系统论,控制论,信息论
什么是新三论旧三论
什么是“老三论”、“新三论”一、引言系统论、控制论和信息论是本世纪四十年代先后创立并获得迅猛发展的三门系统理论的分支学科。
虽然它们仅有半个世纪,但在系统科学领域中已是资深望重的元老,合称“老三论”。
人们摘取了这三论的英文名字的第一个字母,把它们称之为SCI论。
耗散结构论、协同论、突变论是本世纪七十年代以来陆续确立并获得极快进展的三门系统理论的分支学科。
它们虽然时间不长,却已是系统科学领域中年少有为的成员,故合称“新三论”,也称为DSC论。
二、“老三论”、“新三论”理论概述1、系统论、控制论和信息论系统论的创始人是美籍奥地利生物学家贝塔朗菲。
系统论要求把事物当作一个整体或系统来研究,并用数学模型去描述和确定系统的结构和行为。
所谓系统,即由相互作用和相互依赖的若干组成部分结合成的、具有特定功能的有机整体;而系统本身又是它所从属的一个更大系统的组成部分。
贝塔朗菲旗帜鲜明地提出了系统观点、动态观点和等级观点。
指出复杂事物功能远大于某组成因果链中各环节的简单总和,认为一切生命都处于积极运动状态,有机体作为一个系统能够保持动态稳定是系统向环境充分开放,获得物质、信息、能量交换的结果。
系统论强调整体与局部、局部与局部、系统本身与外部环境之间互为依存、相互影响和制约的关系,具有目的性、动态性、有序性三大基本特征。
控制论是著名美国数学家维纳(Wiener N)同他的合作者自觉地适应近代科学技术中不同门类相互渗透与相互融合的发展趋势而创始的。
它摆脱了牛顿经典力学和拉普拉斯机械决定论的束缚,使用新的统计理论研究系统运动状态、行为方式和变化趋势的各种可能性。
控制论是研究系统的状态、功能、行为方式及变动趋势,控制系统的稳定,揭示不同系统的共同的控制规律,使系统按预定目标运行的技术科学。
信息论是由美国数学家香农创立的,它是用概率论和数理统计方法,从量的方面来研究系统的信息如何获取、加工、处理、传输和控制的一门科学。
信息就是指消息中所包含的新内容与新知识,是用来减少和消除人们对于事物认识的不确定性。
系统论,控制论,信息论
一般系统论亚里斯多德早就说过“整体大于部分之和”。
因此对系统的研究可以说从古代就已经开始了。
作为现代系统论的基本思想最初产生于本世纪20年代初由奥地利生物学家贝朗塔菲提出的,只不过它一开始被作为"机体生物学",这是生物学中的有机论概念,强调生命现象是不能用机械论观点来揭示其规律的,而只能把它看作一个整体或系统来加以考察。
1968年,贝朗塔菲发表了一般系统论的代表著作《一般系统理论――基础发展与应用》。
现在系统思想形成了一股重要的思潮,日益发挥重大而深远的影响。
一、系统1、系统的含义及其分类系统论的内涵和外延理论界现在说法不一。
人们现在把系统论作为介于哲学和具体科学之间的横断科学来对待。
它被用作比具体学科更一般化的科学理论加以研究,但又不同于哲学。
现代系统论具有可否证性、抽象性、数理性特点。
贝塔朗菲把一般系统概念定义为"系统是处于一定相互关系中的与环境发生关系的各组成成分的总体"。
或:系统——由两个或两个以上的要素组成的具有整体功能和综合行为的统一集合体钱学森把极其复杂的研究对象称为系统。
系统的属性:⑴系统的整体性:即非加和性。
系统不是各部分的简单组合,而有统一性,各组成部分或各层次的充分协调和连接,提高系统的有序性和整体的运行效果。
例如:①钢筋混凝土结构的强度就大于钢筋、水泥、沙石的强度之和。
②拿破仑说数量小时较多数法国人不敌少数马克留木人,数量大时较少法国人可以战胜较多数马克留木人③没有凡高弟弟凡高就出不了成果;没有赫歇尔妹妹则赫歇尔不能成为伟大的天文学家;没有阿贝尔的老师就没有阿贝尔;没有孟母就没有孟子;没有伽罗华之母就没有伽罗华④人们常说"三个臭皮匠等于一个诸葛亮"⑤反面例子如上网、吸毒、赌博等。
⑥"三个和尚没水吃",其原因是他们的能量消耗在内耗上。
⑵系统的相关性:系统中相互关联的部分或部件形成"部件集","集"中各部分的特性和行为相互制约和相互影响,这种相关性确定了系统的性质和形态。
系统论、控制论和信息论
功能和目的性
大多数系统的活动或行为可以完成一定的 功能,但不一定所有系统都有目的,例如太阳 系或某些生物系统。一个水桶具有储水的功能, 但它没有思维,本身没有目的。动物的行为有 一定的目的性,但主要就是为了笕食存活。人 类具有思想,行为的目的性明显增强。可见较 为高级的系统才有目的性。人造系统或复合系 统都是根据系统的目的来设定其功能的。
复合系统——既包含人造系统又包含自然系统。系 统工程所研究的对象大多复合系统。
第十三页,共40页。
按系统与环境的关系分:
开放系统:物质、能量和信息都有交换。有活力有生 命的系统如:商业系统、生产系统或生态系统,都是 开放系统。只有开放系统才有可能在环境发生变化时, 开放系统通过系统中要素与环境的交互作用以及系统 本身的调节作用,使系统达到某一稳定状态。但并不 是说开放系统都是进化的。
封闭系统:没有物质的交换,但有能量和信息的交换。 如密闭罐中的物体。
孤立系统:则没有任何交换。理论和实践证明它是 退化系统。
第十四页,共40页。
按系统的规模分:小型系统、中型系统、大型 系统和巨型系统。
按学科领域分:自然系统、社会系统和思维 系统。
按状态划分:有静态系统和动态系统。还有 平衡系统、非平衡系统、近平衡系统、远平 衡系统等等。
第三十一页,共40页。
控 制 论 应 用 |
导 弹 技 术
第三十二页,共40页。
三、信息论
1948年申农发表的《通讯的 数学理论》一文,成为信息论 诞生的标志。申农为解决通讯 技术中的信息编码问题,把发 射信息和接收信息作为一个整 体的通讯过程来研究,提出发 通讯系统的一般模型;同时建 立了信息量的统计公式,奠定 了信息论的理论基础。
系统理论
教学也是一个系统,这个系统中包括了教育过程中所要涉及的几个要素: 教学也是一个系统,这个系统中包括了教育过程中所要涉及的几个要素: 教师、学生、教学信息、教学条件等 该系统的功能就是培养人才。 教师、学生、教学信息、教学条件等,该系统的功能就是培养人才。
一、基本概念 二、系统科学的三个基本原理 三、系统方法
一、基本概念
系统:是由两个以上相互作用、相互依赖(具有一定结构) 系统:是由两个以上相互作用、相互依赖(具有一定结构)的要素组成 的具有特定功能的有机整体。 的具有特定功能的有机整体。 构成系统必须具备的三个基本条件: 构成系统必须具备的三个基本条件:
