七年级数学上册总复习测试

合集下载

精品 七年级数学上册 期末综合复习题

精品 七年级数学上册 期末综合复习题

第 5 页 共 6 页
10.如图,已知直线 AB 和 CD 相交于 O 点,∠COE 是直角,OF 平分∠AOE,∠COF=280,求∠BOD 的度数.
11.某商城搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折的优 惠条件,共付款 386 元,若这两种商品的标价之和是 500 元,求这两种商品的实际卖出价格分别是多少?
14.某班准备外出春游,有 3 名教师参加.有甲乙两家旅行社,其收费标准都一样,但都表示可以优惠师生。 甲旅行社承诺:教师免费,学生按 8 折收费;乙旅行社承诺:师生一律按 7 折收费.问: (1)如果由旅行社筹办春游活动,在什么条件下,两家旅行社所收费用相等。 (2)如果这个班有 45 名学生,选择哪家旅行社较恰当。请说明选择的理由。
5.如图,OE 为∠AOD 的角平线,∠COD=
1 0 ∠EOC,∠COD=15 ,求:(1)∠EOC 的大小;(2)∠AOD 的大小。 4
第 4 页 共 6 页
期末复习综合测试题 日期: 月 日 时间:20 分钟 满分:100 分 姓名: 得分: 1.一条船向北偏东 50 方向航行到某地,然后依原航线返回,船返回时航行的正确方向是( ) 0 0 0 0 A.南偏西 40 B.南偏西 50 C.北偏西 40 D.北偏西 50 2.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体( A.5 个 B.6 个 C.7 个 D.8 个
第 2 页 共 6 页
二、填空题: 5 9.近似数 1.460×10 精确到____位,有效数字是_____ 10. 3 xy n+1与x m y 2 是同类项,则 m+n= 11.如图,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体,这个正方体的 2 号面的对面是 ________号面.

七年级上册数学期末复习试卷【含答案】

七年级上册数学期末复习试卷【含答案】

七年级上册数学期末复习试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 25厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么这个长方体的体积是多少立方厘米?A. 240立方厘米B. 480立方厘米C. 720立方厘米D. 960立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 如果一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少厘米?A. 22厘米B. 32厘米C. 42厘米D. 52厘米二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定是合数。

()2. 一个三角形的内角和等于180度。

()3. 一个数的因数一定比这个数小。

()4. 两个负数相乘,其结果一定是正数。

()5. 一个数的倍数一定比这个数大。

()三、填空题(每题1分,共5分)1. 24的因数有:______、______、______、______。

2. 一个等边三角形的每个内角是______度。

3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么这个长方体的表面积是______平方厘米。

4. 如果一个数的平方是36,那么这个数可能是______或______。

5. 下列数中,______是合数,______是质数。

四、简答题(每题2分,共10分)1. 请写出24的所有因数。

2. 请解释等边三角形的性质。

3. 请计算长方体的体积和表面积。

4. 请解释质数和合数的区别。

5. 请解释因数和倍数的区别。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,请计算这个长方体的体积和表面积。

2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,请计算这个三角形的周长。

新人教版七年级数学上册总复习-第四章-几何图形初步单元测试题

新人教版七年级数学上册总复习-第四章-几何图形初步单元测试题

(全卷满分100分, 考试时间90分钟)选择题(每小题3分, 共30分)1.如图是一个小正方体的展开图, 把展开图折叠成小正方体后, 有“建”字一面的相对面上的字是()A.和B.谐C.社D.会如图所示, 一个三边相等的三角形, 三边的中点用虚线连接, 如果将三角形沿虚线向上折叠, 得到的立体图形是().(A)三棱柱(B)三棱锥(C)正方体(D)圆锥3.下列说法正确的是.. ).(A)射线可以延长(B)射线的长度可以是5米(C)射线AB和射线BA是同一条射线(D)射线不可以反向延长4.把一条弯曲的河道改成直道, 可以缩短航程, 其中的道理可以解释为...).(A)线段有两个端点(B)过两点可以确定一条直线(C)两点之间, 线段最短(D)线段可以比较大小5.经过三点中的任意两点可以画几条直线A一条直线 B两条直线 C一条或三条直线 D三条直线6.如图, OC是∠AOB的平分线, OD是∠BOC的平分线, 那么下列各式中正确的是.. ).(A)∠COD=12∠AOB (B)∠AOD=23∠AOB (C)∠BOD=13∠AOD (D)∠BOC=23∠AOD 第6题图7..用度、分、秒表示91.34°为().A.91°20/24/.... B.91°34.... C.91°20/4/....D.91°3/4// 8.下列说法正确的是.. ).(A)一个锐角的余角比这个角大(B)一个锐角的余角比这个角小(C)一个锐角的补角比这个角大(D)一个钝角的补角比这个角大操场上, 小明对小亮说: “你在我的北偏东30°方向上”, 那么小亮可以对小明说: “你在我的()方向上”.(A)南偏西30°(B)北偏东30°(C)北偏东60°(D)南偏西60°10.已知∠1.∠2互为补角, 且∠1>∠2, 则∠2的余角是.. ).(A)12(∠1+∠2)(B)12∠1 (C)12(∠1-∠2)(D)12∠2二、填空(每题3分, 共24 分)11.圆柱有______个平面组成和______曲面组成。

七年级数学上册总复习题

七年级数学上册总复习题

七年级数学1、下列说法正确的是()A.一个数的相反数一定是负数 B正整数,零和负整数统称为有理数 C在数轴上,右边的点表示的数总比左边的点表示的数大 D绝对值较大的数大于绝对值较小的数2、初二(1)班有48名同学,其中有男同学n名,将他们编成1号、2号、…,n号.在寒假期间,1号给3名同学打过电话,2号给4名同学打过电话,3号给5名同学打过电话,…,n号同学给一半同学打过电话,由此可知该班女同学的人数是()A 22B 24C 25D 263、元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A 260+106π()=260+10+x8π()B260+x2?60=86π()πC 2π(60+10)×6=2π(60+π)×8D 2π(60-x)×8=2π(60+x)×64、若关于x的方程1514mx-=x-2323()有负整数解,则整数m为()A 2或3B -1或2C 0或-1D -1、0、2、35、下面图形能折叠起来做成一只开口的盒子的有()A 1个B 2个C 3个D 4个6、如果线段AB=5cm,BC=3cm,且A,B,C三点在同一条直线上,那么A,C两点之间的距离是7、下列说法中:①若ax=ay,则x=y(其中a是有理数);②若aa=-1,则a<0;③代数式-3a+10b+3a-10b-2的值与a,b都无关;④当x=3时,代数式1+(3-x)2有最大值l;⑤若|a|=|-9|,则a=-9.其中正确的是(填序号)8、已知A=4x2-4xy+y2,B=x2+xy-5y2(1)当x=12,y=-12时.求A-3B的值;(2)用只含字母A、B的代数式表示8x2-19y2;(3)若4x2-3xy=1,x2-4y2=-3.求A+B的值.9、一张长方形桌子可坐6人,按下图方式将桌子拼在一起.(1)2张桌子拼在一起可坐人,3张桌子拼在一起可坐,…n张桌子拼在一起可坐人.(2)一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人.10、已知,如图为一日历的一部分,粗线所在的框刚好框住了9个数,设中间的一个数为x,那么这9个数的和为,右下角的数y用含x的代数式表示为11、已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(-c)>0;②(-a)-b+c>0;③ca b++=1;④bc-a>0;⑤|a-b|-|c+b|+|a-c|=-2b.其中正确的有(请填写编号).a b c12、为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?13、(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC 的中点,求线段MN的长度;(2)若点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN的长度;(用a、b的代数式表示)(3)在(2)中,把点C是线段AB上任意一点改为:点C是直线AB上任意一点,其他条件不变,则线段MN的长度会变化吗?若有变化,求出结果.14、如图,图1是个正五边形,分别连接这个正五边形各边中点得到图2,再分别连接图2小正五边形各边中点得到图3:(1)填写下表:图形标号 1 2 3正五边形个数三角形个数(1)按上面方法继续连下去,第n个图中有多少个三角形(3)能否分出246个三角形?简述你的理由.15、金曼克中学有A、B两台复印机,用于印刷学习资料和考试试卷.该校七年级举行期末考试,其数学试卷如果用复印机A、B单独复印,分别需要50min和40min.在考试时为了保密需要,不能过早提前印刷试卷.决定在考试前由两台复印机同时复印,在复印20min 后B机出了故障,此时离发卷还有8min,请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷?16、探索规律:将连续的偶2,4,6,8,…,排成如下表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.17、已知a、b、c在数轴上的对应点如图所示,化简|a|-|a+b|+|c-a|+|b+c|.18、如图,数轴上每相邻两刻度线间的距离为1个单位长度,请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是多少?图中5个点表示的数的乘积是多少?(3)求|x+1.5|+|x-0.5|+|x-4.5|的最小值.19、某公司要把240吨白砂糖运往某市的A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,其中调往A地的大车有a辆,其余货车前往B地,若设总运费为W,求W与a的关系式(用含有a的代数式表示W).20、张先生准备在沙坪坝购买一套小户型商品房,他去某楼盘了解情况得知,该户型商品房的单价是8000元/m2,面积如图所示(单位:米,卫生间的宽未定,设宽为x米),售房部为张先生提供了以下两种优惠方案:方案一:整套房的单价是8000元/m2,其中厨房可免费赠送23的面积;方案二:整套房按原销售总金额的9折出售.(1)用y1表示方案一中购买一套该户型商品房的总金额,用y2表示方案二中购买一套该户型商品房的总金额,分别求出y1、y2与x的关系式;(2)求x取何值时,两种优惠方案的总金额一样多?(3)张先生因现金不够,于2012年1月在建行借了9万元住房贷款,贷款期限为6年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%,每月还款数额=平均每月应还的贷款本金数额+月利息,月利息=上月所剩贷款本金数额×月利率.①张先生借款后第一个月应还款数额是多少元?②假设贷款月利率不变,若张先生在借款后第n(1≤n≤72,n是正整数)个月的还款数额为P,请写出P与n之间的关系式.。

