六年级数学下册必考知识点归纳
六年级数学下册知识点汇总(可编辑打印思维导图)
2、能根据统 计 图 提供的信息,做出正确的判断或简 单 预 测 。
五、数学广角
1、经 历 “抽屉 原理”的探究过 程,初步了解“抽屉 原理”,会用“抽屉 原理”解决简 单 的实 际 问 题 。 2、通过 “抽屉 原理”的灵活应 用感受数学的魅力。
六、整理和复习
1、比较 系统 地掌握有关整数、小数、分数和百分数、负 数、比和比例、方程的基础 知 识 。能比较 熟练 地进 行整数、小数、分数的四则 运算,能进 行整数、小数加、减、乘、 除的估算,会使用学过 的简 便算法,合理、灵活地进 行计 算;会解学过 的方程;养成检 查
1.准确数:在实 际 生活中,为 了计 数的简 便,可以把一个较 大的数改写成以万或亿 为 单 位的数。改写后的数是原数的准确数。 例如把 1254300000
改写成以万做单 位的数是 125430 万;改写成 以亿 做单 位 的数 12.543 亿 。
2.近似数:根据实 际 需要,我们 还 可以把一个较 大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿 后面的尾数是 13 亿 。
3.小数的读 法:读 小数的时 候,整数部分按照整数的读 法读 ,小数点读 作“点”,小数 部分从左向右顺 次读 出每一位数位上的数字。
小学六年级下册数学重点知识点整理
小学六年级下册数学重点知识点整理六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如,把化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如,1/等于4 ,所以的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级下册数学全部知识点总结
六年级下册数学全部知识点总结
1.分数运算:
-分数加减法:同分母、异分母分数的加减法则及其混合运算。
-分数乘法:分数与整数、分数与分数的乘法法则,理解倒数概念,掌握分数乘法的简便算法。
-分数除法:分数除以整数、分数除以分数的运算规则,以及分数除法转化为乘法运算的方法。
2.比和比例:
-比的意义和性质,比的基本性质,求比值和化简比。
-比例的意义,比例的基本性质,解比例方程,正比例和反比例的概念及应用。
3.百分数:
-百分数的意义,百分数与小数、分数之间的互化。
-百分数的应用,如折扣、税率、利率等问题的解决。
4.圆:
-圆的基本概念,直径、半径、周长、面积的计算公式。
-圆心角、弧、扇形、圆锥和圆柱的相关计算。
-圆周率π的认识和应用。
5.统计与概率:
-复式统计表和复式条形统计图的理解和绘制。
-可能性的大小比较,简单事件发生的可能性计算。
6.平面图形与立体图形:
-平行四边形、梯形的性质和面积计算。
-三角形、平行四边形、梯形的高线定义和画法。
-长方体、正方体、圆柱、圆锥的体积和表面积计算。
7.代数初步:
-用字母表示数,列含未知数的等式(方程)解决问题。
-解简易方程,包括一步方程和两步方程。
8.解决问题策略:
-应用所学知识解决生活中实际问题,如行程问题、工程问题、浓度问题等。
六年级数学下册知识点归纳
