,421⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=βα则βαT = ;T αβ = ;βα+= 。
3)设A 均为3阶方阵,伴随矩阵为*A ,1=A ,则=*A 2________ __ _。
4)已知矩阵方程⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--101011006500002100524321x x x x ,则解为 。
5)向量组A 线性相关的充要条件是 。
二.选择题(每小题4分, 共16分) 1.设B A ..均为n 阶可逆矩阵,下列运算规则正确的是-----------------( ). (A )B A B A +=+ (B) ()T T T B A AB = (C) BA AB = (D) BA AB =
学
姓
…
……
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
装
订
线
……
…
…
…
…
…
…
…
…
…
…
…
…
……
…
……
……
…………
……
…
……
……
2.若233322
2111
=c b a c b a c b a ,则333
322221111225222522252c b b a c b b a c b b a +++的值是--------------( ) A 4 B –4 C -16 D 16
3.设A 是m n ⨯矩阵,
0Ax =是非齐次线性方程组A x b =对应的齐次线性方程组,则下列结论正确的是( )
(A )若0Ax =只有零解,则A x b =有唯一解;
(B )若A x b =有无穷多解,则0Ax =有非零解;
(C )若0Ax =有非零解,则A x b =有无穷多解;
(D )若A x b =有无穷多解,则0Ax =只有零解.
4、若由AB AC =必能推出B C =,其中A B C ,,为同阶方阵,则A 应满足--(
) A 、 A O ≠ B 、 A O = C 、 A 0= D 、 A 0≠
二、计算题(共64分)
1、(10%)已知3阶方阵A=⎪⎪⎪⎭
⎫ ⎝⎛200063031
求:1-A
2、(10%)算行列式5222224222223222
22222
22215=D
3、(10%)已知1
12
011
111
-=A ,求矩阵)()(E A E A 422-1-+
4、(10%)求方程组⎪⎩⎪⎨⎧=--+=+--=--+08954433134321
43214321x x x x x x x x x x x x
5、(%)已知向量组A :⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=201,211,102321ααα,
向量组B :⎪⎪⎪⎭
⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=614,52121ββ
求:(1)向量组A 的秩.
(2)判断向量组A的线性相关性.
(3)证明向量组A能线性表示向量组B。
(4)向量组B被向量组A线性表示的表达式。
6、(8%)已知方阵A 满足方阵 E A A 32=-
证明:(1)E A +可逆 (2)E A E A 2)(1-=+-。