七年级数学上册全册单元测试卷复习练习(Word版 含答案)

七年级数学上册全册单元测试卷复习练习(Word版 含答案)

七年级数学上册全册单元测试卷复习练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。

(2)①由点A、B表示的数及点C、D的运动速度和方向,可得出运动1秒后点C、D分别表示的数,再求出CD的长;②当点D在BP上时,根据t的取值范围,分别用含t的代数式表示出AC、CD的长,就可得出AC、CD的数量关系。

(3)根据t的值及CD的长,就可得出点C表示的数,从而就可求出点P所表示的数。

2.如图(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段(2)解:,理由:设线段上有m个点,该线段上共有线段x条,则x=(m-1)+(m-2)+(m-3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),∴2x= =m(m-1),∴x=(3)解:把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行场比赛【解析】【分析】(1)线段AB上共有4个点A、B、C、D,得到线段共有4×(4-1)÷2条;(2)根据规律得到该线段上共有m(m-1)÷2条线段;(3)由每两位同学之间进行一场比赛,得到要进行8×(8-1)÷2场比赛.3.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系为:________(直接写出结果).(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP,CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系为:________(直接写出结果).(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP,CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.【答案】(1)∠FDC+∠ECD=∠A+180°(2)∠P=90°+ ∠A(3)解:∵DP、CP分别平分∠ADC和∠BCD,【解析】【解答】(1)探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,故答案为:( 2 )探究二:∵DP、CP分别平分∠ADC和∠ACD,故答案为:【分析】(1)由三角形的一个外角等于和它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再将两个等式两边分别相加并运用三角形的内角和定理即可求解;(2)由角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,再结合三角形的内角和定理即可求解;(3)由角平分线的定义可得∠PDC=∠ADC,∠PCD=∠BCD,再结合三角形的内角和定理和四边形的内角和定理即可求解。

七年级上册数学总复习(含答案)

七年级上册数学总复习(含答案)

a10总 复 习1、下列说法不正确的是( )(A)0既不是正数,也不是负数 (B) 1是绝对值最小的数 (C)一个有理数不是整数就是分数 (D) 0的绝对值是0 2、下列语句正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.绝对值最小的数是0D.倒数等于它本身的数只有1 3、下列说法正确的是 ( )A. 几个有理数相乘, 当负因数有奇数个时, 积为负B. 几个有理数相乘, 当负因数有偶数个时, 积为正C. 几个有理数相乘, 当积为负时, 负因数有奇数个D. 几个有理数相乘, 当因数有偶数个时, 积为正 4、下列各组量中,互为相反意义的量是( ) A 收入200元与支出20元 B 上升10米与下降7米 C 超过0.05毫米与不足0.03毫米 D 增大2升与减少2升 5、在数轴上,原点及原点右边的点表示的数是( ) A 正数 B 负数 C 非正数 D 非负数 6、如果一个有理数的绝对值是正数,那么这个数一定( ) A 是正数 B 不是0 C 是负数 D 以上都不对 7、下列关于0的结论错误的是( ) A 0不是正数也不是负数 B 0的相反数是0 C 0的绝对值是0 D 0的倒数是08、有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( ) A a>b B a<bC ab>0D 0ab> 9、下列运算正确的是( ) A. -22=4B.31128327⎛⎫-=- ⎪⎝⎭C. 81)21(3-=-D. 6)2(3-=-10、a, b 是有理数, 它们在数轴上的对应点的位置如图1所示, 把a , -a , b , -b 按照从小到大的顺序排列是 ( )A. b a a b <<-<-B. b a b a <<-<-C.b a a b <-<<-D.a a b b <-<<- 11、下面计算正确的事( )A.32x -2x =3 B.32a +23a =55a C.3+x =3xD.-0.25ab +41ba =0 12、下列说法正确的是( )A 、13 πx 2的系数是13B 、12 xy 2的系数为12xC 、-5x 2的系数为5D 、-x 2的系数为-113、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元A 、4m +7nB 、28mnC 、7m +4nD 、11mn14、计算:6a 2-5a +3与5a 2+2a -1的差,结果正确的是( )A 、a 2-3a +4B 、a 2-3a +2C 、a 2-7a +2D 、a 2-7a +415、下列说法正确的是( )A .32xyz 与32xy 是同类项 B .x 1和21x 是同类项 C .0.523y x 和732y x 是同类项D .5n m 2与-42nm 是同类项16、若A 是一个六次多项式,B 也是一个七次多项式,则B A +一定是( )A.十三次多项式B.七次多项式 C .不高于七次的整式 D.六次多项式17、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y x y xy x -=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A. xy 7-B. xy 7+C. xy -D. xy + 18、当x 分别取2和-2时,多项式x 5+2x 3-x 的值( ) A.互为相反数 B.互为倒数 C.相等D.异号不等19、已知关于x 的多项式222ax abx b bx abx a -+++与的和是一个单项式,则有( ) A. a =bB. a =0或b =0C. ab =1D. a =-b 或b =-2a20、32281x x x -+-若多项式与多项式323253x mx x +-+的和不含二次项,则m 等于( )A.2B.-2C.4D.-421、如果4x 2-2x = 7是关于x 的一元一次方程,那么m 的值是( )A 、- 12B 、12C 、0D 、122、在下列方程中,解是2的方程是( )A 、3x =x +3B 、-x +3=0C 、2x =6D 、5x -2=823、方程x9+1=0的解是( )A 、-10B 、-9C 、9D 、1924、将方程 - 34 x =12 的未知数的系数化为1,得( )A 、x = - 83B 、x = 83C 、x = 23D 、- 2325、一个长方形的周长是40㎝,若将长减少8㎝,宽增加2㎝,长方形就变成了正方形,则正方形的边长为( )A 、6㎝B 、7㎝C 、8㎝D 、9㎝ 26、如果一元一次方程a x +b =0(a≠0)的解是正数,则( ) A 、a 、b 为异号 B 、b 大于0 C 、a 、b 为同号 D 、a 小于0 27、下列说法中,正确的是( ) A 、若ac =bc ,则a =bB 、若 a c = bc,则a =bC 、若a 2=b 2,则a =bD 、若∣a ∣=∣b ∣,则a =b28、甲比乙大15岁。

