控制论与信息论
什么是新三论旧三论
什么是“老三论”、“新三论”一、引言系统论、控制论和信息论是本世纪四十年代先后创立并获得迅猛发展的三门系统理论的分支学科。
虽然它们仅有半个世纪,但在系统科学领域中已是资深望重的元老,合称“老三论”。
人们摘取了这三论的英文名字的第一个字母,把它们称之为SCI论。
耗散结构论、协同论、突变论是本世纪七十年代以来陆续确立并获得极快进展的三门系统理论的分支学科。
它们虽然时间不长,却已是系统科学领域中年少有为的成员,故合称“新三论”,也称为DSC论。
二、“老三论”、“新三论”理论概述1、系统论、控制论和信息论系统论的创始人是美籍奥地利生物学家贝塔朗菲。
系统论要求把事物当作一个整体或系统来研究,并用数学模型去描述和确定系统的结构和行为。
所谓系统,即由相互作用和相互依赖的若干组成部分结合成的、具有特定功能的有机整体;而系统本身又是它所从属的一个更大系统的组成部分。
贝塔朗菲旗帜鲜明地提出了系统观点、动态观点和等级观点。
指出复杂事物功能远大于某组成因果链中各环节的简单总和,认为一切生命都处于积极运动状态,有机体作为一个系统能够保持动态稳定是系统向环境充分开放,获得物质、信息、能量交换的结果。
系统论强调整体与局部、局部与局部、系统本身与外部环境之间互为依存、相互影响和制约的关系,具有目的性、动态性、有序性三大基本特征。
控制论是著名美国数学家维纳(Wiener N)同他的合作者自觉地适应近代科学技术中不同门类相互渗透与相互融合的发展趋势而创始的。
它摆脱了牛顿经典力学和拉普拉斯机械决定论的束缚,使用新的统计理论研究系统运动状态、行为方式和变化趋势的各种可能性。
控制论是研究系统的状态、功能、行为方式及变动趋势,控制系统的稳定,揭示不同系统的共同的控制规律,使系统按预定目标运行的技术科学。
信息论是由美国数学家香农创立的,它是用概率论和数理统计方法,从量的方面来研究系统的信息如何获取、加工、处理、传输和控制的一门科学。
信息就是指消息中所包含的新内容与新知识,是用来减少和消除人们对于事物认识的不确定性。
系统论,控制论,信息论
一般系统论亚里斯多德早就说过“整体大于部分之和”。
因此对系统的研究可以说从古代就已经开始了。
作为现代系统论的基本思想最初产生于本世纪20年代初由奥地利生物学家贝朗塔菲提出的,只不过它一开始被作为"机体生物学",这是生物学中的有机论概念,强调生命现象是不能用机械论观点来揭示其规律的,而只能把它看作一个整体或系统来加以考察。
1968年,贝朗塔菲发表了一般系统论的代表著作《一般系统理论――基础发展与应用》。
现在系统思想形成了一股重要的思潮,日益发挥重大而深远的影响。
一、系统1、系统的含义及其分类系统论的内涵和外延理论界现在说法不一。
人们现在把系统论作为介于哲学和具体科学之间的横断科学来对待。
它被用作比具体学科更一般化的科学理论加以研究,但又不同于哲学。
现代系统论具有可否证性、抽象性、数理性特点。
贝塔朗菲把一般系统概念定义为"系统是处于一定相互关系中的与环境发生关系的各组成成分的总体"。
或:系统——由两个或两个以上的要素组成的具有整体功能和综合行为的统一集合体钱学森把极其复杂的研究对象称为系统。
系统的属性:⑴系统的整体性:即非加和性。
系统不是各部分的简单组合,而有统一性,各组成部分或各层次的充分协调和连接,提高系统的有序性和整体的运行效果。
例如:①钢筋混凝土结构的强度就大于钢筋、水泥、沙石的强度之和。
②拿破仑说数量小时较多数法国人不敌少数马克留木人,数量大时较少法国人可以战胜较多数马克留木人③没有凡高弟弟凡高就出不了成果;没有赫歇尔妹妹则赫歇尔不能成为伟大的天文学家;没有阿贝尔的老师就没有阿贝尔;没有孟母就没有孟子;没有伽罗华之母就没有伽罗华④人们常说"三个臭皮匠等于一个诸葛亮"⑤反面例子如上网、吸毒、赌博等。
⑥"三个和尚没水吃",其原因是他们的能量消耗在内耗上。
⑵系统的相关性:系统中相互关联的部分或部件形成"部件集","集"中各部分的特性和行为相互制约和相互影响,这种相关性确定了系统的性质和形态。
系统论、控制论和信息论
功能和目的性
大多数系统的活动或行为可以完成一定的 功能,但不一定所有系统都有目的,例如太阳 系或某些生物系统。一个水桶具有储水的功能, 但它没有思维,本身没有目的。动物的行为有 一定的目的性,但主要就是为了笕食存活。人 类具有思想,行为的目的性明显增强。可见较 为高级的系统才有目的性。人造系统或复合系 统都是根据系统的目的来设定其功能的。
复合系统——既包含人造系统又包含自然系统。系 统工程所研究的对象大多复合系统。
第十三页,共40页。
按系统与环境的关系分:
开放系统:物质、能量和信息都有交换。有活力有生 命的系统如:商业系统、生产系统或生态系统,都是 开放系统。只有开放系统才有可能在环境发生变化时, 开放系统通过系统中要素与环境的交互作用以及系统 本身的调节作用,使系统达到某一稳定状态。但并不 是说开放系统都是进化的。
封闭系统:没有物质的交换,但有能量和信息的交换。 如密闭罐中的物体。
孤立系统:则没有任何交换。理论和实践证明它是 退化系统。
第十四页,共40页。
按系统的规模分:小型系统、中型系统、大型 系统和巨型系统。
按学科领域分:自然系统、社会系统和思维 系统。
按状态划分:有静态系统和动态系统。还有 平衡系统、非平衡系统、近平衡系统、远平 衡系统等等。
第三十一页,共40页。
控 制 论 应 用 |
导 弹 技 术
第三十二页,共40页。
三、信息论
1948年申农发表的《通讯的 数学理论》一文,成为信息论 诞生的标志。申农为解决通讯 技术中的信息编码问题,把发 射信息和接收信息作为一个整 体的通讯过程来研究,提出发 通讯系统的一般模型;同时建 立了信息量的统计公式,奠定 了信息论的理论基础。
系统理论
教学也是一个系统,这个系统中包括了教育过程中所要涉及的几个要素: 教学也是一个系统,这个系统中包括了教育过程中所要涉及的几个要素: 教师、学生、教学信息、教学条件等 该系统的功能就是培养人才。 教师、学生、教学信息、教学条件等,该系统的功能就是培养人才。
一、基本概念 二、系统科学的三个基本原理 三、系统方法
一、基本概念
系统:是由两个以上相互作用、相互依赖(具有一定结构) 系统:是由两个以上相互作用、相互依赖(具有一定结构)的要素组成 的具有特定功能的有机整体。 的具有特定功能的有机整体。 构成系统必须具备的三个基本条件: 构成系统必须具备的三个基本条件:
二、系统科学的三个基本原理 反馈原理:只有通过信息反馈,才可能实现有效地控制,从而达到目的; 反馈原理:只有通过信息反馈,才可能实现有效地控制,从而达到目的; 没有信息反馈的系统,要实现有效地控制, 没有信息反馈的系统,要实现有效地控制,从而达到预期的目的是不可 能的。 能的。 有序原理:只有开放、有涨落、远离平衡态,才可能走向有序; 有序原理:只有开放、有涨落、远离平衡态,才可能走向有序;没有开 放、没有涨落、处于平衡态的系统,要走向有序是不可能的。系统开放 没有涨落、处于平衡态的系统,要走向有序是不可能的。 即与外界有物质、能量、信息的交换,是必要条件; 涨落” 即与外界有物质、能量、信息的交换,是必要条件;“涨落”指对系统 稳定状态的偏离,是实际存在的一切系统的固有特征; 稳定状态的偏离,是实际存在的一切系统的固有特征;而系统只有远离 平衡态,才可能形成新的稳定的有序结构。 平衡态,才可能形成新的稳定的有序结构。 整体原理:只有通过相互联系形成整体结构才能发挥整体功能;没有整 整体原理:只有通过相互联系形成整体结构才能发挥整体功能; 体联系,没有整体结构,要使系统发挥整体功能是不可能的。 体联系,没有整体结构,要使系统发挥整体功能是不可能的。一低频系 统作为整体有内部结构和系统的“边界”组成, 统作为整体有内部结构和系统的“边界”组成,任何系统的整体功能 等于各个部分功能的总和“ “E整”等于各个部分功能的总和“∑E部”加上各部分相互联系形成结 构珠功能的总和“ 公式表示为: ∑E部 ∑E联 构珠功能的总和“∑E联”。公式表示为: E整= ∑E部+ ∑E联
系统论 信息论 控制论 信息技术
系统论、信息论、控制论和信息技术是当代科学技术中的重要理论和方法。
它们在工程技术、管理科学、计算机科学等多个领域都有着重要的应用和意义。
本文将从系统论、信息论、控制论和信息技术这四个主题展开讨论,深入探究它们的核心概念、发展历程及其应用情况。
一、系统论1. 系统论的概念系统论是研究“系统”概念的一门综合性科学。
系统是由一组相互作用和相互通联的部件组成的整体,它具有统一的特性和功能。
系统论研究系统的结构、性质、规律和行为规律,并提出了系统整体性、结构性和动态性的基本原理。
系统论的出现和发展,有效地促进了人类对于复杂系统的认识和处理。
2. 系统论的发展历程系统论的概念最早可以追溯到古希腊的柏拉图,他提出了“整体”的概念并强调了整体与部分的统一。
在20世纪初,系统论逐渐形成了独立的学科体系,克劳德·香农、诺伯特·韦纳等学者在这一领域进行了深入研究。
1948年,《论数学与通信》一文标志着信息论的诞生。
20世纪50年代,美国的诺伯特·韦纳、罗斯·阿什比等提出了控制论。
20世纪60年代,信息技术开始逐渐应用于工业自动化领域,成为研究的热点。
3. 系统论的应用系统论广泛应用于工程技术、管理科学、计算机科学等领域。
在工程技术中,系统论被应用于系统建模、系统仿真、系统优化等方面,为复杂工程系统的设计与运行提供了理论支持。
在管理科学领域,系统论被应用于组织管理、生产管理、信息管理等方面,帮助管理者更好地理解和处理复杂管理系统。
在计算机科学中,系统论被应用于分布式系统、网络系统、智能系统等方面,促进了计算机科学的不断发展。
二、信息论1. 信息论的概念信息论是研究信息传输、存储和处理等问题的一门科学。
信息论的核心概念是“信息”,它是一种用于传达知识和理解的信号,具有一定的内在特性。
信息论研究信息的度量、编码、压缩、传输、保护等问题,为信息处理和通信系统提供了理论基础。
2. 信息论的发展历程信息论的概念最早由美国数学家克劳德·香农提出。
控制论 信息论 系统论
控制论信息论系统论一、控制论:1、控制论的概念:控制论是一门研究系统之间相互作用的科学,其研究的核心是构建能够实现所期望的系统行为的有效控制系统。
它涉及到控制技术、计算机科学、生物机器人技术、算法设计和信息处理等诸多领域。
2、控制论的研究历史:控制论的研究始于1940年的美国科学家Warren S.McCulIock。
他受到俄国科学家A.A.Andronov和B.V.Kufedulov杂志论文的启发,提出了一个系统的科学理论,将线性系统和非线性系统统一在同一框架下研究——控制论。
20世纪50年代,控制论迅速发展,原始的线性控制理论发展为完整而成熟的理论体系,此后出现了微分几何学和微分算术控制论。
20世纪80年代以后,基于计算机技术的控制论发展迅速,涌现出各种新的控制方法和技术,如自适应控制、计算机优化控制、人工智能控制、时变系统算法控制等。
二、信息论:1、信息论的概念:信息论是一门关于信息修饰、传输ng存储、处理和可靠性的科学。
它关注的是用户以及用户和系统之间进行信息交流的技术,以及实现信息可靠传输的有效方法。
2、信息论的研究历史:信息论在20世纪50年代出现,是由美国电信学家Claude E. Shannon在发表的名为《现代电信及其技术》的论文中系统的阐述形成的,该文提出了信息论的基本概念,如信息的概念,信息熵和信息率等。
此后,由位于美国的Ralph Hartley和Peter Elias以及日本的Abe Masami等人持续优化和完善了这一理论,使之变得更加成熟完整。
20世纪60年代以来,随着信息技术的发展,信息论得到了广泛应用,形成了信息编码理论、信息安全理论、信息认知理论等一系列信息论的应用领域。
三、系统论:1、系统论的概念:系统论是一门涉及系统的全面性和系统性分析的科学,包括系统分析、系统设计、系统实施和系统管理等,它以一种集成的方法思想对整个系统进行建模理解,其有效的组织管理手段可以很好的维护系统的稳定运行,且系统的稳定性在大量自然界中也受到验证。
浅谈系统论、信息论、控制论对数学教学的启示
浅谈系统论、信息论、控制论对数学教学的启示摘要】依据系统论、信息论和控制论的根本思想,探讨系统论、信息论、控制论对数学教学设计和教学过程调节的启示.【关键词】系统论;控制论;信息论;数学教学一、系统论、信息论和控制论的根本内容〔一〕系统论著名科学家钱学森认为,系统是由相互联系和相互作用的假设干要素结合而成的具有特定功能的整体.比方,教学系统的要素主要包括教师、学生、教材和教育影响.系统的根本特征有整体性、目的性、动态性、相关性和环境适应性.整体性是系统最根本的属性.系统并不是各个要素功能的简单相加,其整体功能大于组成系统的各局部功能之和.系统中任何一个要素发生变化时,都会影响其他要素和整体功能的发挥.〔二〕信息论1948年,美国数学家申农发表了?通讯的数学问题?方法研究信息处理和信息传递规律的科学.信息传递的一般模型如图1所示.信源即产生信息和信息序列的源头,它可以是人或物.信源编码是将信息数字化的过程,以提高信息的传输效率.信道是信息传输的通道,也即信息传输媒质.信道编码是在信源码中参加纠错码,提高信息在传递过程中的抗干扰能力.信源译码和信道译码那么是将被編码的信息复原成初始信息的过程.信宿是信息的接收者.〔三〕控制论1948年,数学家诺伯特·维纳发表了?控制论?一书,标志着控制论的诞生.控制论是研究动物〔包括人类〕和机器内部的控制与通信的一般规律的科学,是跨及众多学科的交叉学科.