第一章分数与小数1.分数的认识(1)分数的定义和书写方法(2)分数的大小比较(3)分数的整数部分和小数部分2.分数的意义与应用(1)分数的实际应用(2)分数的等分与比较3.小数的认识(1)小数的定义和书写方法(2)小数和分数之间的关系第二章矩形1.正方形和长方形的认识(1)正方形和长方形的性质(2)正方形和长方形的面积计算2.计算矩形面积(1)矩形面积的计算公式(2)已知面积求解边长第三章平面图形1.点、线、面(1)点、线、面的概念及表示方法(2)线段的长度计算(3)角的概念及角的度量2.四边形(1)四边形的概念及分类(2)四边形的周长计算(3)矩形内角之和及矩形的判定(4)平行四边形的性质(5)梯形的性质及面积计算3.三角形(1)三角形的概念及分类(2)直角三角形的性质及勾股定理(3)三角形的周长计算及面积计算第四章质数与倍数1.质数(1)质数的概念及判断方法(2)质数与合数的关系2.整数的倍数(1)倍数的概念及计算(2)两个数的最小公倍数第五章分类与描述1.规律性的继续与发现(1)规律、特征与描述(2)图形的特征与描述(3)数字序列的特征与描述2.事件与概率(1)事件和概率的认识(2)概率的计算第六章数据统计1.统计调查(1)统计调查的概念及方法(2)调查数据的整理和表示2.图表与分析(1)统计图表的认识(2)直方图和折线图的绘制与分析(3)统计图表的比较第七章立体图形1.立体图形的认识(1)立体图形的性质及分类(2)正方体、长方体和圆柱体的认识2.立体图形的表面积计算(1)立方体表面积计算(2)长方体和圆柱体表面积的计算第八章两位数的认识和计算1.两位数的认识(1)十位和个位的认识(2)两位数的读法与写法2.两位数加减法(1)进位与退位(2)两位数的加法及应用(3)两位数的减法及应用第九章三位数的认识和计算1.三位数的认识(1)百位、十位和个位的认识(2)三位数的读法与写法2.三位数的加减法(1)进位与退位(2)三位数的加法及应用(3)三位数的减法及应用第十章表中数的认识和计算1.表中数的认识(1)表的读法和数据的整理(2)表中的最大数、最小数和中间数2.表中数的计算(1)数据的查找与整理(2)数据的统计与分析以上是六年级数学下册的知识点归纳,主要包括分数与小数、矩形、平面图形、质数与倍数、分类与描述、数据统计、立体图形、两位数的认识和计算、三位数的认识和计算、表中数的认识和计算等内容。
六年级数学下册总复习知识点整理版
六年级数学下册总复习知识点整理版常用的数量关系式:1.每份数×每份数=总数;总数÷每份数=份数;总数÷份数=每份数。
2.速度×时间=路程;路程÷速度=时间;路程÷时间=速度。
3.单价×数量=总价;总价÷单价=数量;总价÷数量=单价。
4.工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率。
5.加数+加数=和;和-一个加数=另一个加数。
6.被减数-减数=差;被减数-差=减数;差+减数=被减数。
7.因数×因数=积;积÷一个因数=另一个因数。
8.被除数÷除数=商;被除数÷商=除数;商×除数=被除数。
小学数学图形计算公式:1.正方形(C:周长;S:面积;a:边长):周长=边长×4;C=4a;面积=边长×边长;S=a×a。
2.正方体(V:体积;a:棱长):表面积=棱长×棱长×6;S表=a×a×6;体积=棱长×棱长×棱长;V=a×a×a。
3.长方形(C:周长;S:面积;a:边长):周长=(长+宽)×2;C=2(a+b);面积=长×宽;S=ab。
4.长方体(V:体积;S:面积;a:长;b:宽;h:高):表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh);体积=长×宽×高;V=abh。
5.三角形(S:面积;a:底;h:高):面积=底×高÷2;S=ah÷2;三角形高=面积×2÷底;三角形底=面积×2÷高。
6.平行四边形(S:面积;a:底;h:高):面积=底×高;S=ah。
六年级数学下册必考知识点+小升初经典必考题50道,给孩子收藏一份!