2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)

2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)

2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)一.选择题1.下列各组式子中,属于同类项的是()A.ab与a B.ab与ac C.xy与﹣2yx D.a与b2.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.53.已知∠A与∠B互余,∠B与∠C互补,若∠A=60°,则∠C的度数是()A.30°B.60°C.120°D.150°4.下列说法中正确的是()A.射线AB和射线BA是同一条射线B.延长线段AB和延长线段BA的含义是相同的C.延长直线ABD.经过两点可以画一条直线,并且只能画一条直线5.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城6.如图,小林利用圆规在线段CE上截取线段CD,使CD=AB.若点D恰好为CE的中点,则下列结论中错误的是()A.CD=DE B.AB=DE C.CE=CD D.CE=2AB7.如图,O是直线AB上一点,∠AOC=46°,OD是∠COB的角平分线,则∠DOB等于()A.46°B.60°C.67°D.76°8.如图,点O在直线AB上,射线OC、OD在直线AB的同侧,∠AOD=40°,∠BOC=50°,OM、ON分别平分∠BOC和∠AOD,则∠MON的度数为()A.135°B.140°C.152°D.45°9.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,则依题意所列方程正确的是()A.3x﹣20=4x﹣25B.3x+20=4x+25C.3x﹣20=4x+25D.3x+20=4x﹣2510.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=m,CD =n,则AB=()A.m﹣n B.m+n C.2m﹣n D.2m+n二.填空题11.已知|a+2|=0,则a=.12.数轴上与原点的距离等于2个单位的点表示的数是.13.已知﹣5x m y3与4x3y n能合并,则m n=.14.若方程(m﹣1)x|m|+1+2mx﹣3=0是关于x的一元二次方程,则m=.15.已知∠A=100°,则∠A的补角等于°.16.已知∠A=30°45',∠B=30.45°,则∠A∠B.(填“>”、“<”或“=”)17.如图,射线OA的方向是北偏东27°35',那么∠α=.三.解答题18.计算:(1)6×(1﹣)﹣32÷(﹣9).(2)﹣22+|5﹣8|+24÷(﹣3)×.19.先化简再求值:2(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.20.补全解题过程:如图,已知线段AB=6,延长AB至C,使BC=2AB,点P、Q分别是线段AC和AB的中点,求PQ的长.解:∵BC=2AB,AB=6∴BC=2×6=12∴AC=+=6+12=18∵点P、Q分别是线段AC和AB的中点∴AP==×18=9AQ==×6=3∴PQ=﹣=9﹣3=621.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出:a+b=,cd=,m=;(2)求的值.22.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.如图,已知线段a和线段AB,(1)延长线段AB到C,使BC=a(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=5,BC=3,点O是线段AC的中点,求线段OB的长.24.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.25.如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°.(1)填空:与∠COD互余的角有;(2)若∠COE=30°,求∠AOE的度数;(3)求证:OD是∠AOC的平分线.26.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.27.已知m,x,y满足:(1)(x﹣5)2+|m|=0;(2)﹣2ab y+1与4ab3是同类项.求代数式(2x2﹣3xy+6y2)﹣m(3x2﹣xy+9y2)的值.28.某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物所有商品价格可获九折优惠;优惠二:交纳200元会费成为该超市的一员,所有商品价格可优惠八折优惠.(1)若用x(元)表示商品价格,请你用含x的式子分别表示两种购物优惠后所花的钱数;(2)当商品价格是多少元时,两种优惠后所花钱数相同;(3)若某人计划在该超市购买价格为2700元的一台电脑,请分析选择哪种优惠更省钱?29.(1)如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点,求线段MN的长;(2)若C为线段上任一点,满足AC+CB=acm,点M、N分别是AC、BC的中点,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,点M、N分别是AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.30.如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.(1)写出数轴上点A、C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN=CQ.设运动的时间为t(t>0)秒.①数轴上点M、N表示的数分别是(用含t的式子表示);②t为何值时,M、N两点到原点的距离相等?参考答案一.选择题1.解:xy与﹣2yx属于同类项,故选:C.2.解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.3.解:∵∠A=60°,∠A与∠B互余,∴∠B=90°﹣∠A=90°﹣60°=30°,∵∠B与∠C互补,∴∠C=180°﹣∠B=180°﹣30°=150°.故选:D.4.解:A、射线用两个大写字母表示时,端点字母写在第一个位置,所以射线AB和射线BA不是同一条射线,此选项错误;B、延长线段AB是按照从A到B的方向延长的,而延长线段BA是按照从B到A的方向延长的,意义不相同,故此选项错误;C、直线本身就是无限长的,不需要延长,故此选项错误;D、根据直线的公理可知:两点确定一条直线,故此选项正确.故选:D.5.解:这是一个正方体的平面展开图,共有六个面,其中与“筑”字所在面相对的面上的汉字是疫.故选:B.6.解:∵点D恰好为CE的中点,∴CD=DE,∵CD=AB,∴AB=DE=CE,即CE=2AB=2CD,故A,B,D选项正确,C选项错误,故选:C.7.解:∵∠AOC=46°,∴∠BOC=180°﹣46°=134°,∵OD是∠COB的角平分线,∴∠DOB=∠COB=×134°=67°,故选:C.8.解:易知:∠COD=180°﹣∠AOD﹣∠BOC=90°,∵OM、ON分别平分∠BOC和∠AOD,∴∠NOD=∠AOD=20°,∠COM=∠BOC=25°,∴∠MON=20°+25°+90°=135°故选:A.9.解:设这个班有学生x人,由题意得,3x+20=4x﹣25.故选:D.10.解:由题意得,EC+FD=m﹣n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF﹣CD=m﹣n又∵AB=AE+FB+EF∴AB=m﹣n+m=2m﹣n故选:C.二.填空题11.解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.12.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为:±2.13.解:∵﹣5x m y3与4x3y n能合并,∴﹣5x m y3与4x3y n是同类项,∴m=3,n=3,∴m n=27.故答案为:27.14.解:由题意得:,解得:m=﹣1.15.解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.16.解:∵∠A=30°45'=30.75°,∠B=30.45°,30.75°>30.45°,∴∠A>∠B.故答案为:>.17.解:∵射线OA的方向是北偏东27°35',∴∠α=90°﹣27°35′=62°25′,故答案为:62°25°.三.解答题18.解:(1)6×(1﹣)﹣32÷(﹣9)=6×﹣9÷(﹣9)=4+1=5;(2)﹣22+|5﹣8|+24÷(﹣3)×=﹣4+3+(﹣8)×=﹣1﹣=﹣.19.解:原式=6x2y﹣2xy2﹣3x2y+6xy2=3x2y+4xy2,把x=﹣1,y=﹣2代入,原式=3×(﹣1)2×(﹣2)+4×(﹣1)×(﹣2)2=﹣6﹣16=﹣22.20.解:∵BC=2AB,AB=6∴BC=2×6=12∴AC=AB+BC=6+12=18∵点P、Q分别是线段AC和AB的中点∴AP=AC=×18=9AQ=AB=×6=3∴PQ=AP﹣AQ=9﹣3=6,故答案为:AB;BC;AC;AB;AP;AQ.21.解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2;故答案为:0,1,±2;(2)当m=2时,原式=2+1=3;当m=﹣2时,原式=﹣2+1+0=﹣1,则原式=3或﹣1.22.解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.23.解:(1)如图:(2)∵AB=5,BC=3,∴AC=8,∵点O是线段AC的中点,∴AO=CO=4,∴BO=AB﹣AO=5﹣4=1,∴OB长为1.24.解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.;(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.25.解:(1)∵OE平分∠BOC,∴∠COE=∠BOE,∵∠COD+∠COE=∠DOE=90°,∴∠COD+∠BOE=90°,与∠COD互余的角有∠BOE、∠COE;故答案为:∠BOE、∠COE;(2)∵OE平分∠BOC,∴∠COE=∠BOE=30°,∴∠AOE=180°﹣30°=150°;(3)证明:∵OE是∠BOC的平分线,∴∠COE=∠BOE,∵∠DOE=90°,∴∠COD+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°,∴∠DOC+∠COE=∠DOA+∠BOE,所以∠DOC=∠DOA,所以OD是∠AOC的平分线.26.解:(1)设无风时飞机的速度为x千米每小时,两城之间的距离为S千米.则顺风飞行时的速度v1=x+24,逆风飞行的速度v2=x﹣24顺风飞行时:S=v1t1逆风飞行时:S=v2t2即S=(x+24)×=(x﹣24)×3解得x=840,答:无风时飞机的飞行速度为840千米每小时.(2)两城之间的距离S=(x﹣24)×3=2448千米答:两城之间的距离为2448千米.27.解:∵(x﹣5)2+|m|=0,∴(x﹣5)2≥0|m|≥0,∴x=5,m=0,∵﹣2ab y+1与4ab3是同类项,∴y+1=3,∴y=2,∴(2x2﹣3xy+6y2)﹣m(3x2﹣xy+9y2)=2x2﹣3xy+6y2=2×52﹣3×5×2+6×22=50﹣30+24=44.28.解:(1)由题意可得:优惠一:付费为:0.9x,优惠二:付费为:200+0.8x;(2)当两种优惠后所花钱数相同,则0.9x=200+0.8x,解得:x=2000,答:当商品价格是2000元时,两种优惠后所花钱数相同;(3)∵某人计划在该超市购买价格为2700元的一台电脑,∴优惠一:付费为:0.9x=2430,优惠二:付费为:200+0.8x=2360,答:优惠二更省钱.29.解:(1)∵AC=8cm,点M是AC的中点,∴CM=0.5AC=4cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7cm,∴线段MN的长度为7cm,(2)MN=a,由M,N分别是AC,BC的中点,得MC=AC,NC=BC.MN=MC+NC=AC+BC=(AC+BC)=a,∴当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:,则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.30.解析(1)点A、C表示的数分别是﹣9、15.(2)①点M、N表示的数分别是t﹣9、15﹣4t,故答案为:t﹣9、15﹣4t.②当点M,点N分别在原点两侧时,由题意可知9﹣t=15﹣4t.解这个方程,得t=2.此时点M在原点左侧,点N在原点右侧.当点M、N在原点同侧时,由题意可知t﹣9=15﹣4t.解这个方程,得t=.此时点M、N同时在原点左侧.所以当t=2或 时,M、N两点到原点的距离相等.。