控制论的根本方法有反响方法、黑箱方法和模拟方法.反响是指信息从被控制者输出端回输到控制者,并对系统的再输出产生影响的过程.如图2所示.反响反响反响应在被控系统状态改变之前,否那么不能调节下一次控制的反响信息,再准确也是没有意义的【1】.二、系统论、信息论和控制论对数学教学的启示〔一〕系统论对数学教学设计的启示第一,把握数学知识的整体性数学是一门逻辑性、结构性非常强的学科.在初中数学教材中,从有理数到实数、一元一次方程到二元一次方程、一次函数到二次函数再到反比例函数等知识,都是螺旋式上升的过程.在此过程中,前面知识是后续知识的根底和铺垫,后续知识又是前面知识的升华.因此,在进行教学设计时,教师不能只关注一个个孤立的知识,而必须理清各知识之间的内在联系,通读教材,充分把握数学知识的整体结构,确保前面根底性知识的学习,为后续知识打好根底,并且在学习后续知识时充分利用学生已有经验,激活学生的思维.比方,八年级下册第十九章一次函数19.1.2函数图像之中出现了如下的二次函数图像和反比例函数图像〔如图3,图4所示〕.而二次函数和反比例函数分别是九年级上册和九年级下册的知识点,这两幅图的意义何在呢?显然,编者是想学生在八年级时对二次函数和反比例函数有个初始印象,使这两幅图起到“先行组织者〞的作用.当学生到九年级真正接触二次函数和反比例函数时,已有经验就会成为学生搭建新知识的桥梁,促进学生对新知识的理解与内化.因此,教师在设计函数图这节课时,应重视这两幅图像,力求给学生留下深刻印象,不能为赶进度一带而过,导致因小失大.第二,把握教学过程的整体性倘假设学校是一个交响乐的场所,教学便是师生共同演奏的一篇欢快乐章.显然,教师在教学过程中不是单向传输知识的表演者,而是与学生、教材等要素组成的有机整体.因此,教师在进行教学设计时,还应注重教学过程的整体性.首先,重视目标对教学过程的调控作用.教学目标是教学的起点和归宿,它影响着教法学法、教学策略、手段和评价等多个方面,对教学过程有着支配和指导作用.因此,教师应时刻牢记教学目标,始终围绕教学目标开展活动.其次,重视教学过程的整体性.目前数学教学普遍存在着“重结果轻过程〞的现象,但数学教学传递的不仅仅是一个命题或公理,而是蕴含在命题之中的逻辑思维与数学思想方法.教师要重视教学过程的搭建,处理好知识与能力、结论与过程,以及师生情感等各局部关系.苏霍姆林斯基说:“教学活动的主导是教师在课堂上讲解,但不要总是教师在讲,这种做法不好,要让学生通过自己的努力去理解东西,才能成为自己的东西,才是学生真正掌握的东西.〞因此,教师应努力协调导与学、讲与做的关系,适时采用以教师为主导,学生为主体的合作探究教学模式,激起学生学习兴趣,实现教师与学生的共赢.〔二〕信息论对数学教学过程的启示课堂教学是一个信息传递的过程.信源是教材和教师,信源编码和信道编码那么是教师精心备课和技巧讲授的过程.信源编码和信道编码的目的是提高信息的传输效率,增强信息的抗干扰能力.因此,信息传递的量及表示就显得尤为重要.在教学过程中,单位时间内教学信息量过多或过少都会影响教学效果,过多学生不易消化吸收,过少又浪费了学生珍贵的时间.因此,教学信息量的把握至关重要.如何才能恰到好处把握信息量呢?首先,要通读教材和大纲,理清重难点,根据课时合理安排课容量;其次,做好学情分析,根据学生生理、心理、知识根底、能力上下等情况安排课容量;最后,根据学生课堂学习反响,灵活改变要讲授的信息量.信息传递的最后环节译码、信宿,仍需教师精心设计.马斯洛需求层次理论提出,自我实现的需要是最高层次的需要,只有当根本需要被满足时人才会产生自我实现的需要,而学习就是自我实现的需要.因此,教师应关心学生的日常生活,使其根本需要得到满足,激起学生学习动机.〔三〕控制论对调节数学教学的启示由反响方法反响的两个必要条件是准确性和及时性,教师在教学过程中如何准确及时地获取反响信息呢?首先是观察,大到课堂气氛,小到学生的表情、神态、动作,尤其是眼神,眼睛是心灵的窗户.其次是提问,提问有两种,一是教师精心设问,既可以了解学生学习情况,又可以切中重难点,诱导学生深度思考;二是学生提问,既可以反映学生对知识的理解程度,又可以培养学生语言表达能力.最后,学生或小组汇报学习成果,并根据强化理论进行适当奖惩,既可以了解学生的学习情况,又可以激起学生学习的积极性【2】.在教学过程中,经常会出现这种现象:当学生的答案不是教师的预设时,教师会略过,甚至置之不理.显然这不利于调动学生学习的积极性,并且显露出教师自身素养的缺乏.因此,数学教师应树立终身开展观,不断提升自身修养,以至能自如地应对学生的反响,根据反响信息及时调整教学容量和教学活动,而不是默守成规,唯教案是从.【参考文献】【1】李诚忠,王序荪.教育控制论[M].长春:东北师范大学出版社,1986.【2】陈锦铎.控制论信息论系统论在教学设计中的应用[J].湖南中学物理,2021〔1〕:57-58.。
老三论
三论三论,即系统论、控制论、信息论,二十世纪四十年代末,随着科技的发展,各个科学研究领域的分支日益细化,但与此同时,各学科之间相互渗透的现象越来越明显。
适应这一趋势,系统论、控制论、信息论这三门边缘学科几乎同时产生。
它们的出现对科学技术和思维的发展起到了巨大的推动作用,为现代多门新学科的出现奠定了坚实的基础。
二十世纪四十年代末,随着科技的发展,各个科学研究领域的分支日益细化,但与此同时,各学科之间相互渗透的现象越来越明显。
适应这一趋势,系统论、控制论、信息论这三门边缘学科几乎同时产生。
它们的出现对科学技术和思维的发展起到了巨大的推动作用,为现代多门新学科的出现奠定了坚实的基础。
一系统论(1)系统论的概念确切地说,系统论应当称为“一般系统论”,其创始人贝塔朗菲(L.Bertalanffy)是这样描述这一理论的:“一般系统论是一个逻辑----数学领域,它的任务是表述和推导适用于‘系统’的一般原理,不论其组成要素以及其相互关系或‘力’的种类如何”。
“在所有领域中所涉及的是关于系统的科学时,就出现不同领域的规律性形式上的一致和逻辑上的‘同一’”。
“…在严格的形式中,一般系统论具有公理性质。
”对于“一致”、“同一”等概念,贝塔朗菲是这样解释的:“…出现了进一步普遍化倾向。
在生物学以及在行为科学和社会科学中的很多现象已经应用数学表达式和模型了。
在不同领域中这些模型及其与异质同型的其他模式在结构上的类似性是显而易见的,正是这些有关秩序、组织、整体性、目的论等等最重要的问题…就是‘一般系统论’的观念。
”由此可见,一般系统论是一门跨学科的学说,它超然于具体学科之外,是概括各学科普遍具有的基本规律性的理论。
其目的是用一般系统论的成果指导具体学科的研究并通过开拓思维空间使具体科学的研究达到更高的层次,拓展到更广阔的领域,这正是系统论的精髓所在。