二、系统科学的三个基本原理 反馈原理:只有通过信息反馈,才可能实现有效地控制,从而达到目的; 反馈原理:只有通过信息反馈,才可能实现有效地控制,从而达到目的; 没有信息反馈的系统,要实现有效地控制, 没有信息反馈的系统,要实现有效地控制,从而达到预期的目的是不可 能的。 能的。 有序原理:只有开放、有涨落、远离平衡态,才可能走向有序; 有序原理:只有开放、有涨落、远离平衡态,才可能走向有序;没有开 放、没有涨落、处于平衡态的系统,要走向有序是不可能的。系统开放 没有涨落、处于平衡态的系统,要走向有序是不可能的。 即与外界有物质、能量、信息的交换,是必要条件; 涨落” 即与外界有物质、能量、信息的交换,是必要条件;“涨落”指对系统 稳定状态的偏离,是实际存在的一切系统的固有特征; 稳定状态的偏离,是实际存在的一切系统的固有特征;而系统只有远离 平衡态,才可能形成新的稳定的有序结构。 平衡态,才可能形成新的稳定的有序结构。 整体原理:只有通过相互联系形成整体结构才能发挥整体功能;没有整 整体原理:只有通过相互联系形成整体结构才能发挥整体功能; 体联系,没有整体结构,要使系统发挥整体功能是不可能的。 体联系,没有整体结构,要使系统发挥整体功能是不可能的。一低频系 统作为整体有内部结构和系统的“边界”组成, 统作为整体有内部结构和系统的“边界”组成,任何系统的整体功能 等于各个部分功能的总和“ “E整”等于各个部分功能的总和“∑E部”加上各部分相互联系形成结 构珠功能的总和“ 公式表示为: ∑E部 ∑E联 构珠功能的总和“∑E联”。公式表示为: E整= ∑E部+ ∑E联
新三论
系统科学领域中把耗散结构论、协同论、突变论合称为“新三论”。
另外把系统论、控制论和信息论合称为“老三论”。
耗散结构论可概括为:一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统)通过不断地与外界交换物质和能量,在系统内部某个参量的变化达到一定的阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。
这种在远离平衡的非线性区形成的新的稳定的宏观有序结构,由于需要不断与外界交换物质或能量才能维持,因此称之为“耗散结构”(dissipative structure)。
协同学亦称协同论或协和学,是研究不同事物共同特征及其协同机理的新兴学科,是近十几年来获得发展并被广泛应用的综合性学科。
它着重探讨各种系统从无序变为有序时的相似性。
协同论的创始人哈肯说过,他把这个学科称为“协同学”,一方面是由于我们所研究的对象是许多子系统的联合作用,以产生宏观尺度上结构和功能;另一方面,它又是由许多不同的学科进行合作,来发现自组织系统的一般原理。
客观世界存在着各种各样的系统;社会的或自然界的,有生命或无生命的,宏观的或微观的系统等等,这些看起来完全不同的系统,却都具有深刻的相似性。
协同论则是在研究事物从旧结构转变为新结构的机理的共同规律上形成和发展的,它的主要特点是通过类比对从无序到有序的现象建立了一整套数学模型和处理方案,并推广到广泛的领域。
它基于“很多子系统的合作受相同原理支配而与子系统特性无关”的原理,设想在跨学科领域内,考察其类似性以探求其规律。
哈肯在阐述协同论时讲道:“我们现在好像在大山脚下从不同的两边挖一条隧道,这个大山至今把不同的学科分隔开,尤其是把…软‟科学和…硬‟科学分隔开。
”突变论是研究客观世界非连续性突然变化现象的一门新兴学科,自本世纪70年代创立以来,十数年间获得迅速发展和广泛应用,引起了科学界的重视。
“突变”一词,法文原意是“灾变”,是强调变化过程的间断或突然转换的意思。
系统论 信息论 控制论 信息技术
系统论、信息论、控制论和信息技术是当代科学技术中的重要理论和方法。
它们在工程技术、管理科学、计算机科学等多个领域都有着重要的应用和意义。
本文将从系统论、信息论、控制论和信息技术这四个主题展开讨论,深入探究它们的核心概念、发展历程及其应用情况。
一、系统论1. 系统论的概念系统论是研究“系统”概念的一门综合性科学。
系统是由一组相互作用和相互通联的部件组成的整体,它具有统一的特性和功能。
系统论研究系统的结构、性质、规律和行为规律,并提出了系统整体性、结构性和动态性的基本原理。
系统论的出现和发展,有效地促进了人类对于复杂系统的认识和处理。
2. 系统论的发展历程系统论的概念最早可以追溯到古希腊的柏拉图,他提出了“整体”的概念并强调了整体与部分的统一。
在20世纪初,系统论逐渐形成了独立的学科体系,克劳德·香农、诺伯特·韦纳等学者在这一领域进行了深入研究。
1948年,《论数学与通信》一文标志着信息论的诞生。
20世纪50年代,美国的诺伯特·韦纳、罗斯·阿什比等提出了控制论。
20世纪60年代,信息技术开始逐渐应用于工业自动化领域,成为研究的热点。
3. 系统论的应用系统论广泛应用于工程技术、管理科学、计算机科学等领域。
在工程技术中,系统论被应用于系统建模、系统仿真、系统优化等方面,为复杂工程系统的设计与运行提供了理论支持。
在管理科学领域,系统论被应用于组织管理、生产管理、信息管理等方面,帮助管理者更好地理解和处理复杂管理系统。
在计算机科学中,系统论被应用于分布式系统、网络系统、智能系统等方面,促进了计算机科学的不断发展。
二、信息论1. 信息论的概念信息论是研究信息传输、存储和处理等问题的一门科学。
信息论的核心概念是“信息”,它是一种用于传达知识和理解的信号,具有一定的内在特性。
信息论研究信息的度量、编码、压缩、传输、保护等问题,为信息处理和通信系统提供了理论基础。
2. 信息论的发展历程信息论的概念最早由美国数学家克劳德·香农提出。
控制论 信息论 系统论
控制论信息论系统论一、控制论:1、控制论的概念:控制论是一门研究系统之间相互作用的科学,其研究的核心是构建能够实现所期望的系统行为的有效控制系统。
它涉及到控制技术、计算机科学、生物机器人技术、算法设计和信息处理等诸多领域。
2、控制论的研究历史:控制论的研究始于1940年的美国科学家Warren S.McCulIock。
他受到俄国科学家A.A.Andronov和B.V.Kufedulov杂志论文的启发,提出了一个系统的科学理论,将线性系统和非线性系统统一在同一框架下研究——控制论。
20世纪50年代,控制论迅速发展,原始的线性控制理论发展为完整而成熟的理论体系,此后出现了微分几何学和微分算术控制论。
20世纪80年代以后,基于计算机技术的控制论发展迅速,涌现出各种新的控制方法和技术,如自适应控制、计算机优化控制、人工智能控制、时变系统算法控制等。
二、信息论:1、信息论的概念:信息论是一门关于信息修饰、传输ng存储、处理和可靠性的科学。
它关注的是用户以及用户和系统之间进行信息交流的技术,以及实现信息可靠传输的有效方法。
2、信息论的研究历史:信息论在20世纪50年代出现,是由美国电信学家Claude E. Shannon在发表的名为《现代电信及其技术》的论文中系统的阐述形成的,该文提出了信息论的基本概念,如信息的概念,信息熵和信息率等。
此后,由位于美国的Ralph Hartley和Peter Elias以及日本的Abe Masami等人持续优化和完善了这一理论,使之变得更加成熟完整。
20世纪60年代以来,随着信息技术的发展,信息论得到了广泛应用,形成了信息编码理论、信息安全理论、信息认知理论等一系列信息论的应用领域。
三、系统论:1、系统论的概念:系统论是一门涉及系统的全面性和系统性分析的科学,包括系统分析、系统设计、系统实施和系统管理等,它以一种集成的方法思想对整个系统进行建模理解,其有效的组织管理手段可以很好的维护系统的稳定运行,且系统的稳定性在大量自然界中也受到验证。
关于系统论,控制论和信息论的哲学思考
关于系统论,控制论和信息论的哲学思考系统论、控制论和信息论是现代科学中的重要理论框架,其中系统论强调整体性和相互作用,控制论强调反馈和稳定性,信息论强调信息的度量和传输。