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一有理数的意义一、双基回顾1、前进8米的相反意义的量是;盈利50元的相反意义的量是。

2、向东走5m记作+5m,则向西走8记作,原地不动用表示。

正数{…};负数{…};分数{…};整数{…};非负整数{…};非正数{…}。

4、与表示-1的点距离为3个单位的点所表示的数是。

5、数轴上到原点的距离为2的点所表示的数是。

6、3的相反数的倒数是。

7、最小的自然数是;最小的正整数是;绝对值最小的数是;最大的负整数是。

8、相反数等于它本身的数是,绝对值等于它本身的数是,平方等于它本身的数是,,倒数即是它自己的数是。

9、如图,如果a<,b>0,那么a、b、-a、-b的大小关系是.10、已知︱a+2︱+(3- b)2=0,则a b =。

ab二、例题导引例1(1)大于-3且小于2.1的整数有哪些?(2)绝对值大于1小于4.3的整数的和是多少?例2已知a、b互为相反数,m、n互为倒数,︱x︱=3,求(a+b)2-3mn+2x的值。

例3(1)若a<,a2=4,b3=-8,求a+b的值。

(2)已知︱a︱= 2,︱b︱=5,求a-b的值;3、操演升华1、判断下列叙述是否正确:①零上6℃的相反意义的量是零下6℃,而不是零下8℃()②如果a是负数,那末-a就是正数()③正数与负数互为相反数()④一个数的相反数长短正数,那末这个数肯定长短负数()⑤若a=b,则︱a︱=︱b︱;若︱a︱=︱b︱,则a=b()2、一种零件标明的要求是Ф10(单位:mm)表示这种零件的标准尺寸是10mm,加工零件要求最大直径不超过mm,最小直径不小于mm.。

3、某天气温上升了-2℃的意义是。

5、12的相反数与-7的绝对值的和是。

6、若a<0,b<0,则下列各式正确的是( )A、a-b<0 B、a-b>0 C、a-b=0 D、(-a)+(-b)>07、两个非零有理数的和是,它们的商是()A、0B、-1C、1D、不能确定8、若|x|=-x,则x=_____;若︱x-2︱=3,则x= .9、古希腊科学家把数1,3,6,10,15,21,……叫做三角形数它有一定的规律性,第个三角形数为_______。

人教版七年级数学上册总复习练习题及答案

人教版七年级数学上册总复习练习题及答案

人教版七年级数学上册总复习练习题及答案人教版七年级数学上册精品练题第一章有理数一、填空题(每空2分,共38分)1、-的倒数是____;1的相反数是____。

答案:-1,-12、比-3小9的数是____;最小的正整数是____。

答案:-12,13、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是4、答案:-15、某旅游景点11月5日的最低气温为-2℃,最高气温为8℃,那么该景点这天的温差是____。

答案:10℃6、计算:(-1)100+(-1)101=______。

答案:-27、平方得2的数是____;立方得-64的数是____。

答案:-√2,-48、+2与-2是一对相反数,请赋予它实际的意义:___________________。

答案:温度上升2℃和温度下降2℃9、绝对值大于1而小于4的整数有____,其和为_______。

答案:-3,-2,-1,0,1,2,3;010、若a、b互为相反数,c、d互为倒数,则3(a + b)-3cd=__________。

答案:011、若(a-1)2+|b+2|=,则a+b=_________。

答案:-412、数轴上表示数-5和表示-14的两点之间的距离是______。

答案:913、在数-5、1、-3、5、-2中任取三个数相乘,其中最大的积是_______,最小的积是_______。

答案:75,-7514、若m,n互为相反数,则|m-1+n|=_________。

答案:|m+n-1|二、选择题(每小题3分,共21分)15、有理数a、b在数轴上的对应的位置如图所示:则()A.a + b<0.B.a + b>0.C.a-b = 0.D.a-b>0答案:B16、下列各式中正确的是()A.a2=(−a)2B.a3=(−a)3.C.−a2=|−a2|D.a3=|a3|答案:A17、如果a+b>0,且ab<0,那么()A.a>0,b<0;B.a<0,b<0;C.a、b异号;D.a、b异号且负数和绝对值较小答案:C18、下列代数式中,值一定是正数的是(。

2023-2024学年人教新版七年级上册数学期末复习试卷(含答案)

2023-2024学年人教新版七年级上册数学期末复习试卷(含答案)