贝塔朗菲成立的“一般系统研究会”的最初纲领恰好体现了这一思想:“研究各个领域中概念法则和模型的同型性,并促进各领域之间有益的转换;尽量减少不同领域中重复性的理论工作;通过加强各专家之间的交流来促进科学的统一。
我国控制论与信息论研究综述与前沿探索
我国控制论与信息论研究综述与前沿探索简介在当今快速发展的信息时代,控制论与信息论成为了计算机科学、通信技术、自动化控制等领域中的关键理论。
我国长期以来高度重视控制论与信息论的研究与发展,并取得了丰富的成果。
本文将对我国在控制论与信息论方面的研究进行综述,并对这一领域的前沿探索进行探讨。
一、我国控制论研究的综述控制论是一门研究如何提高系统性能以及如何设计控制器的学科。
我国的控制论研究从上世纪60年代开始逐渐兴起,并迅速发展。
特别是20世纪80年代之后,控制论研究得到了广泛的应用,不断推动了我国自动化科技的发展。
首先,我国控制论研究在系统建模与辨识方面取得了重要成果。
系统建模与辨识是控制论研究的基础,决定了控制系统的性能和稳定性。
我国的研究者在这一领域不断探索,在基于物理原理和实验数据的基础上,提出了一系列系统建模与辨识的方法和算法,为控制系统的设计和实现提供了重要的理论支持。
其次,我国的控制论研究在控制器设计与优化方面取得了显著进展。
控制器是控制系统中最关键的部分,直接决定了系统的动态性能和稳定性。
我国的研究者基于线性控制理论和优化方法,提出了一系列先进的控制器设计和优化算法。
这些算法不仅在理论上具有较强的工程可行性,还在实际控制系统中取得了显著的效果。
最后,我国的控制论研究在鲁棒控制与自适应控制方面也取得了重要进展。
控制系统往往会受到外界环境和内部扰动的影响,而鲁棒控制和自适应控制可以使得系统对这些干扰具有较强的抵抗能力。
我国的研究者在这一领域积极探索,提出了一系列鲁棒控制和自适应控制的理论和方法,为控制系统的应用提供了重要的保障。
二、我国信息论研究的综述信息论是一门研究信息传输与编码的学科。
信息论的发展对于提高通信系统的效率和可靠性具有重要意义。
我国在信息论研究方面也取得了显著的成果。
首先,我国的信息论研究在无线通信与多媒体通信方面取得了重要突破。
无线通信和多媒体通信是信息论的重要应用领域,对于提高信息传输的效率和可靠性具有重要意义。
系统论、信息论,控制论
系统论,信息论,控制论第一章系统论产生的历史概况第一节现代系统论的产生一、什么是系统论系统论是研究客观现实系统共同的特征、本质、原理和规律的科学。
它所概括的思想、理论、方法,普遍地适用于物理、生物、技术和社会系统。
系统论最明显的特征是具有新科学思想和方法论的意义,它主张从整体出发去研究系统与系统、系统与要素以及系统与环境之间的普遍联系。
它从揭示系统的整体规律上,为解决现代科学技术、社会和经济等方面的复杂问题,提供了新的理论武器。
系统论的思想渊源是辩证法,它强调从事物普通联系和发展变化中研究事物。
现代系统论不仅从哲学角度提出了有关系统的基本思想而且通过科学的、精确的数学方法,定量地描述系统机制及其发展变化过程。
所以,系统论的原理及方法具有普通的适用性。
二、系统论思想的产生过程一般系统论创始人是美籍奥地利生物学家贝塔朗菲(L.V.Bertalanffy,1901--1972),系统论作为一门科学,产生于本世纪20--30年代。
贝塔朗菲创立系统论是有—个历史过程的,他是生物学家,他的系统论思想的形成与当时的生物学界的学术争论以及他本人亲自参加这场讨论有关。
在生物学史上,一直存在着机械论与活力论之争。
机械论在生物学中表现为一种简化论和机械决定论,他们用分析方法把生物简化为物理的和化学的问题,纯粹用物理的、机械的和化学的原因来说明一切生命的生理现象和心理过程,即一种原因产生一种结果,反之亦然。
法国18世纪唯物论学者拉·梅特立是机械论最典型的代表人物之一。
他的主要著作《人是机器》就是把人这种高级生物看成是一架机器,人就是出各种零件组成的机器。
活力论则认为在生物体内部存在着一种特殊的“活力”,它支配着整个生命过程,活力论者断言:“在有机界与无机界之间隔着一道不可逾越的鸿沟;因为有机界是由一种支配着生物体内全部物理化学过程的、有一定目的的超物质的(超自然的)力量所产生的”。
德国的杜里舒是新活力论的代表,他分别用半个和两个完整的海胆做实验,结果都能生产出一个正常的海胆来。
系统论、控制论和信息论在《稳态与环境》模块教学中的应用
、
教 学 实 践
人体 作为一 个复杂 的有机 体 , 能 保 持 它 的 组 织 化 、有 序 化 。维 持 相 对 的 稳 定 状 态 ,在 于 不 断 接 受 内 外环 境的刺激 ( 信息 ) ,进 行 调 节
3 . 有 效 提 升 生 物 课 程 人 文 精
虑” 。动 物 和 人 体 生 命 活 动 的 调 节
包 括 神 经 系 统 的 调 节 、体 液 的 调 节 和 免 疫 调 节 。是 相 对 独 立 的 调 节 方
细胞膜 ( 核 )第 三 信 使 ( 包 括
C A MP和 G A M P )一 最 后 落 实 控 制 物质代谢 的酶 。此种相互 控制链 ,
定 。 人 体 的信 息 量 远 比 一般 自动 化 机 器 大 得 多 。 神 经 系 统 作 为 第 一 信
使一 通 过 内 分 泌 系 统第 二信 使 一 到
还 必 须 研 究 各 部 分 的 相 互 作 用 ,应
把 生 物 作 为 一 个 整 体 或 系 统 来 考
关 知识 有 机 的结 合 起 来 。
激 素 可 以 独 立 完 成 的 。也 就 是 说 . 各 种 植 物 激 素 的 调 节 作 用 不 是 孤立 的 ,它 们 之 间 的 相互 影 响 正是 植 物 整 体 性 和 稳 态 维 持 的 表 现 。 生命 系 统 和 环 境也 是 相 互作 用 的 .生 物会 影 响 环 境 ,环 境 的 改 变 也 会 对 生 物
信息论和控制论就业方向
信息论和控制论就业方向
信息论和控制论是一种理论研究领域,可以应用于多个领域和行业。
就业方向包括但不限于以下几个方面:
1. 通信和信息技术行业:信息论可以应用于通信系统、数据压缩、编码和解码算法等方面,控制论可以应用于网络控制系统、自动化控制等方面。
在通信和信息技术行业,您可以从事通信工程师、网络工程师、数据科学家、算法工程师等相关职位。
2. 智能系统和人工智能领域:信息论和控制论可以应用于机器学习、数据挖掘、模式识别等方面,帮助构建智能系统和人工智能算法。
在智能系统和人工智能领域,您可以从事机器学习工程师、算法工程师、数据科学家等相关职位。
3. 自动化与控制工程领域:控制论可以应用于工业自动化、过程控制、机器人控制等方面,帮助优化系统的性能和稳定性。
在自动化与控制工程领域,您可以从事自动化工程师、控制工程师、机器人工程师等相关职位。