这些理论不仅被广泛应用于自然科学和工程技术领域,也被运用于社会科学、人文学科以及哲学研究中。
从哲学的角度来看,这三个理论涉及到了许多哲学问题,例如:整体与部分的关系、因果性与随机性的关系、目的性与自发性的关系、信息与意义的关系等。
系统论强调整体性,表明整体和部分之间存在相互作用和相互依赖的关系,这引出了一个哲学问题:整体与部分的关系是如何相互作用的?在这个问题上,有些哲学家认为整体是超越部分的,因此整体对部分的作用是直接而非间接的,而有些哲学家则认为整体是由部分构成的,因此整体对部分的作用是间接而非直接的。
控制论强调反馈和稳定性,表明系统在受到外界干扰时会出现反馈,以维持系统的稳定性,这引出了一个哲学问题:因果性与随机性的关系是如何相互作用的?在这个问题上,有些哲学家认为因果关系是绝对的,因此系统的稳定性是由因果关系所决定的,而有些哲学家则认为随机性是客观存在的,因此系统的稳定性是由因果关系和随机性共同作用的。
信息论强调信息的度量和传输,表明信息的传输是由信息的度量所决定的,这引出了一个哲学问题:信息与意义的关系是如何相互作用的?在这个问题上,有些哲学家认为信息是意义的原材料,因此意
义是由信息所决定的,而有些哲学家则认为信息是意义的表现形式,因此意义是由信息所表达的内容所决定的。
综上所述,系统论、控制论和信息论的哲学思考不仅涉及到自然科学和工程技术领域,也涉及到社会科学、人文学科以及哲学研究中的许多哲学问题,这些问题可以通过对这些理论的深入思考而得到更为深刻的理解。
老三论
三论三论,即系统论、控制论、信息论,二十世纪四十年代末,随着科技的发展,各个科学研究领域的分支日益细化,但与此同时,各学科之间相互渗透的现象越来越明显。
适应这一趋势,系统论、控制论、信息论这三门边缘学科几乎同时产生。
它们的出现对科学技术和思维的发展起到了巨大的推动作用,为现代多门新学科的出现奠定了坚实的基础。
二十世纪四十年代末,随着科技的发展,各个科学研究领域的分支日益细化,但与此同时,各学科之间相互渗透的现象越来越明显。
适应这一趋势,系统论、控制论、信息论这三门边缘学科几乎同时产生。
它们的出现对科学技术和思维的发展起到了巨大的推动作用,为现代多门新学科的出现奠定了坚实的基础。
一系统论(1)系统论的概念确切地说,系统论应当称为“一般系统论”,其创始人贝塔朗菲(L.Bertalanffy)是这样描述这一理论的:“一般系统论是一个逻辑----数学领域,它的任务是表述和推导适用于‘系统’的一般原理,不论其组成要素以及其相互关系或‘力’的种类如何”。
“在所有领域中所涉及的是关于系统的科学时,就出现不同领域的规律性形式上的一致和逻辑上的‘同一’”。
“…在严格的形式中,一般系统论具有公理性质。
”对于“一致”、“同一”等概念,贝塔朗菲是这样解释的:“…出现了进一步普遍化倾向。
在生物学以及在行为科学和社会科学中的很多现象已经应用数学表达式和模型了。
在不同领域中这些模型及其与异质同型的其他模式在结构上的类似性是显而易见的,正是这些有关秩序、组织、整体性、目的论等等最重要的问题…就是‘一般系统论’的观念。
”由此可见,一般系统论是一门跨学科的学说,它超然于具体学科之外,是概括各学科普遍具有的基本规律性的理论。
其目的是用一般系统论的成果指导具体学科的研究并通过开拓思维空间使具体科学的研究达到更高的层次,拓展到更广阔的领域,这正是系统论的精髓所在。
贝塔朗菲成立的“一般系统研究会”的最初纲领恰好体现了这一思想:“研究各个领域中概念法则和模型的同型性,并促进各领域之间有益的转换;尽量减少不同领域中重复性的理论工作;通过加强各专家之间的交流来促进科学的统一。
系统论 控制论 信息论
系统论控制论信息论系统论、控制论、信息论,简称“三论”。
三论是标志着人类现代文明历史进程中光辉里程碑。
高新科技的发展和创新都要求“三论”作理论基础进行指导,例如在航空航天、宇宙天体、原子核能源、军事兵器等,促使科研中庞大复杂的系统工程的目标实现,都离不开“三论”的指导。
我国著名科学家钱学森是创立所谓“中国三论”的学术带头人。
1.系统论的概念、特点:(1)概念:系统论是研究系统的一般模式,结构和规律的学问。
它研究各种系统的共同特征,用数学方法定量的描述其功能,寻求并确立适用于一切系统的原理,原则和数学模型,是具有逻辑和数学性质的一门科学。
(2)类型:系统论是多种多样的,可根据不同的原则和情况来划分系统的类型,按人类干预的情况可划分为自然系统和人工系统,按科学领域可分为自然系统、社会系统、思维系统(城市生态管理学涉及系统论的人工系统知识。
)(3)特点:系统论认为整体性、关联性、等级结构性、动态平衡性、时序性等是所有系统的共同基本特征,这些既是系统所具有的基本思想观点,也是系统方法的基本原则,表现了系统论不仅是反映客观规律的科学理论,且具有科学方法的含义。
城市生态管理的基本点就是将系统论的方法论引入到城市管理中,从而建立了城市生态管理的科学体系。
2.控制论控制论是研究各类系统的调节和控制规律的科学。
自从1948年诺伯特·维纳(Norbert Wiener)发表了著名的《控制论关于在动物和机器中控制和通信的科学》一书以来,控制论的思想和方法已经渗透到了几乎所有的自然科学和社会科学领域。
维纳把控制论看作是一门研究机器、生命社会中控制和通信的一般规律的科学,是研究动态系统在变化的环境条件下如何保持平衡状态或稳定状态的科学。
他特意创造“cybernetics”这个英语新词来命名这门科学。
“控制论”一词最初来源希腊文“mberuhhtz”,原意为“操舵术”,就是掌舵的方法和技术的意思。
在柏拉图(古希腊哲学家)的著作中,经常用它来表示管理人的艺术。
系统论 现代管理学知识点总结
系统论、控制论、信息论与管理理论的丛林1、系统论、控制论、信息论的产生与基本内容诞生于20世纪40年代1、系统论是研究系统的模式、原则和规律,并对其功能进行描述的一站学科2、控制论是研究各类系统的控制和调节的一般规律的科学,是自动控制、电子技术、无线电通信、生物学、数理逻辑等多种学科的技术相互渗透的一门综合性学科。
3、信息论是揭示信息的本质,并运用数学方法研究信息的计量、变换和存储的一门学科2、现代管理理论的丛林1、管理过程学派(哈罗德`孔茨和西里尔`奥唐奈)2、经验主义学派(彼得`德鲁克)3、社会系统学派(巴纳德)4、决策理论学派(西蒙)P5、系统管理学派(卡斯特和罗森茨韦克)6、权变理论学派(伍德沃德和菲德勒)行为科学理论1、行为科学含义:是指运用心理学、社会学理论和方法,从人的工作动机、情绪、行为与工作环境之间的关系出发、探索影响劳动生产率因素的科学。
早期行为科学又称人际关系论,1949年正式将人际关系论定义为行为科学。
2、早期行为科学理论(梅奥):早期行为科学的代表人物是梅奥,1927年在哈佛大学开始了管理史上有名的霍桑实验。
早期行为科学理论的内容:(1)企业职工都是“社会人”,是复杂的社会系统的成员(2)劳动生产效率主要取决于职工的工作态度及其人际关系状况(3)企业中存在着非正式组织3、后期行为科学理论的内容:1、有关人的需要、动机、行为方面的理论2、有关人的特性方面的理论3、有关领导行为方面的理论1、古典管理理论:指以泰勒为代表的科学管理理论,以法约尔为代表的一般管理理论和以韦伯为代表的科层组织理论。