2023-2024学年人教新版七年级上册数学期末复习试卷一.选择题(共12小题,满分36分)1.的绝对值是a,相反数是b,则a+b=( )A.0B.C.D.2.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体( )A.从正面看改变,从左面看改变B.从上面看不变,从左面看不变C.从上面看改变,从左面看改变D.从上面看改变,从左面看不变3.有理数a、b在数轴上的对应的位置如图所示,则正确的是( )A.a+b<0B.ab>0C.a﹣b>0D.|a|<|b|4.下列算式中,计算结果是负数的是( )A.(﹣2)+5B.|﹣3﹣2|C.3×(﹣3)D.(﹣5)25.若x2﹣3x的值为4,则3x2﹣9x﹣3的值为( )A.1B.9C.12D.156.下列说法正确的是( )A.单项式﹣a的系数和次数都是1B.x5﹣5x2y+2x三次项的系数为5C.单项式的系数和次数分别为,4D.π+4是单项式7.若3m4n|a|与﹣m|b﹣1|n2是同类项,且a<b,则a、b的值为( )A.a=2,b=5B.a=﹣2,b=﹣3C.a=±2,b=5D.a=±2,b=﹣38.若(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,那么k2﹣2k+1的值为( )A.1B.9C.1或9D.09.已知线段AB=10cm,点C是线段AB上一点,BC=4cm,点M和点N分别是线段AB 和线段BC的中点,则线段MN的长度是( )A.8cm B.7cm C.5cm D.3cm10.大车平均速度每小时80公里,小车平均速度每小时100公里,则大车和小车行驶完同一条路的时间之比是( )A.80:100B.100:80C.4:5D.5:411.如图,在某世博园内从花城丝路A处看见福建厦门园C在其北偏东62°的方向上,从丝路起点B处看见福建厦门园C在其北偏东13°的方向上(花城丝路与丝路起点约在同一直线上),则从福建厦门园C处看A,B两处的视角∠ACB的度数为( )A.13°B.26°C.49°D.62°12.如图,表中给出的是某月的月历,任意用“H”型框选中7个数(如阴影部分所示),则这7个数的和不可能是( )A.63B.70C.98D.105二.填空题(共6小题,满分18分)13.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准每分钟降低了a元后,再次下调了30%,现在的收费标准是每分钟b元,则原收费标准每分钟为 元.14.写出一个只含字母a、b的三次三项式,并按字母a的降幂排列是 .15.已知a、b、c、d是有理数,|a﹣b|≤8,|c﹣d|≤17,且|a﹣b﹣c+d|=25,则|b﹣a|﹣|d﹣c|= .16.的值是 .17.x=2是方程x﹣m=1的解,则m= .18.七棱柱有 个面, 个顶点.三.解答题(共7小题,满分66分)19.计算:(1);(2).20.解方程:8x=.21.“整体思想”是中学数学学习中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:4(a+b)+3(a+b)=(4+3)(a+b)=7(a+b),请应用整体思想解答下列问题:(1)化简:5(m+n)2﹣7(m+n)2+3(m+n)2;(2)已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.22.某中学对10名七年级男学生进行了引体向上的测试,以做4个为基准进行记录,超过的次数用正数表示,不足的次数用负数表示.他们的成绩记录如表:+1+3﹣10+1﹣1+1+2+2﹣1(1)学校规定:做4个(含4个)以上者为达标.这10名男学生中,达标的占百分之几?(2)在这次测试中,这10名男学生做引体向上次数最多与次数最小相差几次?23.如图是广告公司设计的商标图案,若每个小长方形的长为x,宽为y.(1)求阴影部分面积;(2)当x=2,y=1时,阴影部分面积是多少?24.如图,数轴上A、B两点表示的数分别为a,b,且点A在点B的左边,|a|=5,a+b=20,ab<0.(1)求a,b的值;(2)现有一动点P从点A出发,以每秒3个单位长度的速度向右运动,当PA=3PB时,求P运动的时间.(3)若点P从点A出发,以每秒3个单位长度的速度向右运动,同时数轴上另一动点Q 从点B出发,以每秒2个单位长度的速度向左运动.经过多长时间,两动点在数轴上相距10个单位长度?25.如图,已知OM平分∠AOC,ON平分∠BOC.(1)如果∠AOB=100°,∠BOC=40°,求∠MON的度数;(2)如果∠AOB=α,试求∠MON的度数.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:根据题意可得,a=|﹣|=,b=﹣(﹣)=,故a+b==.故选:D.2.解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;主视图发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;左视图没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;俯视图发生改变.故选:D.3.解:由题意可得:a<0<b,且|a|>|b|,故选项D不符合题意;∴a+b<0,故选项A符合题意;ab<0,故选项B不符合题意;a﹣b<0,故选项C不符合题意;故选:A.4.解:∵(﹣2)+5=3>0,∴选项A不符合题意;∵|﹣3﹣2|=5>0,∴选项B不符合题意;∵3×(﹣3)=﹣9<0,∴选项C符合题意;∵(﹣5)2=25>0,∴选项D不符合题意.故选:C.5.解:由题意可知,x2﹣3x=4,∴3x2﹣9x﹣3=3(x2﹣3x)﹣3=3×4﹣3=9.故选:B.6.解:A、单项式﹣a的系数是﹣1,次数是1,原说法错误,故此选项不符合题意;B、x5﹣5x2y+2x三次项的系数为﹣5,原说法错误,故此选项不符合题意;C、单项式的系数和次数分别为,3,原说法错误,故此选项不符合题意;D、π+4是单项式,原说法正确,故此选项符合题意;故选:D.7.解:∵3m4n|a|与﹣m|b﹣1|n2是同类项,∴|a|=2,|b﹣1|=4,解得:a=±2,b=5或﹣3,又∵a<b,∴a=±2,b=5.故选:C.8.解:∵(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,∴k﹣2≠0且|k|﹣1=1,解得:k=﹣2,∴k2﹣2k+1=(﹣2)2﹣2×(﹣2)+1=9,故选:B.9.解:∵AB=10cm点M是AB的中点,∴BM=AB=5(cm),∵BC=4cm,点N是BC的中点,∴BN=BC=2cm,∴MN=BM﹣BN=3cm,∴线段MN的长度为3cm.故选:D.10.解:设该条路的长度为S,则:=,即大车和小车行驶完同一条路的时间之比是5:4.故选:D.11.解:由题意得:∠CAB=90°﹣62°=28°,∠ABC=90°+13°=103°,∴∠ACB=180°﹣∠CAB﹣∠ABC=49°.故选:C.12.解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,∴这7个数的和为:x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=7x,当7x=63时,此时x=9,当7x=70时,此时x=10,当7x=98时,此时x=14,当7x=105时,此时x=15,由图可知:14的左没有数字,则这7个数的和不可能是98.故选:C.二.填空题(共6小题,满分18分)13.解:根据题意知原收费标准每分钟为+a=(+a)元,故答案为:(+a).14.解:由题意得:a3+a2b+a(答案不唯一),故答案为:a3+a2b+a.15.解:∵|a﹣b|≤8,|c﹣d|≤17,∴|a﹣b|+|c﹣d|≤8+17=25.∵|a﹣b﹣c+d|=|(a﹣b)﹣(c﹣d)|=25,∴a﹣b与c﹣d符号相反,并且|a﹣b|=8,|c﹣d|=17,∴|b﹣a|﹣|d﹣c|=|a﹣b|﹣|c﹣d|=8﹣17=﹣9.故答案为:﹣9.16.解:原式=(﹣3)×(﹣)×××(﹣)=﹣(3×)×(×)=﹣1×1=﹣1,故答案为:﹣1.17.解:把x=2代入方程得:2﹣m=1,解得:m=1,故答案为:1.18.解:七棱柱有2个底面,7个侧面,因此有9个面,七棱柱有14个顶点,故答案为:9,14.三.解答题(共7小题,满分66分)19.解:(1)原式=×(﹣24)﹣×(﹣24)﹣×(﹣24)=﹣9+4+18=13;(2)原式=﹣1÷25×+=﹣+=.20.解:8x=,系数化为1得:x=.21.解:(1)原式=5(m+n)2﹣7(m+n)2+3(m+n)2=(5﹣7+3)(m+n)2=(m+n)2.(2)原式=a﹣c+2b﹣d﹣2b+c=(a﹣2b)+(2b﹣c)+(c﹣d).当a﹣2b=2,2b﹣c=﹣5,c﹣d=9时,原式=2﹣5+9=6.22.解:(1)7÷10=,答:这10名男学生中,达标的占;(2)3﹣(﹣1)=3+1=4(次),答:这10名男学生做引体向上次数最多与次数最小相差4次.23.解:(1)如图,S阴影=S矩形ABCD﹣S△ABE﹣S△AHF﹣S△ECG=4x×4y﹣x×4y﹣×3x×3y﹣×3x×3y=16xy﹣2xy﹣xy﹣xy=5xy.(2)当x=2,y=1时,5xy=5×2×1=10.∴阴影部分面积为:10.24.解:(1)∵|a|=5,∴a=5或a=﹣5,∵A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,∴a<b,∵ab<0,∴a<0,b>0,∴a=﹣5,∵a+b=20,∴﹣5+b=20,∴b=25,答:a、b的值分别是﹣5、25.(2)设运动的时间为t秒,由(1)得,点A、B表示的数分别是﹣5、25,∴AB=25﹣(﹣5)=30,根据题意得3t=3(30﹣3t)或解3t=3(3t﹣30),解得t=7.5或t=15,答:当PA=3PB时,点P运动时间为7.5秒或15秒.(3)设经过x秒,两动点在数轴上相距10个单位长度,根据题意得3t+2t+10=30或3t+2t﹣10=30,解得t=4或t=8,答:经过4秒或8秒两动点在数轴上相距10个单位长度.25.解:(1)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=100°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=140°,∴,,∴∠MON=∠MOC﹣∠NOC=70°﹣20°=50°;(2)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=α,∴∠MON=∠MOC﹣∠NOC=∠AOC﹣∠BOC=∠AOB=∠α.。