必考知识点第一部分【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、速度×时间=路程;路程÷速度=时间;路程÷时间=速度3、单价×数量=总价;总价÷单价=数量;总价÷数量=单价4、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;5、加数+加数=和;和-一个加数=另一个加数6、被减数-减数=差;被减数-差=减数;差+减数=被减数7、因数×因数=积;积÷一个因数=另一个因数8、被除数÷除数=商;被除数÷商=除数;商×除数=被除数第二部分【小学数学图形计算公式】1、正方形(C:周长,S:面积,a:边长)周长=边长×4;C=4a面积=边长×边长;S=a×a2、正方体(V:体积,a:棱长)表面积=棱长×棱长×6;S表=a×a×6体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长,S:面积,a:边长,b:宽)周长=(长+宽)×2;C=2(a+b)面积=长×宽;S=a×b4、长方体(V:体积,S:面积,a:长,b:宽,h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高;V=abh5、三角形(S:面积,a:底,h:高)面积=底×高÷2 ;S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积,a:底,h:高)面积=底×高;S=ah7、梯形(S:面积,a:上底,b:下底,h:高)面积=(上底+下底)×高÷2;S=(a+b)×h÷28、圆形(S:面积,C:周长,π:圆周率,d:直径,r:半径)(1)周长=π×直径π=2×π×半径;C=πd=2πr(2)面积=π×半径×半径;S= πr²9、圆柱体(V:体积,S:底面积,C:底面周长,h:高,r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积,S:底面积,h:高,r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、相遇问题:相遇路程=速度和×相遇时间;相遇时间=相遇路程速度和;速度和=相遇路程÷相遇时间13、利润与折扣问题:利润=售出价-成本;利润率=利润÷成本×100%;利息=本金×利率×时间;涨跌金额=本金×涨跌百分比;税后利息=本金×利率×时间×(1-利息税)第三部分【常用单位换算】(一)长度单位换算1千米=1000米;1米=10分米;1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算:1平方千米=100公顷;1公顷=10000平方米;1平方米=100平方分米;1平方分米=100平方厘米;1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升;1立方厘米=1毫升;1立方米=1000升(四)重量单位换算:1吨=1000千克;1千克=1000克;1千克=1公斤(五)人民币单位换算:1元=10角;1角=10分;1元=100分(六)时间单位换算:1世纪=100年;1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时;1时=60分=3600秒;1分=60秒;小升初经典必考题型50道1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
六年级下册数学所有知识点和公式
六年级下册数学所有知识点和公式以下是详细的六年级下册数学知识点和公式的概述:1. 分数与小数:- 分数的概念:分子、分母,真分数、假分数、带分数- 分数的比较:相同分母的分数大小比较,相同分子的分数大小比较- 分数的化简和通分:分数的约分和最简形式,不同分母的分数通分- 分数与小数的相互转换:分数转小数除法,小数转分数(十分位、百分位、千分位等)2. 小数的应用:- 小数的四舍五入和估算:根据位数四舍五入,利用小数估算结果- 百分数的概念、计算和应用:百分数的表示和计算,百分比的应用(比例、增减比等)- 利率和利息的计算:利率的计算,利息的计算公式(利息=本金× 利率× 时间)3. 平面图形:- 二维图形的分类与性质:正方形、长方形、正三角形、等边三角形、等腰三角形、梯形、圆等的性质(边长、角度、对称性等)- 角的概念和性质:直角、锐角、钝角,补角、邻补角、对顶角等的性质- 三角形的分类与性质:按边分类(等边三角形、等腰三角形、普通三角形),按角分类(直角三角形、锐角三角形、钝角三角形)4. 