2、科学管理理论(泰勒):1911年发表其代表著作《科学管理原理》“科学管理之父”泰勒科学管理理论的内容:1、科学管理的中心问题是提高劳动生产率2、为了提高劳动生产效率必须为工作挑选第一流的工人3、为了提高劳动生产效率必须实现标准化4、在制定标准定额基础上实行差别计件工资制5、设置计划层、实行职能制6、对组织机构的管理控制实行例外原则7、为实现科学管理应开展一场“心理革命”3、一般管理理论(法约尔):1916年出版的代表作《工业管理与管理》一般管理理论的主要内容:1、区分了经营与管理的概念并论述了人员能力的相对重要性2、概括并分析了管理的五项职能:即计划、组织、指挥、协调与控制3、阐述了管理教育和建立管理理论的必要性4、提出了管理中具有普遍意义的十四项原则(劳动分工、权力与责任、纪律、统一指挥、统一领导、个人利益服从集体利益、合理的报酬、适当的集权和分权、秩序、公平、保持人员稳定、首创精神、人员的团结、跳板原则管理学时期的管理思想1、中外古代管理思想1原始社会是管理思想的萌芽阶段:2中国古代的管理思想:1中国古代朴素的系统管理思想2中国古代的用人思想3中国古代的经济管理思想3世界其他民族古代的管理思想:1行政管理思想2生产管理思想3教会管理思想2、古代管理思想的局限性:1、具有直观性:(1)孤立,零散,缺乏理论的系统性(2)肤浅,简单,缺乏理论的深刻性2、具有明显的阶级局限性:(1)有许多反科学的方面。
信息论控制论系统论
信息论控制论系统论信息论、控制论和系统论是现代科学中的三大基础学科,它们的发展和应用在各个领域都有广泛的影响。
本文将从三个方面介绍这三个学科的基本概念、发展历程和应用现状,以期为读者提供一些有益的启示和思考。
一、信息论信息论是由美国数学家香农于1948年提出的一种研究信息传输和处理的数学理论。
它的基本思想是将信息看作是一种不确定性的度量,用信息熵来表示信息的不确定性程度。
信息熵越大,信息的不确定性就越高,反之亦然。
信息熵的计算方法是用信息源的信源熵和信道的信道熵相加,即:H(X) = Hs(X) + Hc(Y|X)其中,H(X)是信息源X的信息熵,Hs(X)是信源熵,Hc(Y|X)是条件熵,表示在已知X的情况下,Y的不确定性程度。
信息论的另一个重要概念是信息量,它是用来度量一条消息所包含的信息量的大小。
信息量越大,消息所包含的信息就越多,反之亦然。
信息量的计算方法是用信息熵除以消息的概率,即:I(x) = -log2P(x)信息论的应用非常广泛,涉及通信、编码、压缩、加密等多个领域。
其中最著名的就是香农的通信模型和编码理论。
香农的通信模型包括信源、编码器、信道、解码器和接收器五个部分,通过对这五个部分的分析和优化,可以使信息传输的效率和可靠性得到提高。
编码理论则是研究如何利用编码来提高信息传输的效率和可靠性,其中最著名的编码方式就是香农编码和哈夫曼编码。
二、控制论控制论是由美国数学家维纳于1948年提出的一种研究控制系统的数学理论。
它的基本思想是将控制系统看作是一个动态系统,通过对系统的输入和输出进行监测和调节,使系统的行为符合预期的要求。
控制论的核心概念是反馈,即将系统的输出作为输入的一部分,通过比较输出和期望输出之间的差异,来调节系统的行为。
控制论的另一个重要概念是稳定性,即系统在一定的输入条件下,输出是否能够保持在一定的范围内。
稳定性是控制系统设计中最基本的要求之一。
控制论的应用也非常广泛,涉及到自动控制、机器人、航空航天、化工等多个领域。
传播学三论
传播学三论
传播学三论是指信息论、控制论和系统论。
这些理论在传播学研究中具有重要地位,为研究者提供了不同的视角和方法,以更好地理解传播现象和过程。
信息论:信息论是由香农在1948年提出的,它关注的是信息的传递和理解。
香农提出了一个传播过程基本模式,为传播学的定量研究提供了新的方法。
信息论还解决了信息的量度问题,并提出了噪音和冗余等新的传播概念。
控制论:控制论是由维纳在1948年提出的,它关注的是传播过程中的反馈和调整。
维纳的反馈概念对传播学的贡献是显著的,他提出了正反馈和负反馈的概念。
正反馈会导致偏差增大,而负反馈则能减少偏差,降低熵值。
系统论:系统论是由贝塔朗菲在20世纪中叶提出的,它强调整体和部分之间的关系。
系统论在传播学中的应用是广泛的,它可以帮助研究者分析传播过程的各个层面,并理解它们之间的相互作用。
这些理论在传播学中有着广泛的应用,并为研究者提供了不同的工具和方法,以更好地理解和研究传播现象。
系统论、信息论,控制论
系统论,信息论,控制论第一章系统论产生的历史概况第一节现代系统论的产生一、什么是系统论系统论是研究客观现实系统共同的特征、本质、原理和规律的科学。
它所概括的思想、理论、方法,普遍地适用于物理、生物、技术和社会系统。
系统论最明显的特征是具有新科学思想和方法论的意义,它主张从整体出发去研究系统与系统、系统与要素以及系统与环境之间的普遍联系。
它从揭示系统的整体规律上,为解决现代科学技术、社会和经济等方面的复杂问题,提供了新的理论武器。
系统论的思想渊源是辩证法,它强调从事物普通联系和发展变化中研究事物。
现代系统论不仅从哲学角度提出了有关系统的基本思想而且通过科学的、精确的数学方法,定量地描述系统机制及其发展变化过程。
所以,系统论的原理及方法具有普通的适用性。
二、系统论思想的产生过程一般系统论创始人是美籍奥地利生物学家贝塔朗菲(L.V.Bertalanffy,1901--1972),系统论作为一门科学,产生于本世纪20--30年代。
贝塔朗菲创立系统论是有—个历史过程的,他是生物学家,他的系统论思想的形成与当时的生物学界的学术争论以及他本人亲自参加这场讨论有关。
在生物学史上,一直存在着机械论与活力论之争。
机械论在生物学中表现为一种简化论和机械决定论,他们用分析方法把生物简化为物理的和化学的问题,纯粹用物理的、机械的和化学的原因来说明一切生命的生理现象和心理过程,即一种原因产生一种结果,反之亦然。
法国18世纪唯物论学者拉·梅特立是机械论最典型的代表人物之一。
他的主要著作《人是机器》就是把人这种高级生物看成是一架机器,人就是出各种零件组成的机器。
活力论则认为在生物体内部存在着一种特殊的“活力”,它支配着整个生命过程,活力论者断言:“在有机界与无机界之间隔着一道不可逾越的鸿沟;因为有机界是由一种支配着生物体内全部物理化学过程的、有一定目的的超物质的(超自然的)力量所产生的”。
德国的杜里舒是新活力论的代表,他分别用半个和两个完整的海胆做实验,结果都能生产出一个正常的海胆来。
系统科学中的老三论新三论