七年级数学上册全册单元测试卷复习练习(Word版 含答案)

七年级数学上册全册单元测试卷复习练习(Word版 含答案)

七年级数学上册全册单元测试卷复习练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.已知,∠AOB=∠COD=90°,射线OE,FO分别平分∠AOC和∠BOD.(1)当OB和OC重合时,如图(1),求∠EOF的度数;(2)当∠AOB绕点O逆时针旋转至图(2)的位置(0°<∠BOC<90°)时,求∠EOF的度数.【答案】(1)解:当OB和OC重合时,∠AOD=∠AOC+∠BOD=180°,又∵射线OE,FO分别平分∠AOC和∠BOD,∴∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COF+∠BOF= (∠AOC+∠BOD)= ×180°=90°(2)解:∵∠AOB=∠COD=90°,∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COE+∠BOF﹣∠BOC= ∠AOC+ ∠BOD﹣∠BOC= (∠AOC+∠BOD)﹣∠BOC= (∠AOB+∠BOC+∠COD+∠BOC)﹣∠BOC= (180°+2∠BOC)﹣∠BOC=90°+∠BOC﹣∠BOC=90°【解析】【分析】(1)由角平分线的性质可得∠COE=∠AOC,∠BOF=∠BOD;由平角的定义可得∠AOC+∠BOD=180°,由角的构成可得∠EOF=∠COE+∠BOF,代入计算即可求解;(2)同理可求解。

七年级上册数学综合复习基础题(含答案)

七年级上册数学综合复习基础题(含答案)

七年级数学全册暑期大练兵——综合复习基础练习试卷简介:全卷共6个选择题,8个填空题,5个计算题,分值100,测试时间60分钟。

本套试卷是七年级上册综合复习测试题。

整套试卷难度都不大,主要考察了学生对课本基础知识的理解和掌握。

但是有些题目需要一定的计算量,这个是比较容易出错的。

学生在做题过程中可以回顾本学期知识点,做到认真细心,提高正确率。

学习建议:本卷是综合测试卷,考的不是某一方面的知识点,而是整个一本书的知识点。

这就要求学生在平时的学习过程中注意积累和复习,每一节都学踏实了,做起综合题才不会困难。

同学们在做完题之后,要根据各个题目涉及到的知识点,回头看课本,做到查漏补缺。

一、单选题(共6道,每道5分)1.一个正方体的表面展开图可以是()A.B.C.D.答案:C解题思路:A、B、D项都不能构成正方体易错点:对正方体的十一种展开图没有掌握试题难度:二颗星知识点:几何体的展开图2.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的左视图是()A.B.C.D.答案:B解题思路:从俯视图分析,该几何体的左视图共有3列,第一列最高为2个小正方体,第二列最高为3个小正方体,第三列最高为1个小正方体,故选B易错点:对几何体的三视图掌握不牢固试题难度:三颗星知识点:简单组合体的三视图3.如图,已知C 是线段AB的中点,D 是BC的中点,E 是AD的中点,F 是AE的中点,那么线段AF是线段AC 的()A.B.C.D.答案:C解题思路:由已知条件可知,AF=AE=AD=(AC+AD)=AC+×AC=AC易错点:不会进行线段之间的转换试题难度:三颗星知识点:两点间的距离4.已知在数轴上a、b的对应点如图所示,则下列式子正确的是()A.ab>0B.|a|>|b|C.a—b>0D.a + b>0答案:C解题思路:从数轴上可以看出,0<a<1,b<-1,答案选C易错点:不会根据数轴比较数的大小试题难度:三颗星知识点:有理数大小比较5.代数式xa+bya-1与3x2y是同类项,则a-b的值为()A.2B.0C.-2D.1答案:A解题思路:由题意知,a+b=2,a-1=1,解得a=2,b=0易错点:对同类项的特点不熟悉试题难度:三颗星知识点:同类项6.有理数x,y在数轴上的位置如图所示,则()A.y>x>0B.x>y>0C.x<y<0D.y<x<0答案:A解题思路:观察数轴,可以得出y>x>0易错点:不会比较数轴上数的大小试题难度:二颗星知识点:有理数大小比较二、填空题(共8道,每道5分)1.如图,∠AOC=90°,∠COB=α,OD平分∠AOB,则∠COD等于______答案:45°-解题思路:∠COD=∠BOD-∠BOC=∠AOB-α=(90°+α)-α=45°-易错点:不会根据角之间的关系进行转化试题难度:三颗星知识点:角的计算2.若|a|=1,|b|=4,且ab<0,则a+b=______答案:3或-3解题思路:由题意可知,a=1,b=-4或a=-1,b=4,则a+b=-3或3易错点:对绝对值的知识点掌握不牢试题难度:三颗星知识点:绝对值3.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,-1的差倒数是.已知,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,……,依此类推,则a2011=______答案:解题思路:,,,,……,由此可以发现,,,,而2011=3×670+1,所以易错点:不能发现各项之间的规律试题难度:四颗星知识点:开放探究型问题4.据报道,全球观看北京奥运会开幕式现场直播的观众达到2 300 000 000人,创下全球直播节目收视率的最高纪录.该观众人数可以用科学计数法表示为______人答案:2.3×109易错点:对科学记数法掌握不熟练试题难度:二颗星知识点:科学计数法5.在“2008北京”奥运会国家体育场的“鸟巢”钢结果工程施工建设中,首次使用了我国科研人员自主研制的强度为4.6×108帕的钢材,那么4.6×108的原数为______答案:460 000 000易错点:对科学记数法掌握不熟练试题难度:二颗星知识点:科学计数法6.典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成扇形和条形统计图,如图所示.(1)典典同学共调查了___名居民的年龄,扇形统计图中a=_____,b=_____;(2)补全条形统计图.(3)若该辖区年龄在0~14岁的居民约有3人,请估计年龄在15~59岁的居民的人数.答案:(1)500,20%,12%;(2)如图:(3)10解题思路:(1)共调查了居民230÷46%=500名居民,a=100÷500=20%,b=60÷500=12% (2)41~59岁之间有500-100-230-60=110个人(3)3÷100×(230+110)&asymp;10人易错点:对各种统计图掌握不牢固试题难度:四颗星知识点:条形统计图7.-a+2b-3c的相反数是______答案:a-2b+3c易错点:对相反数的概念理解不清楚试题难度:二颗星知识点:相反数8.已知,,,,则a+b=_______答案:109解题思路:观察规律可以发现:,所以a=10,b=102-1=99,a+b=109易错点:不能发现各项等式中数字之间的关系和规律试题难度:三颗星知识点:规律探索型问题三、计算题(共5道,每道6分)1.计算:0.25×(-2)3-答案:-13解题思路:原式==-2-10-1=-13易错点:计算错误试题难度:三颗星知识点:有理数的混合运算2.解方程:答案:解题思路:去分母:4(2x-1)-3(5x+1)=24,去括号:8x-4-15x-3=24,-7x=31,易错点:计算容易出现错误试题难度:三颗星知识点:解一元一次方程3.化简求值:,其中x=3,答案:xy2+xy,解题思路:原式=3x2y-(2xy2-2xy+3x2y+xy)+3xy2=3x2y-2xy2+2xy-3x2y-xy+3xy2=xy2+xy,把x和y的值代入上式得:原式=易错点:计算容易出现错误试题难度:三颗星知识点:代数式求值4.甲、乙两人做如下的游戏:一个均匀的骰子,它的每个面上分别标有数字1,2,3,4,5,6,任意掷出骰子后,若朝上的数字是6,则甲获胜;若朝上的数字不是6,则乙获胜. 你认为这个游戏对甲、乙双方公平吗?答案:不公平解题思路:朝上的数字是6的概率为,而朝上的数字不是6的概率为,所以这个游戏对甲、乙双方不公平易错点:不会计算概率试题难度:三颗星知识点:游戏公平性5.化简求值:4x2-4xy+y2-2(x2-2xy+y2),其中,y=-2答案:2x2-y2,解题思路:原式=4x2-4xy+y2-2x2+4xy-2y2=2x2-y2,把x和y的值代入上式,得:原式=易错点:计算易出错试题难度:三颗星知识点:整式的加减。