三角形:- 三角形的周长和面积的计算公式:周长=边长之和,面积=底边×高/2,面积=底边×高/2- 直角三角形的勾股定理:直角三角形斜边的平方等于两直角边平方和(a² + b² = c²)- 特殊三角形的性质:等腰三角形的性质(底角相等、腰长相等),等边三角形的性质(三边相等、三角角度相等)5. 数据统计:- 数据的收集和整理:数据的收集方式、数据的整理和分类- 图表的制作和分析:柱状图、折线图、饼图的制作和分析(数据的比较、趋势分析等)- 中位数、众数和平均数的计算:数据集的中位数、众数和平均数的计算方法6. 空间几何:- 空间图形的投影与视图:正交投影、斜投影,立方体的展开图和视图- 空间图形的表面积计算:长方体、正方体、圆柱体、圆锥体、球体的表面积计算公式- 空间图形的体积计算:长方体、正方体、圆柱体、圆锥体、球体的体积计算公式公式总结:一、小学数学几何形体周长面积体积计算公式长方形的周长=(长+宽)×2 c=(a+b)×2正方形的周长=边长×4 c=4a长方形的面积=长×宽 s=ab正方形的面积=边长×边长 s=a.a三角形的面积=底×高÷2 s=ah÷2平行四边形的面积=底×高 s=ah梯形的面积=(上底+下底)×高÷2 s=(a+b)h÷2直径=半径×2 d=2r 半径=直径÷2 r= d÷2 长方体的棱长总和=(长+宽+高)×4圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 正方体的棱长总和=棱长×12圆的面积=圆周率×半径×半径 s=πrr长方体的表面积=(长×宽+长×高+宽×高)×2内角和:三角形的内角和=180度。
小学六年级下册全册知识点
小学六年级下册全册知识点第一章:数与运算1.1 整数与小数- 整数的概念和表示法- 小数的概念和表示法- 整数和小数的相互转换1.2 加法与减法- 加法的定义和性质- 减法的定义和性质- 加减法的运算法则1.3 乘法与除法- 乘法的定义和性质- 除法的定义和性质- 乘除法的运算法则1.4 运算顺序- 括号的运用- 运算顺序的规定- 复杂运算式的计算第二章:分数与比例2.1 分数的概念与表示- 分数的基本概念- 真分数和假分数的区别- 分数的读法和表示法2.2 分数的加减运算- 分数的加法原则- 分数的减法原则- 分数的加减计算步骤2.3 分数的乘除运算- 分数的乘法原则- 分数的除法原则- 分数的乘除计算步骤2.4 比例的认识与运用- 比例的概念和表示法- 比例与图形的关系- 比例的计算方法第三章:图形与计算3.1 运用倍数和约数- 倍数的概念和计算- 整除与倍数的关系- 约数的概念和判断方法3.2 计算长度、面积和容量- 长度的换算方法- 面积的计算公式- 容量的换算和计算3.3 图形的边和顶点- 图形的基本概念- 点、线、面的定义- 图形的分类与特征3.4 计算图形的周长和面积- 不规则图形的周长计算- 正方形和长方形的面积计算- 三角形和梯形的面积计算第四章:数据与概率4.1 数据的收集与整理- 数据的来源和收集方法- 数据的整理和表达方式- 数据的图表表示4.2 数据的分析与运用- 数据的中位数和众数- 数据的极差和平均数- 数据的运用与预测4.3 概率的认识与计算- 概率的基本概念- 事件的可能性及计算- 基于概率的决策第五章:时间与空间5.1 时间的计算和换算- 时间的单位和换算- 时、分、秒的关系- 时间的加减运算5.2 日历和闰年- 日历的基本组成- 判断闰年的方法- 日期的推算和计算5.3 方位与坐标- 方位词的理解和运用- 坐标的概念和计算- 方位与坐标的关系5.4 空间图形的认识- 点、线、面的空间概念- 立体图形的特征和分类- 空间图形的展开和组合以上是小学六年级下册的全册知识点概述,通过掌握和理解这些知识,可以帮助同学们更好地应对学习中的数学、几何等问题,并提高解决问题的能力。
六年级数学下册各单元必背知识点归纳
负数必背知识点1、0既不是正数;也不是负数;它是正数和负数的分界.0大于所有负数;小于所有正数.负数比较大小;不考虑负号;数字大的数反而小.2、“+”可以省略不写;“-”不能省略.3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度). 0左边的数都是负数;0右边的数都是正数百分数(二)知识点1、折扣:商品按原定价格的百分之几出售;叫做折扣.通称“打折”.几折就表示十分之几;也就是百分之几十.例如八折就表示十分之八;就是按原价的80﹪出售.2、成数:“几成”就是十分之几;也就是百分之几十.