4. 金融和经济领域:信息论可以应用于金融市场的分析与预测,控制论可以应用于金融交易的决策和优化。
在金融和经济领域,您可以从事量化分析师、金融工程师、风险控制分析师等相关职位。
5. 生物医学工程领域:信息论和控制论可以应用于生物信号处理、医学影像分析、生理系统建模等方面,帮助解决医学领域的问题。
在生物医学工程领域,您可以从事生物医学工程师、
医学影像分析师、生物信号处理工程师等相关职位。
需要注意的是,信息论和控制论的应用非常广泛,可以应用于各个行业和领域。
以上只是一些常见的就业方向,具体还会受到个人背景、兴趣和市场需求等因素的影响。
系统科学中的老三论新三论
系统科学领域“老三论”、“新三论”一、引言老三论系统论、控制论和信息论是本世纪四十年代先后创立并获得迅猛发展(de)三门系统理论(de)分支学科.虽然它们仅有半个世纪,但在系统科学领域中已是资深望重(de)元老,合称“老三论”.人们摘取了这三论(de)英文名字(de)第一个字母,把它们称之为SCI论.耗散结构论、协同论、突变论是本世纪七十年代以来陆续确立并获得极快进展(de)三门系统理论(de)分支学科.它们虽然时间不长,却已是系统科学领域中年少有为(de)成员,故合称“新三论”,也称为DSC论.二、“老三论”、“新三论”理论概述1、系统论、控制论和信息论系统论(de)创始人是美籍奥地利生物学家贝塔朗菲.系统论要求把事物当作一个整体或系统来研究,并用数学模型去描述和确定系统(de)结构和行为.所谓系统,即由相互作用和相互依赖(de)若干组成部分结合成(de)、具有特定功能(de)有机整体;而系统本身又是它所从属(de)一个更大系统(de)组成部分.贝塔朗菲旗帜鲜明地提出了系统观点、动态观点和等级观点.指出复杂事物功能远大于某组成因果链中各环节(de)简单总和,认为一切生命都处于积极运动状态,有机体作为一个系统能够保持动态稳定是系统向环境充分开放,获得物质、信息、能量交换(de)结果.系统论强调整体与局部、局部与局部、系统本身与外部环境之间互为依存、相互影响和制约(de)关系,具有目(de)性、动态性、有序性三大基本特征.控制论是着名美国数学家维纳(Wiener N)同他(de)合作者自觉地适应近代科学技术中不同门类相互渗透与相互融合(de)发展趋势而创始(de).它摆脱了牛顿经典力学和拉普拉斯机械决定论(de)束缚,使用新(de)统计理论研究系统运动状态、行为方式和变化趋势(de)各种可能性.控制论是研究系统(de)状态、功能、行为方式及变动趋势,控制系统(de)稳定,揭示不同系统(de)共同(de)控制规律,使系统按预定目标运行(de)技术科学.信息论是由美国数学家香农创立(de),它是用概率论和数理统计方法,从量(de)方面来研究系统(de)信息如何获取、加工、处理、传输和控制(de)一门科学.信息就是指消息中所包含(de)新内容与新知识,是用来减少和消除人们对于事物认识(de)不确定性.信息是一切系统保持一定结构、实现其功能(de)基础.狭义信息论是研究在通讯系统中普遍存在着(de)信息传递(de)共同规律、以及如何提高各信息传输系统(de)有效性和可靠性(de)一门通讯理论.广义信息论被理解为使运用狭义信息论(de)观点来研究一切问题(de)理论.信息论认为,系统正是通过获取、传递、加工与处理信息而实现其有目(de)(de)运动(de).信息论能够揭示人类认识活动产生飞跃(de)实质,有助于探索与研究人们(de)思维规律和推动与进化人们(de)思维活动.2、耗散结构论、协同论和突变论(以下黑体字部分是不同表述而已)新三论是指:突变论、协同论、耗散结构论.1.突变理论突变论是法国数学家托姆创立(de).突变论是通过对事物结构稳定性(de)研究,来揭示事物质变规律(de)学问.一个普通系统(de)质变,不仅仅是通过渐变,突变方式也能实现质变.突变理论告诉人们,不是所有(de)自然、社会、思维状态都可以被控制者随意控制(de),而是只有那些在控制因素尚未到达临界值之前(de)状态是可控(de),如果控制因素一旦达到某一临界值,则控制为随机(de),甚至会变成无法控制(de)突变过程.突变理论告诉人们,事物(de)质变方式除渐变方式之外,还有一种突变方式,如何掌握突变方式问题,是一个科学思维问题.而由突变方式引起(de)质变自然时效要高.创造者如何求得这种时效,关键在于树立突变观念和掌握突变思维(de)方法与艺术.突变理论是比利时科学家托姆在1972年创立(de).其研究重点是在拓扑学、奇点理论和稳定性数学理论基础之上,通过描述系统在临界点(de)状态,来研究自然多种形态、结构和社会经济活动(de)非连续性突然变化现象,并通过耗散结构论、协同论与系统论联系起来,并对系统论(de)发展产生推动作用..突变理论通过探讨客观世界中不同层次上各类系统普遍存在着(de)突变式质变过程,揭示出系统突变式质变(de)一般方式,说明了突变在系统自组织演化过程中(de)普遍意义;它突破了牛顿单质点(de)简单性思维,揭示出物质世界客观(de)复杂性.突变理论中所蕴含着(de)科学哲学思想,主要包含以下几方面(de)内容:内部因素与外部相关因素(de)辩证统一;渐变与突变(de)辩证关系;确定性与随机性(de)内在联系;质量互变规律(de)深化发展.突变理论(de)产生突变理论是20世纪70年代发展起来(de)一个新(de)数学分支.许多年来,自然界许多事物(de)连续(de)、渐变(de)、平滑(de)运动变化过程,都可以用微积分(de)方法给以圆满解决.例如,地球绕着太阳旋转,有规律地周而复始地连续不断进行,使人能及其精确地预测未来(de)运动状态,这就需要运用经典(de)微积分来描述.但是,自然界和社会现象中,还有许多突变和飞跃(de)过程,飞越造成(de)不连续性把系统(de)行为空间变成不可微(de),微积分就无法解决.例如,水突然沸腾,冰突然融化,火山爆发,某地突然地震,房屋突然倒塌,病人突然死亡…….这种由渐变、量变发展为突变、质变(de)过程,就是突变现象,微积分是不能描述(de).以前科学家在研究这类突变现象时遇到了各式各样(de)困难,其中主要困难就是缺乏恰当(de)数学工具来提供描述它们(de)数学模型.那么,有没有可能建立一种关于突变现象(de)一般性数学理论来描述各种飞跃和不连续过程呢这迫使数学家进一步研究描述突变理论(de)飞跃过程,研究不连续性现象(de)数学理论.1972年法国数学家雷内·托姆在结构稳定性和形态发生学一书中,明确地阐明了突变理论,宣告了突变理论(de)诞生.突变理论(de)内容突变理论主要以拓扑学为工具,以结构稳定性理论为基础,提出了一条新(de)判别突变、飞跃(de)原则:在严格控制条件下,如果质变中经历(de)中间过渡态是稳定(de),那么它就是一个渐变过程.