七年级数学上册总复习试卷

七年级数学上册总复习试卷

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. √2D. 02. 下列各数中,绝对值最小的是()A. -3B. 2C. 0D. -23. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 04. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 圆5. 若a、b、c是等差数列,且a + b + c = 12,a + c = 8,则b的值为()A. 4B. 6C. 8D. 106. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 3/xD. y = 2x^37. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 下列方程中,无解的是()A. x + 3 = 0B. 2x - 5 = 0C. 3x + 2 = 0D. x^2 + 2x + 1 = 09. 若等腰三角形底边长为6cm,腰长为8cm,则该三角形的面积为()A. 24cm^2B. 28cm^2C. 32cm^2D. 36cm^210. 下列命题中,正确的是()A. 直角三角形的两条直角边相等B. 等腰三角形的底角相等C. 直角三角形的斜边是最长的边D. 等腰三角形的底边是最长的边二、填空题(每题4分,共40分)1. 有理数a的相反数是______,绝对值是______。

2. 若a > b,则a - b______,a + b______。

3. 若x^2 = 9,则x的值为______。

4. 等差数列的前三项分别为2、5、8,则该数列的公差为______。

人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版

人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版

可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项符合题目要求。

1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。

七年级数学上册期末复习综合测试题(含答案)

七年级数学上册期末复习综合测试题(含答案)

七年级数学上册期末复习综合测试题(含答案)一.精心选择(本大题有12小题,每小题2分,共24分)1.12021-的倒数是( ) A .2021- B .12021- C .2021 D .120212.关于直线,下列说法正确的是( )A .可以量长度B .有两个端点C .可以用两个小写字母来表示D .没有端点 3.下列说法不正确的是( )A .2a 是2个数a 的和B .2a 是2和a 的积C .2a 是偶数D .2a 是单项式4.下列各组中的两项,是同类项的为( ) A .25x y 与xyB .25x y -与2yxC .25ax 与2yx D .38与3x5.在下列方程中:①0x =;②21x y -=;③20n n +=;④532yy =+;⑤221x x -=+.其中一元一次方程的个数是( ). A .1 B .2 C .3 D .46.钟表上的时间指示为两点半,这时时针和分针之间的夹角为( ) A .120° B .105° C .100° D .90° 7.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .12-B .12C .56-D .568.图(1)是一个长为2a ,宽为2b (a b >)的长方形,用剪刀沿图中虚线剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的正方形的面积是( )A .abB .2()a b +C .22a b - D .2()a b -9.当1x =时,代数式31px qx ++的值为2021,则当1x =-时,31px qx ++的值为( ) A .2019- B .2021- C .2020 D .202110.如图,将一副三角板的直角顶点重合放置于点A 处(两块三角板看成在同一平面内),将其中一块三角板绕点A 旋转的过程中,下列结论一定成立的是( )A .BAD DAC ∠=∠B .BAD EAC ∠≠∠C .90BAE DAC ∠-∠=︒D .180BAE DAC ∠+∠=︒11.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .0.7160%6()3x x +=- B .0.7160%6()3x x +=+ C .0.7160%6(3)x x +=-D .0.7160%6(3)x x +=+12.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是( )A .150B .200C .355D .505二.准确填空(本大题有6个小题,每小题3分,共18分)13.如果零上2℃记为2+℃,那么3-℃表示_______________. 14.3015︒'=__________°.15.一个长方形的宽为cm x ,长比宽的2倍多1 cm ,这个长方形的周长为__________cm .16.若27x a b 与3ya b -的和为单项式,则xy =_______.17.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为32cm ,若12AP PB =,则这条绳子的原长为__________cm .18.做一个数字游戏:第一步:取一个自然数18n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ; 第三步:算出2a 的各位数字之和得3n ,计算231n +得3a ;…,以此类推,则2021a =__________.三.细心解答(本大题有8个小题,共58分)19.(本小题满分6分)计算:()32142⎛⎫-⨯- ⎪⎝⎭20.(本小题满分6分)已知232A a ab b =-+-,22B a ab =-,化简2A B -.21.(本小题满分6分) 以下是小明解方程1323x x +--=1的解答过程. 解:去分母,得31231()()x x +--=.去括号,得31231x x +-+=.移项,合并同类项,得3x =-.小明的解答过程是否有错误?如果有错误,写出正确的解答过程. 22.(本小题满分6分)已知:如图,点D 、C 、E 是线段AB 上依次排列的三点,当点C 、D 分别是AB 和AE 的中点,且15AB =, 4.5CE =时,求线段CD 的长.23.(本小题满分8分)将连续偶数2,4,6,8,…排成如图数表.(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为a ,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五个数,所框五个数的和能等于2020吗?若能,写出这五个数;如不能,请说明理由. 24.(本小题满分8分)为了预防新冠肺炎的发生,学校免费为师生提供防疫物品.某校购进洗手液与84消毒液共400瓶.已知洗手液的价格是25元/瓶,84消毒液的价格是15元/瓶,总共消费了7200元.该校购进洗手液和84消毒液各多少瓶?25.(本小题满分9分)已知:点O 是直线AB 上的一点,90COD ∠=︒.OE 是BOD ∠的平分线. (1)当点C 、D 、E 在直线AB 的同侧(如图)时,①若35COE ∠=︒,求AOD ∠的度数. ②若COE α∠=,则AOD ∠=________.(用含α的式子表示) (2)当点C 与点D 、E 在直线AB 的两侧(如图)时,(1)中②的结论是否仍然成立?请给你的结论并说明理由.26.(本小题满分9分)如图,甲、乙两人(看成点)分别在数轴3-和5的位置上,沿数轴做移动游戏.每次的移动游戏规则如下:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若第一次移动游戏,甲、乙两人都猜对了,则甲、乙两人之间的距离是_______个单位; (2)若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终停留的位置对应的数为m .请你用含n 的代数式表示m ; (3)经过_______次移动游戏,甲、乙两人相遇。