系统科学领域“老三论”、“新三论”一、引言老三论系统论、控制论和信息论是本世纪四十年代先后创立并获得迅猛发展(de)三门系统理论(de)分支学科.虽然它们仅有半个世纪,但在系统科学领域中已是资深望重(de)元老,合称“老三论”.人们摘取了这三论(de)英文名字(de)第一个字母,把它们称之为SCI论.耗散结构论、协同论、突变论是本世纪七十年代以来陆续确立并获得极快进展(de)三门系统理论(de)分支学科.它们虽然时间不长,却已是系统科学领域中年少有为(de)成员,故合称“新三论”,也称为DSC论.二、“老三论”、“新三论”理论概述1、系统论、控制论和信息论系统论(de)创始人是美籍奥地利生物学家贝塔朗菲.系统论要求把事物当作一个整体或系统来研究,并用数学模型去描述和确定系统(de)结构和行为.所谓系统,即由相互作用和相互依赖(de)若干组成部分结合成(de)、具有特定功能(de)有机整体;而系统本身又是它所从属(de)一个更大系统(de)组成部分.贝塔朗菲旗帜鲜明地提出了系统观点、动态观点和等级观点.指出复杂事物功能远大于某组成因果链中各环节(de)简单总和,认为一切生命都处于积极运动状态,有机体作为一个系统能够保持动态稳定是系统向环境充分开放,获得物质、信息、能量交换(de)结果.系统论强调整体与局部、局部与局部、系统本身与外部环境之间互为依存、相互影响和制约(de)关系,具有目(de)性、动态性、有序性三大基本特征.控制论是着名美国数学家维纳(Wiener N)同他(de)合作者自觉地适应近代科学技术中不同门类相互渗透与相互融合(de)发展趋势而创始(de).它摆脱了牛顿经典力学和拉普拉斯机械决定论(de)束缚,使用新(de)统计理论研究系统运动状态、行为方式和变化趋势(de)各种可能性.控制论是研究系统(de)状态、功能、行为方式及变动趋势,控制系统(de)稳定,揭示不同系统(de)共同(de)控制规律,使系统按预定目标运行(de)技术科学.信息论是由美国数学家香农创立(de),它是用概率论和数理统计方法,从量(de)方面来研究系统(de)信息如何获取、加工、处理、传输和控制(de)一门科学.信息就是指消息中所包含(de)新内容与新知识,是用来减少和消除人们对于事物认识(de)不确定性.信息是一切系统保持一定结构、实现其功能(de)基础.狭义信息论是研究在通讯系统中普遍存在着(de)信息传递(de)共同规律、以及如何提高各信息传输系统(de)有效性和可靠性(de)一门通讯理论.广义信息论被理解为使运用狭义信息论(de)观点来研究一切问题(de)理论.信息论认为,系统正是通过获取、传递、加工与处理信息而实现其有目(de)(de)运动(de).信息论能够揭示人类认识活动产生飞跃(de)实质,有助于探索与研究人们(de)思维规律和推动与进化人们(de)思维活动.2、耗散结构论、协同论和突变论(以下黑体字部分是不同表述而已)新三论是指:突变论、协同论、耗散结构论.1.突变理论突变论是法国数学家托姆创立(de).突变论是通过对事物结构稳定性(de)研究,来揭示事物质变规律(de)学问.一个普通系统(de)质变,不仅仅是通过渐变,突变方式也能实现质变.突变理论告诉人们,不是所有(de)自然、社会、思维状态都可以被控制者随意控制(de),而是只有那些在控制因素尚未到达临界值之前(de)状态是可控(de),如果控制因素一旦达到某一临界值,则控制为随机(de),甚至会变成无法控制(de)突变过程.突变理论告诉人们,事物(de)质变方式除渐变方式之外,还有一种突变方式,如何掌握突变方式问题,是一个科学思维问题.而由突变方式引起(de)质变自然时效要高.创造者如何求得这种时效,关键在于树立突变观念和掌握突变思维(de)方法与艺术.突变理论是比利时科学家托姆在1972年创立(de).其研究重点是在拓扑学、奇点理论和稳定性数学理论基础之上,通过描述系统在临界点(de)状态,来研究自然多种形态、结构和社会经济活动(de)非连续性突然变化现象,并通过耗散结构论、协同论与系统论联系起来,并对系统论(de)发展产生推动作用..突变理论通过探讨客观世界中不同层次上各类系统普遍存在着(de)突变式质变过程,揭示出系统突变式质变(de)一般方式,说明了突变在系统自组织演化过程中(de)普遍意义;它突破了牛顿单质点(de)简单性思维,揭示出物质世界客观(de)复杂性.突变理论中所蕴含着(de)科学哲学思想,主要包含以下几方面(de)内容:内部因素与外部相关因素(de)辩证统一;渐变与突变(de)辩证关系;确定性与随机性(de)内在联系;质量互变规律(de)深化发展.突变理论(de)产生突变理论是20世纪70年代发展起来(de)一个新(de)数学分支.许多年来,自然界许多事物(de)连续(de)、渐变(de)、平滑(de)运动变化过程,都可以用微积分(de)方法给以圆满解决.例如,地球绕着太阳旋转,有规律地周而复始地连续不断进行,使人能及其精确地预测未来(de)运动状态,这就需要运用经典(de)微积分来描述.但是,自然界和社会现象中,还有许多突变和飞跃(de)过程,飞越造成(de)不连续性把系统(de)行为空间变成不可微(de),微积分就无法解决.例如,水突然沸腾,冰突然融化,火山爆发,某地突然地震,房屋突然倒塌,病人突然死亡…….这种由渐变、量变发展为突变、质变(de)过程,就是突变现象,微积分是不能描述(de).以前科学家在研究这类突变现象时遇到了各式各样(de)困难,其中主要困难就是缺乏恰当(de)数学工具来提供描述它们(de)数学模型.那么,有没有可能建立一种关于突变现象(de)一般性数学理论来描述各种飞跃和不连续过程呢这迫使数学家进一步研究描述突变理论(de)飞跃过程,研究不连续性现象(de)数学理论.1972年法国数学家雷内·托姆在结构稳定性和形态发生学一书中,明确地阐明了突变理论,宣告了突变理论(de)诞生.突变理论(de)内容突变理论主要以拓扑学为工具,以结构稳定性理论为基础,提出了一条新(de)判别突变、飞跃(de)原则:在严格控制条件下,如果质变中经历(de)中间过渡态是稳定(de),那么它就是一个渐变过程.比如拆一堵墙,如果从上面开始一块块地把砖头拆下来,整个过程就是结构稳定(de)渐变过程.如果从底脚开始拆墙,拆到一定程度,就会破坏墙(de)结构稳定性,墙就会哗啦一声,倒塌下来.这种结构不稳定性就是突变、飞跃过程.又如社会变革,从封建社会过渡到资本主义社会,法国大革命采用暴力来实现,而日本(de)明治维新就是采用一系列改革,以渐变方式来实现.对于这种结构(de)稳定与不稳定现象,突变理论用势函数(de)洼存在表示稳定,用洼取消表示不稳定,并有自己(de)一套运算方法.例如,一个小球在洼底部时是稳定(de),如果把它放在突起顶端时是不稳定(de),小球就会从顶端处,不稳定滚下去,往新洼地过渡,事物就发生突变;当小球在新洼地底处,又开始新(de)稳定,所以势函数(de)洼存在与消失是判断事物(de)稳定性与不稳定性、渐变与突变过程(de)根据.托姆(de)突变理论,就是用数学工具描述系统状态(de)飞跃,给出系统处于稳定态(de)参数区域,参数变化时,系统状态也随着变化,当参数通过某些特定位置时,状态就会发生突变.突变理论提出一系列数学模型,用以解是自然界和社会现象中所发生(de)不连续(de)变化过程,描述各种现象为何从形态(de)一种形式突然地飞跃到根本不同(de)另一种形式.如岩石(de)破裂,桥梁(de)断裂,细胞(de)分裂,胚胎(de)变异,市场(de)破坏以及社会结构(de)激变…….按照突变理论,自然界和社会现象中(de)大量(de)不连续事件,可以由某些特定(de)几何形状来表示.