三成五就是十分之三点五;也就是35%3、应纳税额 = 总收入×税率税率=应纳税额÷总收入总收入=应纳税额÷税率4、利息=本金×利率×存期5、满100元减50元;就是在总价中取整百元部分;每个100元减去50元;不满100元的零头部分不优惠.圆、圆柱、圆柱必背公式1、在同圆或等圆内;直径的长度是半径的2倍;公式d=2r;半径的长度是直径的一半;公式r=d÷2.2、已知直径求周长:圆的周长=圆周率×直径;公式C=πd;直径=周长÷圆周率;公式d=C÷π3、已知半径求周长:圆的周长=2×圆周率×半径;公式C=2πr;半径=周长÷圆周率的2倍;公式r=C÷2π4、已知半径求面积:圆的面积=圆周率×半径的平方;公式S=πr2圆=π(d÷5、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方;公式S圆2)26、圆柱的侧面积=底面的周长×高;公式S侧=Ch;圆柱的底面周长=侧面积÷高;公式C=s侧÷h;圆柱的高=侧面积÷底面周长;公式h=S侧÷C.7、圆柱的表面积=侧面积+2×底面积;公式 S表= S侧+2S底.8、圆柱的体积等于底面积乘以高;公式 V圆柱=Sh.圆柱的高等于体积除以底面积;公式h=v÷s;圆柱的底面积等于体积除以高;公式s=v÷h.9、一个圆锥的体积等于与它等底等高的圆柱体积的三分之一 .圆锥体积公式:V=1 /3Sh.圆锥的高等于体积的3倍除以底面积;公式h=3v÷s;圆锥的底面积等于体积的3倍除以高;公式s=3v÷h.=πR²-πr²10、环形的面积=大圆面积-小圆面积;S环11、体积和高相等的圆锥与圆柱之间;圆锥的底面积是圆柱的三倍.即圆锥的底面积=圆柱底面积×3;圆柱底面积=圆锥底面积÷312、体积和底面积相等的圆锥与圆柱之间;圆锥的高是圆柱的三倍.即圆锥的高=圆柱的高×3;圆柱的高=圆锥的高÷3.比例必背知识点1、表示两个比相等的式子叫做比例.如:2:1=6:32、在比例里;两个外项的积等于两个两个内向的积.这叫做比例的基本性质.例如:由3:2=6:4可知3×4=2×6;3、解比例:根据比例的基本性质;如果已知比例中的任何三项;就可以求出这个数比例中的另外一个未知项.求比例中的未知项;叫做解比例.例如:3:x = 4:8;内项乘内项;外项乘外项;则:4x =3×8;解得x=6.4、成正比例的量:两种相关联的量;一种量变化;另一种量也随着变化;如果这两种量中相对应的两个数的比值(也就是商)一定;这两种量就叫做成正比例的量;他们的关系叫做正比例关系. 用字母表示y/x=k(一定)例如:速度一定;路程和时间成正比例;因为:路程÷时间=速度(一定).5、成反比例的量:两种相关联的量;一种量变化;另一种量也随着变化;如果这两种量中相对应的两个数的积一定;这两种量就叫做成反比例的量;他们的关系叫做反比例关系. 用字母表示x×y=k(一定) 例如:路程一定;速度和时间成反比例;因为:速度×时间=路程(一定).6、图上距离:实际距离=比例尺;实际距离=图上距离÷比例尺;图上距离=实际距离×比例尺;数学广角---鸽巢问题1、物体数÷抽屉数=商……余数至少数=商+12、只要摸出的球数比它们的颜色种数多1;就能保证有两个球同色.。
六年级下册数学必背知识点
六年级下册数学必背知识点一、负数。
1. 负数的定义。
- 像 -3、 -2、 -0.5这样的数叫做负数。
负数是与正数表示相反意义的量。
例如,向东走3米记为 +3米,那么向西走2米就记为 -2米。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 在数轴上,负数在原点的左边,正数在原点的右边。
从左到右的顺序就是数从小到大的顺序。
例如, -5在 -3的左边,所以 -5< -3。
3. 负数的大小比较。
- 比较负数的大小,先不看负号,比较数字部分,数字部分大的反而小。
例如,-2和 -5,2<5,所以 -2> -5。
二、圆柱与圆锥。
1. 圆柱。
- 圆柱的特征。
- 圆柱有两个底面,是完全相同的圆;圆柱有一个侧面,是曲面;圆柱有无数条高,高的长度都相等。
- 圆柱的侧面积。
- 圆柱的侧面积 =底面周长×高,用字母表示为S = Ch(其中C=π d = 2π r,d是底面直径,r是底面半径)。
- 圆柱的表面积。
- 圆柱的表面积 =侧面积+两个底面积,即S = 2π rh+2π r^2。
- 圆柱的体积。
- 圆柱的体积 =底面积×高,用字母表示为V=π r^2h。
2. 圆锥。
- 圆锥的特征。
- 圆锥有一个底面,是圆;圆锥有一个侧面,是曲面;圆锥只有一条高,从圆锥的顶点到底面圆心的距离就是圆锥的高。
- 圆锥的体积。
- 圆锥的体积=(1)/(3)×底面积×高,用字母表示为V=(1)/(3)π r^2h。