比如拆一堵墙,如果从上面开始一块块地把砖头拆下来,整个过程就是结构稳定(de)渐变过程.如果从底脚开始拆墙,拆到一定程度,就会破坏墙(de)结构稳定性,墙就会哗啦一声,倒塌下来.这种结构不稳定性就是突变、飞跃过程.又如社会变革,从封建社会过渡到资本主义社会,法国大革命采用暴力来实现,而日本(de)明治维新就是采用一系列改革,以渐变方式来实现.对于这种结构(de)稳定与不稳定现象,突变理论用势函数(de)洼存在表示稳定,用洼取消表示不稳定,并有自己(de)一套运算方法.例如,一个小球在洼底部时是稳定(de),如果把它放在突起顶端时是不稳定(de),小球就会从顶端处,不稳定滚下去,往新洼地过渡,事物就发生突变;当小球在新洼地底处,又开始新(de)稳定,所以势函数(de)洼存在与消失是判断事物(de)稳定性与不稳定性、渐变与突变过程(de)根据.托姆(de)突变理论,就是用数学工具描述系统状态(de)飞跃,给出系统处于稳定态(de)参数区域,参数变化时,系统状态也随着变化,当参数通过某些特定位置时,状态就会发生突变.突变理论提出一系列数学模型,用以解是自然界和社会现象中所发生(de)不连续(de)变化过程,描述各种现象为何从形态(de)一种形式突然地飞跃到根本不同(de)另一种形式.如岩石(de)破裂,桥梁(de)断裂,细胞(de)分裂,胚胎(de)变异,市场(de)破坏以及社会结构(de)激变…….按照突变理论,自然界和社会现象中(de)大量(de)不连续事件,可以由某些特定(de)几何形状来表示.托姆指出,发生在三维空间和一维空间(de)四个因子控制下(de)突变,有七种突变类型:折迭突变、尖顶突变、燕尾突变、蝴蝶突变、双曲脐突变、椭圆脐形突变以及抛物脐形突变.例如,用大拇指和中指夹持一段有弹性(de)钢丝,使其向上弯曲,然后再用力压钢丝使其变形,当达到一定程度时,钢丝会突然向下弯曲,并失去弹性.这就是生活中常见(de)一种突变现象,它有两个稳定状态:上弯和下弯,状态由两个参数决定,一个是手指夹持(de)力(水平方向),一个是钢丝(de)压力(垂直方向),可用尖顶突变来描述.尖顶突变和蝴蝶突变是几种质态之间能够进行可逆转(de)模型.自然界还有些过程是不可逆(de),比如死亡是一种突变,活人可以变成死人,反过来却不行.这一类过程可以用折迭突变、燕尾突变等时函数最高奇次(de)模型来描述.所以,突变理论是用形象而精确(de)得数学模型来描述质量互变过程.英国数学家奇曼教授称突变理论是“数学界(de)一项智力革命——微积分后最重要(de)发现”.他还组成一个研究团体,悉心研究,扩展应用.短短几年,论文已有四百多篇,可成为盛极一时,托姆为此成就而荣获当前国际数学界(de)最高奖——菲尔兹奖.突变理论(de)应用突变理论在在自然科学(de)应用是相当广泛(de).在物理学研究了相变、分叉、混沌与突变(de)关系,提出了动态系统、非线性力学系统(de)突变模型,解释了物理过程(de)可重复性是结构稳定性(de)表现.在化学中,用蝴蝶突变描述氢氧化物(de)水溶液,用尖顶突变描述水(de)液、气、固(de)变化等.在生态学中研究了物群(de)消长与生灭过程,提出了根治蝗虫(de)模型与方法.在工程技术中,研究了弹性结构(de)稳定性,通过桥梁过载导致毁坏(de)实际过程,提出最优结构设计…….突变理论在社会现象(de)一个用归纳为某种量(de)突变问题,人们施加控制因素影响社会状态是有一定条件(de),只有在控制因素达到临界点之前,状态才是可以控制(de).一旦发生根本性(de)质变,它就表现为控制因素所无法控制(de)突变过程.还可以用突变理论对社会进行高层次(de)有效控制,为此就需要研究事物状态与控制因素之间(de)相互关系,以及稳定区域、非稳定区域、临界曲线(de)分布特点,还要研究突变(de)方向与幅度.2.协同理论协同理论是联邦德国科学家哈肯创立(de).系统由混乱状态转为有一定结构(de)有序状态,首先需要环境提供物质流、能量流和信息流.当一个非自组织系统具备充分(de)外界条件时,怎样形成一定结构(de)自组织呢协同理论为人们提供了一个极好(de)方法,那就是设法增加系统有序程度(de)参数──序参量.这种序参量决定了系统(de)有序结构和类型,这就是哲学中指出(de)外因是变化(de)条件,内因是变化(de)根据,外因通过内因而起作用(de)观点.协同理论告诉人们,系统从无序到有序(de)过程中,不管原先是平衡相变,还是非平衡相变,都遵守相同(de)基本规律,即协调规律.这对于创新工作极为重要.将这一规律运用到创造性思维中,学会寻求思维系统(de)有序量,使其思维系统有序化,从而达到创新工作(de)有序,自然就会形成一系列有序(de)、协调(de)思维方法与艺术.协同论是20世纪70年代联邦德国着名理论物理学家赫尔曼·哈肯在1973年创立(de).他科学地认为自然界是由许多系统组织起来(de)统一体,这许多系统就称为小系统,这个统一体就是大系统.在某个大系统中(de)许多小系统既相互作用,又相互制约,它们(de)平衡结构,而且由旧(de)结构转变为新(de)结构,则有一定(de)规律,研究本规律(de)科学就是协同论.协同学理论是处理复杂系统(de)一种策略.协同学(de)目(de)是建立一种用统一(de)观点去处理复杂系统(de)概念和方法.协同论(de)重要贡献在于通过大量(de)类比和严谨(de)分析,论证了各种自然系统和社会系统从无序到有序(de)演化,都是组成系统(de)各元素之间相互影响又协调一致(de)结果.它(de)重要价值在于既为一个学科(de)成果推广到另一个学科提供了理论依据,也为人们从已知领域进入未知领域提供了有效手段.3.耗散结构论自组织现象是指自然界中自发形成(de)宏观有序现象.在自然界中这种现象是大量存在(de),理论研究较多(de)典型实例如:贝纳德(Bé nard)流体(de)对流花纹,贝洛索夫-扎鲍廷斯基(Belousov-Zhabotinsky)化学振荡花纹与化学波,激光器中(de)自激振荡等.自组织理论除耗散结构理论外,还包括协同学、超循环理论等,它们力图沟通物理学与生物学甚至社会科学,对时间本质问题等(de)研究有突破性进展,在相当程度上说明了生物及社会领域(de)有序现象.耗散结构是自组织现象中(de)重要部分,它是在开放(de)远离平衡条件下,在与外界交换物质和能量(de)过程中,通过能量耗散和内部非线性动力学机制(de)作用,经过突变而形成并持久稳定(de)宏观有序结构.耗散结构理论(de)创始人是伊里亚·普里戈金(Ilya Prigogine)教授,由于对非平衡热力学尤其是建立耗散结构理论方面(de)贡献,他荣获了1977年诺贝尔化学奖.