托姆指出,发生在三维空间和一维空间(de)四个因子控制下(de)突变,有七种突变类型:折迭突变、尖顶突变、燕尾突变、蝴蝶突变、双曲脐突变、椭圆脐形突变以及抛物脐形突变.例如,用大拇指和中指夹持一段有弹性(de)钢丝,使其向上弯曲,然后再用力压钢丝使其变形,当达到一定程度时,钢丝会突然向下弯曲,并失去弹性.这就是生活中常见(de)一种突变现象,它有两个稳定状态:上弯和下弯,状态由两个参数决定,一个是手指夹持(de)力(水平方向),一个是钢丝(de)压力(垂直方向),可用尖顶突变来描述.尖顶突变和蝴蝶突变是几种质态之间能够进行可逆转(de)模型.自然界还有些过程是不可逆(de),比如死亡是一种突变,活人可以变成死人,反过来却不行.这一类过程可以用折迭突变、燕尾突变等时函数最高奇次(de)模型来描述.所以,突变理论是用形象而精确(de)得数学模型来描述质量互变过程.英国数学家奇曼教授称突变理论是“数学界(de)一项智力革命——微积分后最重要(de)发现”.他还组成一个研究团体,悉心研究,扩展应用.短短几年,论文已有四百多篇,可成为盛极一时,托姆为此成就而荣获当前国际数学界(de)最高奖——菲尔兹奖.突变理论(de)应用突变理论在在自然科学(de)应用是相当广泛(de).在物理学研究了相变、分叉、混沌与突变(de)关系,提出了动态系统、非线性力学系统(de)突变模型,解释了物理过程(de)可重复性是结构稳定性(de)表现.在化学中,用蝴蝶突变描述氢氧化物(de)水溶液,用尖顶突变描述水(de)液、气、固(de)变化等.在生态学中研究了物群(de)消长与生灭过程,提出了根治蝗虫(de)模型与方法.在工程技术中,研究了弹性结构(de)稳定性,通过桥梁过载导致毁坏(de)实际过程,提出最优结构设计…….突变理论在社会现象(de)一个用归纳为某种量(de)突变问题,人们施加控制因素影响社会状态是有一定条件(de),只有在控制因素达到临界点之前,状态才是可以控制(de).一旦发生根本性(de)质变,它就表现为控制因素所无法控制(de)突变过程.还可以用突变理论对社会进行高层次(de)有效控制,为此就需要研究事物状态与控制因素之间(de)相互关系,以及稳定区域、非稳定区域、临界曲线(de)分布特点,还要研究突变(de)方向与幅度.2.协同理论协同理论是联邦德国科学家哈肯创立(de).系统由混乱状态转为有一定结构(de)有序状态,首先需要环境提供物质流、能量流和信息流.当一个非自组织系统具备充分(de)外界条件时,怎样形成一定结构(de)自组织呢协同理论为人们提供了一个极好(de)方法,那就是设法增加系统有序程度(de)参数──序参量.这种序参量决定了系统(de)有序结构和类型,这就是哲学中指出(de)外因是变化(de)条件,内因是变化(de)根据,外因通过内因而起作用(de)观点.协同理论告诉人们,系统从无序到有序(de)过程中,不管原先是平衡相变,还是非平衡相变,都遵守相同(de)基本规律,即协调规律.这对于创新工作极为重要.将这一规律运用到创造性思维中,学会寻求思维系统(de)有序量,使其思维系统有序化,从而达到创新工作(de)有序,自然就会形成一系列有序(de)、协调(de)思维方法与艺术.协同论是20世纪70年代联邦德国着名理论物理学家赫尔曼·哈肯在1973年创立(de).他科学地认为自然界是由许多系统组织起来(de)统一体,这许多系统就称为小系统,这个统一体就是大系统.在某个大系统中(de)许多小系统既相互作用,又相互制约,它们(de)平衡结构,而且由旧(de)结构转变为新(de)结构,则有一定(de)规律,研究本规律(de)科学就是协同论.协同学理论是处理复杂系统(de)一种策略.协同学(de)目(de)是建立一种用统一(de)观点去处理复杂系统(de)概念和方法.协同论(de)重要贡献在于通过大量(de)类比和严谨(de)分析,论证了各种自然系统和社会系统从无序到有序(de)演化,都是组成系统(de)各元素之间相互影响又协调一致(de)结果.它(de)重要价值在于既为一个学科(de)成果推广到另一个学科提供了理论依据,也为人们从已知领域进入未知领域提供了有效手段.3.耗散结构论自组织现象是指自然界中自发形成(de)宏观有序现象.在自然界中这种现象是大量存在(de),理论研究较多(de)典型实例如:贝纳德(Bé nard)流体(de)对流花纹,贝洛索夫-扎鲍廷斯基(Belousov-Zhabotinsky)化学振荡花纹与化学波,激光器中(de)自激振荡等.自组织理论除耗散结构理论外,还包括协同学、超循环理论等,它们力图沟通物理学与生物学甚至社会科学,对时间本质问题等(de)研究有突破性进展,在相当程度上说明了生物及社会领域(de)有序现象.耗散结构是自组织现象中(de)重要部分,它是在开放(de)远离平衡条件下,在与外界交换物质和能量(de)过程中,通过能量耗散和内部非线性动力学机制(de)作用,经过突变而形成并持久稳定(de)宏观有序结构.耗散结构理论(de)创始人是伊里亚·普里戈金(Ilya Prigogine)教授,由于对非平衡热力学尤其是建立耗散结构理论方面(de)贡献,他荣获了1977年诺贝尔化学奖.普里戈金(de)早期工作在化学热力学领域,1945年得出了最小熵产生原理,此原理和翁萨格倒易关系一起为近平衡态线性区热力学奠定了理论基础.普里戈金以多年(de)努力,试图把最小熵产生原理延拓到远离平衡(de)非线性区去,但以失败告终,在研究了诸多远离平衡现象后,使他认识到系统在远离平衡态时,其热力学性质可能与平衡态、近平衡态有重大原则差别.以普里戈金为首(de)布鲁塞尔学派又经过多年(de)努力,终于建立起一种新(de)关于非平衡系统自组织(de)理论──耗散结构理论.这一理论于1969年由普里戈金在一次“理论物理学和生物学”(de)国际会议上正式提出.耗散结构理论提出后,在自然科学和社会科学(de)很多领域如物理学、天文学、生物学、经济学、哲学等都产生了巨大影响.着名未来学家阿尔文·托夫勒在评价普里戈金(de)思想时,认为它可能代表了一次科学革命.耗散结构理论可概括为:一个远离平衡态(de)非线性(de)开放系统(不管是物理(de)、化学(de)、生物(de)乃至社会(de)、经济(de)系统)通过不断地与外界交换物质和能量,在系统内部某个参量(de)变化达到一定(de)阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来(de)混沌无序状态转变为一种在时间上、空间上或功能上(de)有序状态.这种在远离平衡(de)非线性区形成(de)新(de)稳定(de)宏观有序结构,由于需要不断与外界交换物质或能量才能维持,因此称之为“耗散结构”(dissipative structure).[5]可见,要理解耗散结构理论,关键是弄清楚如下几个概念:远离平衡态、非线性、开放系统、涨落、突变.(1)远离平衡态远离平衡态是相对于平衡态和近平衡态而言(de).平衡态是指系统各处可测(de)宏观物理性质均匀(从而系统内部没有宏观不可逆过程)(de)状态,它遵守热力学第一定律:dE=dQ-pdV,即系统内能(de)增量等于系统所吸收(de)热量减去系统对外所做(de)功;热力学第二定律:dS/dt>=0,即系统(de)自发运动总是向着熵增加(de)方向;和波尔兹曼有序性原理:pi=e-Ei/kT,即温度为T(de)系统中内能为Ei(de)子系统(de)比率为pi.