人教版七年级上册数学期末总复习题

人教版七年级上册数学期末总复习题

第一章 有理数第一课 有理数 数轴 相反数 绝对值 倒数知识构造图⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫数轴倒数绝对值大小比较相反数有理数的分类热身练习:1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,那么“〞内应填的实数是〔 〕 A .32B .23C .23-D .32-3.-213的相反数是___ ____,—2的倒数是,|—311|=。

4.假设||2,3,x y x y ==+=则。

典例分析:1.把以下各数填入表示它所在的数集中:16,0.618, 3.14,260,2008,,0.21,5%37-----。

整数有 分数有 负数有 有理数有2.如果a ,b 是互为相反数,c ,d 是互为倒数,x 的绝对值等于2,那么b a cdx x 24--+ 的值是;3.假设23(2)0m n -++=,那么2m n +的值为〔 〕 A .4- B .1-C .0D .4点评:一个数的绝对值是指数轴上表示这个数的点到的距离,所以某数的绝对值是非负数。

几个非负数的和等于零,那么这几个非负数同时为零。

4.实数a 、b 在数轴上的位置如图1所示,那么a 与b 的大小关系是〔 〕A .a > bB . a = bC . a < bD . 不能判断点评:有理数大小比拟:正数零负数,两个负数,大的反而小;数轴上表示的两个数边的数总比边的数大。

o图1ba5.某工厂在上一星期的星期日生产了100台彩电,下表是本星期的生产情况:比前一天的产量多的记为正数,比前一天产量少的记为负数。

请算出本星期最后一天星期日的产量是台,本星期的总产量是台,星期的产量最多,星期的产量最少。

反应练习:1.如果水位升高3m 时水位变化记作+3m ,那么水位下降5米时水位变化记作:2.大于–3且不大于2的所有整数写出来是3.将有理数0,722-,2.7,-4,0.14按从小到大的顺序排列,用“<〞号连接起来应为_____________ ______.4.有理数a 、b 在数轴上的位置如下图,以下结论正确的选项是〔〕 A 、b <a B 、ab <0 C 、b —a >0 D 、a +b >0 5.与a-b 互为相反数的是( )A .a+bB .a-bC .-a-bD .b-a6.假设0>a ,0<b ,且b a <,试用“<〞号连接a ,b ,-a ,-b 。

人教版初一数学七年级数学上册经典总复习练习题打印版

人教版初一数学七年级数学上册经典总复习练习题打印版

七年级数学上册经典练习题七年级有理数一、境空题1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是____.4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请赋予它实际的意义:___________________。

9、绝对值大于1而小于4的整数有____________,其和为_________。

10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。

11、若0|2|)1(2=++-b a ,则b a +=_________。

12、数轴上表示数5-和表示14-的两点之间的距离是__________。

13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。

14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、如果0a b +>,且0ab <,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值一定是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为() (A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………()A 、高12.8%B 、低12.8%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。

七年级数学上册全册单元试卷复习练习(Word版 含答案)

七年级数学上册全册单元试卷复习练习(Word版 含答案)

七年级数学上册全册单元试卷复习练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.4.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.【答案】(1)20(2)解:如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE-∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC-∠BOD=20°(3)解:∠COE-∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)-(∠BOD+∠COD)=∠COE+∠COD-∠BOD-∠COD=∠COE-∠BOD=90°-70°=20°,即∠COE-∠BOD=20°【解析】【解答】⑴如图①,∠COE=∠DOE-∠BOC=90°-70°=20°;【分析】(1)根据角度的换算可知∠COE和∠BOC互余,那么根据∠COB=70°可得∠COE=20°;(2)根据角平分线和∠BOC可得∠BOE=140°,∠COE=∠BOC=90°,所以它的余角∠COD=20°;(3)一个是直角∠EOD,,一个是70°∠BOC,这两个角里都包含了同一个角∠COD,那么大家都减去这个∠COD的度数,剩下的两角差与原两角差是一致的,所以可得出结论∠COE-∠BOD=20°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册总复习
测试
TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-
七年级数学上册总复习测试
一.选择题
1.若a <0,b >0,则b 、b+a 、b -a 中最大的一个数是 ( )
A 、a
B 、b+a
C 、b -a
D 、不能确定 2、(-2)100比(-2)99大 ( )
A 、2
B 、-2
C 、299
D 、3×299 3、已知,123-m +2)12
3
(++n =0,则2m -n=( ) ( )
A 、13
B 、11
C 、9
D 、15
4、某种出租车收费标准是:起步价7元(即行驶距离不超过3千米需付7元车
费),超过了3千米以后,每增加1千米加收元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费19元,设此人从甲地到乙
地经过的路程为x 千米,则x 的最大值是 ( )
A 、11
B 、8
C 、7
D 、5
5、如图,是一个正方体纸盒的展开图,若在其中三个正方形A 、B 、C 中分别填
入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填
入正方形A 、B 、C 、中的三个数依次是
( )
A 、1、-3、0
B 、0、-3、1
C 、-3、0、1
D 、-3、1、0 6、已知线段AB ,在AB 的延长线上取一点C ,使AC=2BC ,在AB 的反向延长线上取一点D ,使DA=2AB ,那么线段AC 是线段DB 的( )倍。

( )
A 、
32 B 、23 C 、 21 D 、3
1
7、两个角的大小之比是7∶3,他们的差是72°,则这两个角的关系是 ( )
A 、相等
B 、互余
C 、互补
D 、无法确定 8、利用一副三角板上已知度数的角,不能画出的角是 ( )
A 、15°
B 、135°
C 、165°
D 、100° 9.是左下图所示的正立方体的展开图的是( )
.10.有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是( )
A .①② B. ①③ C. ①②③ D. ①②③④ 二.填空题
1、某食品加工厂的冷库能使冷藏的食品每小时降温5℃,如果刚进库的牛肉温
度是10℃,进库8小时后温度可达__℃。

2.按如下方式摆放餐桌和椅子: 3.实施西部大开发是党中央面向21世
纪的重大战略决策,我国西部地区的面积为6400000平方千米,可用科学记数法将这个数字表示为 平方千米. .4.下表是我国几个城市某年一月份的平均气温:
把它们的平均气温按从高到低的顺序排列为: .
5.如下图,从点A 到B 有a ,b ,c 三条通道,最近的一条 通道是 ,这是因为 . .
三.解答题 1
.计算
B
(1)4×(-3)2-13+(-1
2
)-|-43|. (2)计算
25.0)6
1
(215)322()2(24--⨯+-÷-
(3)解方程:6323322+-=--x x x (4)解方程:63
23322+-
=--x x x 2.有资料表明:某地区高度每增加100米,气温降低0.8℃,小明和小红想出
一个测量山.峰高度的办法,小红在山脚,小明在山顶,他们同时在上午9时测得山脚温度是2.6℃,山顶温度是-2.2℃。

你知道山峰的高度吗?
3.七年级学生去春游,如果减少一辆客车,每辆车正好坐60人,如果增加一
辆客车,每辆车正好坐45人。

问七年级共有多少学生?
4.张欣和李明相约到图书城去买书.请你根据他们的对话内容,求出李明上次所买书籍的原价.
5.出租车的收费标准为起步价5元,3千米后每千米收费元,某人乘坐出租车x 千米,付费多少元?若他坐出租车7千米,要付费多少元?
6.请根据图中提供的信息,回答下列问题 : (1)一个暖瓶与一个水杯分别是多少元? (2)甲、乙两家商场同时出售同样的暖瓶和
水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定: 这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。

若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.
84元
38元。

相关文档
最新文档