普里戈金(de)早期工作在化学热力学领域,1945年得出了最小熵产生原理,此原理和翁萨格倒易关系一起为近平衡态线性区热力学奠定了理论基础.普里戈金以多年(de)努力,试图把最小熵产生原理延拓到远离平衡(de)非线性区去,但以失败告终,在研究了诸多远离平衡现象后,使他认识到系统在远离平衡态时,其热力学性质可能与平衡态、近平衡态有重大原则差别.以普里戈金为首(de)布鲁塞尔学派又经过多年(de)努力,终于建立起一种新(de)关于非平衡系统自组织(de)理论──耗散结构理论.这一理论于1969年由普里戈金在一次“理论物理学和生物学”(de)国际会议上正式提出.耗散结构理论提出后,在自然科学和社会科学(de)很多领域如物理学、天文学、生物学、经济学、哲学等都产生了巨大影响.着名未来学家阿尔文·托夫勒在评价普里戈金(de)思想时,认为它可能代表了一次科学革命.耗散结构理论可概括为:一个远离平衡态(de)非线性(de)开放系统(不管是物理(de)、化学(de)、生物(de)乃至社会(de)、经济(de)系统)通过不断地与外界交换物质和能量,在系统内部某个参量(de)变化达到一定(de)阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来(de)混沌无序状态转变为一种在时间上、空间上或功能上(de)有序状态.这种在远离平衡(de)非线性区形成(de)新(de)稳定(de)宏观有序结构,由于需要不断与外界交换物质或能量才能维持,因此称之为“耗散结构”(dissipative structure).[5]可见,要理解耗散结构理论,关键是弄清楚如下几个概念:远离平衡态、非线性、开放系统、涨落、突变.(1)远离平衡态远离平衡态是相对于平衡态和近平衡态而言(de).平衡态是指系统各处可测(de)宏观物理性质均匀(从而系统内部没有宏观不可逆过程)(de)状态,它遵守热力学第一定律:dE=dQ-pdV,即系统内能(de)增量等于系统所吸收(de)热量减去系统对外所做(de)功;热力学第二定律:dS/dt>=0,即系统(de)自发运动总是向着熵增加(de)方向;和波尔兹曼有序性原理:pi=e-Ei/kT,即温度为T(de)系统中内能为Ei(de)子系统(de)比率为pi.近平衡态是指系统处于离平衡态不远(de)线性区,它遵守昂萨格(Onsager)倒易关系和最小熵产生原理.前者可表述为:Lij=Lji,即只要和不可逆过程i相应(de)流Ji受到不可逆过程j(de)力Xj(de)影响,那么,流Ji也会通过相等(de)系数Lij受到力Xi(de)影响.后者意味着,当给定(de)边界条件阻止系统达到热力学平衡态(即零熵产生)时,系统就落入最小耗散(即最小熵产生)(de)态.远离平衡态是指系统内可测(de)物理性质极不均匀(de)状态,这时其热力学行为与用最小熵产生原理所预言(de)行为相比,可能颇为不同,甚至实际上完全相反,正如耗散结构理论所指出(de),系统走向一个高熵产生(de)、宏观上有序(de)状态.(2)非线性系统产生耗散结构(de)内部动力学机制,正是子系统间(de)非线性相互作用,在临界点处,非线性机制放大微涨落为巨涨落,使热力学分支失稳,在控制参数越过临界点时,非线性机制对涨落产生抑制作用,使系统稳定到新(de)耗散结构分支上.(3)开放系统热力学第二定律告诉我们,一个孤立系统(de)熵一定会随时间增大,熵达到极大值,系统达到最无序(de)平衡态,所以孤立系统绝不会出现耗散结构.那么开放系统为什么会出现本质上不同于孤立系统(de)行为呢其实,在开放(de)条件下,系统(de)熵增量dS是由系统与外界(de)熵交换deS 和系统内(de)熵产生diS两部分组成(de),即:dS=deS+diS热力学第二定律只要求系统内(de)熵产生非负,即diS>=0,然而外界给系统注入(de)熵deS可为正、零或负,这要根据系统与其外界(de)相互作用而定,在deS<0(de)情况下,只要这个负熵流足够强,它就除了抵消掉系统内部(de)熵产生diS外,还能使系统(de)总熵增量dS为负,总熵S减小,从而使系统进入相对有序(de)状态.所以对于开放系统来说,系统可以通过自发(de)对称破缺从无序进入有序(de)耗散结构状态.(4)涨落一个由大量子系统组成(de)系统,其可测(de)宏观量是众多子系统(de)统计平均效应(de)反映.但系统在每一时刻(de)实际测度并不都精确地处于这些平均值上,而是或多或少有些偏差,这些偏差就叫涨落,涨落是偶然(de)、杂乱无章(de)、随机(de).在正常情况下,由于热力学系统相对于其子系统来说非常大,这时涨落相对于平均值是很小(de),即使偶尔有大(de)涨落也会立即耗散掉,系统总要回到平均值附近,这些涨落不会对宏观(de)实际测量产生影响,因而可以被忽略掉.然而,在临界点(即所谓阈值)附近,情况就大不相同了,这时涨落可能不自生自灭,而是被不稳定(de)系统放大,最后促使系统达到新(de)宏观态.当在临界点处系统内部(de)长程关联作用产生相干运动时,反映系统动力学机制(de)非线性方程具有多重解(de)可能性,自然地提出了在不同结果之间进行选择(de)问题,在这里瞬间(de)涨落和扰动造成(de)偶然性将支配这种选择方式,所以普里戈金提出涨落导致有序(de)论断,它明确地说明了在非平衡系统具有了形成有序结构(de)宏观条件后,涨落对实现某种序所起(de)决定作用.(5)突变阈值即临界值对系统性质(de)变化有着根本(de)意义.在控制参数越过临界值时,原来(de)热力学分支失去了稳定性,同时产生了新(de)稳定(de)耗散结构分支,在这一过程中系统从热力学混沌状态转变为有序(de)耗散结构状态,其间微小(de)涨落起到了关键(de)作用.这种在临界点附近控制参数(de)微小改变导致系统状态明显(de)大幅度变化(de)现象,叫做突变.耗散结构(de)出现都是以这种临界点附近(de)突变方式实现(de)。
系统论控制论和信息论
控制论
• 人们研究和认识系统的目的之一, 就在于有效地控制和管理系统。控 制论则为人们对系统的管理和控制 提供了一般方法论的指导,它是数 学、自动控制、电子技术、数理逻 辑、生物科学等学科和技术相互渗 透而形成的综合性科学。
控制论在科学上的两点重要贡献
第一,给出一种新的研究方法,使对复 杂系统的研究成为可能
系统论
• 系统是指相互联系、相互作用并具有 一定整体功能和整体目的的诸要素的பைடு நூலகம்有机综合体
• 系统论是研究系统的一般模式、结构 和规律的一门学科,主要研究各种系 统的共同特征,用数学方法定量地描 述其功能,寻求确立适用于一切系统 的原理、原则和数学模型等具有逻辑 和数学性质的基本理论问题
一般系统论的基本观点