近平衡态是指系统处于离平衡态不远(de)线性区,它遵守昂萨格(Onsager)倒易关系和最小熵产生原理.前者可表述为:Lij=Lji,即只要和不可逆过程i相应(de)流Ji受到不可逆过程j(de)力Xj(de)影响,那么,流Ji也会通过相等(de)系数Lij受到力Xi(de)影响.后者意味着,当给定(de)边界条件阻止系统达到热力学平衡态(即零熵产生)时,系统就落入最小耗散(即最小熵产生)(de)态.远离平衡态是指系统内可测(de)物理性质极不均匀(de)状态,这时其热力学行为与用最小熵产生原理所预言(de)行为相比,可能颇为不同,甚至实际上完全相反,正如耗散结构理论所指出(de),系统走向一个高熵产生(de)、宏观上有序(de)状态.(2)非线性系统产生耗散结构(de)内部动力学机制,正是子系统间(de)非线性相互作用,在临界点处,非线性机制放大微涨落为巨涨落,使热力学分支失稳,在控制参数越过临界点时,非线性机制对涨落产生抑制作用,使系统稳定到新(de)耗散结构分支上.(3)开放系统热力学第二定律告诉我们,一个孤立系统(de)熵一定会随时间增大,熵达到极大值,系统达到最无序(de)平衡态,所以孤立系统绝不会出现耗散结构.那么开放系统为什么会出现本质上不同于孤立系统(de)行为呢其实,在开放(de)条件下,系统(de)熵增量dS是由系统与外界(de)熵交换deS 和系统内(de)熵产生diS两部分组成(de),即:dS=deS+diS热力学第二定律只要求系统内(de)熵产生非负,即diS>=0,然而外界给系统注入(de)熵deS可为正、零或负,这要根据系统与其外界(de)相互作用而定,在deS<0(de)情况下,只要这个负熵流足够强,它就除了抵消掉系统内部(de)熵产生diS外,还能使系统(de)总熵增量dS为负,总熵S减小,从而使系统进入相对有序(de)状态.所以对于开放系统来说,系统可以通过自发(de)对称破缺从无序进入有序(de)耗散结构状态.(4)涨落一个由大量子系统组成(de)系统,其可测(de)宏观量是众多子系统(de)统计平均效应(de)反映.但系统在每一时刻(de)实际测度并不都精确地处于这些平均值上,而是或多或少有些偏差,这些偏差就叫涨落,涨落是偶然(de)、杂乱无章(de)、随机(de).在正常情况下,由于热力学系统相对于其子系统来说非常大,这时涨落相对于平均值是很小(de),即使偶尔有大(de)涨落也会立即耗散掉,系统总要回到平均值附近,这些涨落不会对宏观(de)实际测量产生影响,因而可以被忽略掉.然而,在临界点(即所谓阈值)附近,情况就大不相同了,这时涨落可能不自生自灭,而是被不稳定(de)系统放大,最后促使系统达到新(de)宏观态.当在临界点处系统内部(de)长程关联作用产生相干运动时,反映系统动力学机制(de)非线性方程具有多重解(de)可能性,自然地提出了在不同结果之间进行选择(de)问题,在这里瞬间(de)涨落和扰动造成(de)偶然性将支配这种选择方式,所以普里戈金提出涨落导致有序(de)论断,它明确地说明了在非平衡系统具有了形成有序结构(de)宏观条件后,涨落对实现某种序所起(de)决定作用.(5)突变阈值即临界值对系统性质(de)变化有着根本(de)意义.在控制参数越过临界值时,原来(de)热力学分支失去了稳定性,同时产生了新(de)稳定(de)耗散结构分支,在这一过程中系统从热力学混沌状态转变为有序(de)耗散结构状态,其间微小(de)涨落起到了关键(de)作用.这种在临界点附近控制参数(de)微小改变导致系统状态明显(de)大幅度变化(de)现象,叫做突变.耗散结构(de)出现都是以这种临界点附近(de)突变方式实现(de)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般系统论亚里斯多德早就说过“整体大于部分之和”。
因此对系统的研究可以说从古代就已经开始了。
作为现代系统论的基本思想最初产生于本世纪20年代初由奥地利生物学家贝朗塔菲提出的,只不过它一开始被作为"机体生物学",这是生物学中的有机论概念,强调生命现象是不能用机械论观点来揭示其规律的,而只能把它看作一个整体或系统来加以考察。
1968年,贝朗塔菲发表了一般系统论的代表著作《一般系统理论――基础发展与应用》。
现在系统思想形成了一股重要的思潮,日益发挥重大而深远的影响。
一、系统1、系统的含义及其分类系统论的内涵和外延理论界现在说法不一。
人们现在把系统论作为介于哲学和具体科学之间的横断科学来对待。
它被用作比具体学科更一般化的科学理论加以研究,但又不同于哲学。
现代系统论具有可否证性、抽象性、数理性特点。
贝塔朗菲把一般系统概念定义为"系统是处于一定相互关系中的与环境发生关系的各组成成分的总体"。
或:系统——由两个或两个以上的要素组成的具有整体功能和综合行为的统一集合体钱学森把极其复杂的研究对象称为系统。
系统的属性:⑴系统的整体性:即非加和性。
系统不是各部分的简单组合,而有统一性,各组成部分或各层次的充分协调和连接,提高系统的有序性和整体的运行效果。
例如:①钢筋混凝土结构的强度就大于钢筋、水泥、沙石的强度之和。
②拿破仑说数量小时较多数法国人不敌少数马克留木人,数量大时较少法国人可以战胜较多数马克留木人③没有凡高弟弟凡高就出不了成果;没有赫歇尔妹妹则赫歇尔不能成为伟大的天文学家;没有阿贝尔的老师就没有阿贝尔;没有孟母就没有孟子;没有伽罗华之母就没有伽罗华④人们常说"三个臭皮匠等于一个诸葛亮"⑤反面例子如上网、吸毒、赌博等。
⑥"三个和尚没水吃",其原因是他们的能量消耗在内耗上。
⑵系统的相关性:系统中相互关联的部分或部件形成"部件集","集"中各部分的特性和行为相互制约和相互影响,这种相关性确定了系统的性质和形态。
⑶系统的功能性和目标性:大多数系统的活动或行为可以完成一定的功能,但不一定所有系统都有目的,例如太阳系或某些生物系统。
人造系统或复合系统都是根据系统的目的来设定其功能的,这类系统也是系统工程研究的主要对象。
例如,经营管理系统要按最佳经济效益来优化配置各种资源;军事系统为保全自己,消灭敌人,就要利用运筹学和现代科学技术组织作战,研制武器。
⑷系统的层次性和相对性(有序性):由于系统的结构、功能和层次的动态演变有某种方向性,因而使系统具有有序性的特点。
一般系统论的一个重要成果是把生物和生命现象的有序性和目的性同系统的结构稳定性联系起来,也就是说,有序能使系统趋于稳定,有目的才能使系统走向期望的稳定系统结构。
行政系统分为科、处、局、部、委…;军事系统分为排、连、营、团、师、军…运作,都是系统表现出的层次性。
⑸系统的复杂性和随机性:物质和运动是密不可分的,各种物质的特性、形态、结构、功能及其规律性,都是通过运动表现出来的,要认识物质首先要研究物质的运动,系统的动态性使其具有生命周期。
开放系统与外界环境有物质、能量和信息的交换,系统内部结构也可以随时间变化。
一般来讲,系统的发展是一个有方向性的动态过程。
⑹系统的适应性:一个系统和包围该系统的环境之间通常都有物质、能量和信息的交换,外界环境的变化会引起系统特性的改变,相应地引起系统内各部分相互关系和功能的变化。