的一种理论 第一,给出一种新的研究方法,使对复杂系统的研究成为可能 控制论则为人们对系统的管理和控制提供了一般方法论的指导,它是数学、自动控制、电子技术、数理逻辑、生物科学等学科和技术
描述系统的概念,因而可以 相互渗透而形成的综合性科学。
耗散结构理论:主要讨论一个系统从混沌向有序转化的机理、条件和规律,是研究耗散结构的性质及其形成、稳定和演化规律的一门 学科 控制论则为人们对系统的管理和控制提供了一般方法论的指导,它是数学、自动控制、电子技术、数理逻辑、生物科学等学科和技术
使它们相互促进。 律以及如何最优地解决信息的获取、变换、存储、处理等问题,其任务是解决电子通信技术的编码和对抗等问题,从而提高通信系统
的传输效率和可靠性
协同理论:研究远离平衡态的开放系统,在保证与外界有物质、能量和信息交换的条件下,系统能自发地产生一定的有序结构和功能 的一种理论 通过它们所具有的共同语言,把一门学科上的发现和成果用到另一门学科上去,使它们相互促进。 几十年来,控制论在纵深方向得到了很大发展,已应用到人类社会各个领域,如经济控制论、社会控制论和人口控制论等。 控制论是一门实用性很强的边缘学科,其一般原理和方法在技术、经济、社会等许多领域都有广泛的应用,形成了多门边缘学科。
信息论和控制论
信息论和控制论
信息论和控制论是两个重要的交叉学科,它们都关注信息的传输和处理。
信息论主要研究信息的度量、压缩和传输,而控制论则主要研究如何对系统进行控制和优化。
信息论的基础是熵的概念,它描述了一个信源产生信息的不确定性。
熵越高,说明信息越不确定,需要更多的比特来传输。
信息论中还包括信道编码、误差纠正编码等技术,使信息传输更加可靠和高效。
控制论则主要研究如何通过控制输入来影响系统的输出,使其达到期望的状态。
控制论中常用的方法包括反馈控制、最优控制和自适应控制等。
这些方法都可用于控制各种系统,如机械系统、电子系统、化学系统等。
信息论和控制论在许多领域都有广泛的应用,如通信系统、自动控制、人工智能、生物医学等。
它们为我们提供了深入理解信息处理和系统控制的理论基础,为我们的现代科技进步做出了重要的贡献。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论和控制论都是信息科学的重要组成部分。
信息论是一门用数理统计方法来研究信息的度量、传递和变换规律的科学。
它主要是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、储存和传递等问题的基础理论。
它是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。
信息论是美贝尔电话研究所的数学家香农在前人研究的基础上完成的。
他为解决通讯技术中的信息编码问题,把发射信息和接收信息作为一个整体的通讯过程来研究,提出通讯系统的一般模型;同时建立了信息量的统计公式,奠定了信息论的理论基础。
1948年香农发表的《通讯的数学理论》一文,成为信息论诞生的标志。
在信息论的发展中,还有许多科学家对它做出了卓越的贡献。
像法国物理学家L.布里渊(L.Brillouin)1956年发表《科学与信息论》专著,从热力学和生命等许多方面探讨信息论,把热力学熵与信息熵直接联系起来,使热力学中争论了一个世纪之久的“麦克斯韦尔妖”的佯谬问题得到了满意的解释。
英国神经生理学家(W.B.Ashby)1964年发表的《系统与信息》等文章,还把信息论推广应用芋生物学和神经生理学领域,也成为信息论的重要著作。
这些科学家们的研究,以及后来从经济、管理和社会的各个部门对信息论的研究,使信息论远远地超越
了通讯的范围。
信息论有狭义和广义之分。
狭义信息论即申农早期的研究成果,它以编码理论为中心,主要研究信息系统模型、信息的度量、信息容量、编码理论及噪声理论等。
广义信息论又称信息科学,主要研究以计算机处理为中心的信息处理的基本理论,包括评议、文字的处理、图像识别、学习理论及其各种应用。
广义信息论包括了狭义信息论的内容,但其研究范围却比通讯领域广泛得多,是狭义信息论在各个领域的应用和推广,因此,它的规律也更一般化,适用于各个领域,所以它是一门横断学科。
信息论被广泛应用在编码学密码学与密码分析学数据传输数据压缩检测理论估计理论等领域.
控制论是研究各类系统的调节和控制规律的科学。
自从1948 年诺伯特•维纳发表了著名的《控制论——关于在动物和机中控制和通讯的科学》一书以来,控制论的思想和方法已经渗透到了几乎有的自然科学和社会科学领域。
维纳把控控制论制论看作是一门研究机器、生命社会中控制和通讯的一般规律的科学,是研究动态系统在变的环境条件下如何保持平衡状态或稳定状态的科学。
他特意创造“Cybernetics”这个英语新词来命名这门科学。
“控制论”一同最初来源希腊文“mberuhhtz”,原意为“操舵术”,就是掌舵的方法和技术的思。
在柏拉图(古希腊哲学家)的著作中,经常用它来
表示管理人的艺术。
在控制论中,“控制”的定义是:为了“改善”某个或某些受控对象的功能或发展,需要获得并使用信息,以这种信息为基础而选出的、于该对象上的作用,就叫作控制。
由此可见,控制的基础是信息,一切信息传递都是为了控制,进而任何控制又都有赖于信息反馈来实现。
信息反馈是控制论的一个极其重要的概念。
通俗地说,信息反馈就是指由控制系统把信息输送出去,又把其作用结果返送回来,并对信息的再输出发生影响,起到制约的作用,以达到预定目的. 与研究物质结构和能量转换的传统科学不同,控制论研究系统的信息变换和控制过程。
尽管一般系统具有质料、能量和信息三个要素,但控制论只把质料和能量看作系统工作的必要前提,并不追究系统是用什么质料构造的,能量是如何转换的,而是着眼于信息方面,研究系统的行为方式。
控制论对管理上的应用具有重要意义.维纳在阐述他创立控制论的目的时说:“控制论的目的在于创造一种言和技术,使我们有效地研究一般的控制和通讯问题,同时也寻找一套恰当的思想和技术,以便通讯和控制问题的各种特殊表现都能借助一定的概念以分类。
”控制论为其他领域的科学研究提供了一套思想和技术,以致在维纳的《控制论》一书发表后的几十年中,各种冠以控制论名称的边学科如雨后春笋般生长出来。
例如工程控制论、生物控制论、神经控制论、经济控制论以及社会控制论等。
而管理更是控制论应用的一个重要领域。
从这个意义上说,控制论之
于管理恰似青出于蓝。
用控制论的概念和方法分析管理控制过程,更便于揭示和描述其内在机理。
信息和控制是信息科学的基础和核心。
70年代以来,电视、数据通信、遥感和生物医学工程的发展,向信息科学提出大量的研究课题,如信息的压缩、增强、恢复等图像处理和传输技术,信息特征的抽取、分类和识别的模式、识别理论和方法,出现了实用的图像处理和模式识别系统。
信息论和控制论的发展对科学技术以及人类社会的发展具有重要意义.。