为了保特和恢复系统原有特性,系统必须具有对环境的适应能力,例如反馈系统、自适应系统和自学习系统等。
2、系统的分类⑴按系统的规模分:小型系统、中型系统、大型系统和巨型系统⑵按组成要素的性质(按人类干预的情况)分:自然系统、人造系统和复合系统。
自然系统——原始的系统都是自然系统,如天体、海洋、生态系统等。
又如呼唤系统、消化系统、循环系统、免疫系统等。
人造系统——如人造卫星、海运船只、机械设备等。
又如:交通系统、商业系统、金融系统、工业系统、农业系统、教育系统、经济系统、文艺系统、军事系统、社会系统等等。
近年来,人造系统对自然系统的不良影响已成为人们关注的重要问题,如核军备、化学武器、环境污染等。
自然系统是一个高阶复杂的均衡系统,如季节周而复始地变化形成的气象系统、食物链系统、水循环系统等。
自然系统中的有机物、植物与自然环境保特了一个平衡态。
在自然界中,物质流的循环和演变是最重要的,自然环境系统没有尽头,没有废止,只有循环往复,并从一个层次发展到另一个层次。
原始人类对自然系统的影响不大,但近几百年来,科技发展很快,它既造福于人类,又带来危害,甚至灾难,引起了人们极大的关注。
例如,埃及阿斯旺水坝是一个典型的人造系统,水坝解决了埃及尼罗河洪水泛滥问题,但也带来一些不良影响,如东部的食物链受到破坏,渔业减产,尼罗河流域土质盐碱化加快,发生周期性干旱,影响了农业;由于河水污染使附近居民的健康受到影响等。
但如能运用系统工程方法来全面考虑,统筹安排,有可能得到一个既解决洪水问题又尽量减少损失的更好方案。
复合系统——既包含人造系统又包含自然系统。
系统工程所研究的对象大多复合系统。
是从系统的观点讲,对系统的分析应自上而下地而不是自下而上地进行。
例如,研究系统与所处环境,环境是最上一级,先注意系统对环境的影响,然后再进行系统本身的研究,系统的最下级是组成系统的各个部分或要素。
自然系统常常是复合系统的最上一级。
⑶按系统与环境的关系分:开放系统、封闭系统和孤立系统。
封闭系统是一个与外界无明显联系的系统,环境仅仅为系统提供了一个边界,不管外部环境有什么变化,封闭系统仍表现为其内部稳定的均衡特性。
封闭系统的一个实例就是密闭罐中的化学反应,在一定初始条件下,不同反应物在罐中经化学反应达到一个平衡态。
开放系统是指在系统边界上与环境有信息、物质和能量交互作用的系统。
例如商业系统、生产系统或生态系统,这些都是开放系统。
在环境发生变化时,开放系统通过系统中要素与环境的交互作用以及系统本身的调节作用,使系统达到某一稳定状态。
因此,开放系统常是自调整或自适应的系统此外还分:.实体系统和抽象(概念)系统;按学科领域就可分成自然系统、社会系统和思维系统;按范围划妥则有宏观系统、微观系统;按状态划分就有静态系统和动态系统。
还有平衡系统、非平衡系统、近平衡系统、远平衡系统等等。
二、系统论1、系统论概述系统论是研究系统的一般模式,结构和规律的学问,它研究各种系统的共同特征,用数学方法定量地描述其功能,寻求并确立适用于一切系统的原理、原则和数学模型,是具有逻辑和数学性质的一门新兴的科学。
系统思想源远流长,但作为一门科学的系统论,人们公认是加籍奥地利人、理论生物学家L.V.贝塔朗菲(L.V on.Bertalanffy)创立的。
他在1952年发表“抗体系统论”,提出了系统论的思想。
1973年提出了一般系统论原理,奠定了这门科学的理论基础。
但是他的论文《关于一般系统论》,到1945年才分开发表,他的理论到1948年在美国再次讲授“一般系统论”时,才得到学术界的重视。
确立这门科学学术地位的是1968年贝塔朗菲发表的专著:《一般系统理论——基础、发展和应用》(《General SystemTheory;Foundations,Development,Applications》),该书被公认为是这门学科的代表作。
系统一词,来源于古希腊语,是由部分级成整体的意思。
今天人们从各种角度上研究系统,对系统下的定义不下几十种。
如说“系统是诸元素及其顺常行为的给定集合”,“系统是有组织的和被组织化的全体”,“系统是有联系的物质和过程的集合”,“系统是许多要素保持有机的秩序,向同一目的行动的东西”,等等。
一般系统论则试图给一个能描示各种系统共同特征的一般的系统定义,通常把系统定义为:由若干要素以一定结构形式联结构成的具有某种功能的有机整体。
在这个定义中包括了系统、要素、结构、功能四个概念,表明了要素与要素、要素与系统、系统与环境三方面的关系。
系统论认为,整体性、关联性,等级结构性、动态平衡性、时序性等是所有系统的共同的基本特征。
这些,既是系统所具有的基本思想观点,而且它也是系统方法的基本原则,表现了系统论不仅是反映客观规律的科学理论,具有科学方法论的含义,这正是系统论这门科学的特点。
贝塔朗菲对此曾作过说明,英语System Approach 直译为系统方法,也可译成系统论,因为它既可代表概念、观点、模型,又可表示数学方法。
他说,我们故意用Approach这样一个不太严格的词,正好表明这门学科的性质特点。
系统论的核心思想是系统的整体观念。
贝塔朗菲强调,任何系统都是一个有机的整体,它不是各个部分的机械组合或简单相加,系统的整体功能是各要素在孤立状态下所没有的新质。
他用亚里斯多德的“整体大于部分之和”的名言来说明系统的整体性,反对那种认为要素性能好,整体性能一定好,整体性能一定好,以局部说明整体的机械论的观点。
同时认为,系统中各要素不是孤立地存在着,每个要素在系统中都处于一定的位置上,起着特定的作用。
要素之间相互关联,构成了一个不可分割的整体。
要素是整体中的要素,如果将要素从系统整体中割离出来,它将失去要素的作用。
正象人手在人体中它是劳动的器官,一旦将手从人体中砍下来,那时它将不再是劳动的器官了一样。
系统论的基本思想方法,就是把所研究和处理的对象,当作一个系统,分析系统的结构和功能,研究系统、要素、环境三者的相互关系和变动的规律性,并优化系统观点看问题,世界上任何事物都可以看成是一个系统,系统是普遍存在的。
大至渺茫的宇宙,小至微观的原子,一粒种子、一群蜜蜂、一台机器、一个工厂、一个学会团体、……都是系统,整个世界就是系统的集合。
系统是多种多样的,可以根据不同的原则和情况来划分系统的类型。
系统论的任务,不仅在于认识系统的特点和规律,更重要地还在于利用这些特点和规律去控制、管理、改造或创造一系统,使它的存在与发展合乎人的目的需要。
也就是说,研究系统的目的在于调整系统结构,直辖各要素关系,使系统达到优化目标。
系统论的出现,使人类的思维方式发生了深刻地变化。
以往研究问题,商业局是把事物分解成若干部分,抽象出最简单的因素来,然后再以部分的性质去说明复杂事物。
这是笛卡尔奠定理论基础的分析方法。
这种方法的着眼点在局部或要素,遵循的是单项因果决定论,虽然这是几百年来在特定范围内行之有效、人们最熟悉的思维方法。
得是它不能如实地说明事的的整体性,不能反映事物之间的联系和相互作用,它只适应认识较为简单的事物,而不胜任于对复杂问题的研究。
在现代科学的整体化和商度综合化发展的趋势下,在人类面临许多规模巨大、关系复杂、参数众多的复杂问题面前,就显得无能为力了。