三、比例。
1. 比例的意义和基本性质。
- 比例的意义。
- 表示两个比相等的式子叫做比例。
例如2:3 = 4:6。
- 比例的基本性质。
- 在比例里,两个外项的积等于两个内项的积。
如果a:b = c:d,那么ad = bc。
2. 正比例和反比例。
- 正比例。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
六年级下册数学全册知识点
六年级下册数学全册知识点一、整数运算1. 整数的概念和表示方法2. 整数的加法和减法运算3. 整数的乘法和除法运算4. 整数的混合运算二、小数与分数1. 小数的基本概念和表示方法2. 小数的加法和减法运算3. 小数的乘法和除法运算4. 分数的基本概念和表示方法5. 分数的加法和减法运算6. 分数的乘法和除法运算7. 分数与小数的相互转化三、平方根和立方根1. 正数的平方根和立方根的概念2. 平方根和立方根的计算方法3. 估算平方根和立方根的大小四、图形的性质和计算1. 平行四边形、矩形、正方形、三角形的性质和区分方法2. 长方体、正方体的性质和计算公式3. 圆的概念和相关计算公式4. 直角坐标系的基本概念和图形的坐标表示五、比例与百分数1. 等比例和不等比例的关系2. 比例的概念和解题方法3. 百分数的概念和转化4. 百分数的应用:利息、折扣、增长率等六、统计与概率1. 数据的收集和整理2. 极差、中位数、众数和平均数的计算方法3. 直方图和折线图的绘制和解读4. 概率的基本概念和计算方法七、二次根式1. 平方数和完全平方根的概念2. 二次根式的计算方法和化简3. 二次根式的加法和减法运算4. 二次根式的乘法和除法运算八、初步代数1. 代数式的概念和建立2. 代数式的加法和减法运算3. 代数式的乘法和除法运算4. 代数式的应用:简单方程的解法以上是六年级下册数学全册的知识点概述,通过学习这些知识,可以帮助孩子们更好地理解和掌握数学的基本概念和运算方法。
在学习中要多做习题和实际问题的应用,提高自己的数学思维和解决问题的能力。
六年级数学下册知识点(整理6篇)
六年级数学下册知识点〔整理6篇〕篇1:六年级下册数学知识点第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
假设一个数小于0,那么称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数假设一个数大于0,那么称它是一个正数。
正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限6、比拟两数的大小:①利用数轴:负数篇2:六年级下册数学知识点第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是非常之几,也就是百分之几十。
解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进展解答。
商品如今打八折:如今的售价是原价的80﹪商品如今打六折五:如今的售价是原价的65﹪2、成数:几成就是非常之几,也就是百分之几十。
解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进展解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一局部缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来之一。
六年级下册数学知识点归纳
六年级下册数学知识点归纳数学知识点归纳一、分数1.分数的定义及表示分数是指用一个整数表示出一个数分的几份,分子表示分出来的几份,分母表示每份分成的份数。
通常表示为:$$\frac{a}{b}$$2.分数的大小比较(1)分母相同时,分数大小由分子大小决定。
(2)分母不同时,先通分,再比较分子大小。
3.分数的化简分数的化简就是把分子和分母同时除以一个相同的数,使它们的最大公约数为1。
如:$$\frac{6}{8}=\frac{3}{4}$$4.分数的加减乘除(1)相加减:通分后,把分子相加减,分母不变。
(2)相乘:把两个分数的分子和分母分别相乘即可。
(3)相除:把被除数乘以除数的倒数,即把除数化为分数的分子倒放,分母在写下去,再进行相乘运算。
二、小数1.小数的定义及表示小数是指数分的几份,每份分成的量相等。
通常用小数点表示,小数点左边的数表示整数部分,右边表示小数部分,数字前面加0不影响其原来的大小。
2.小数的大小比较(1)相同位数,大小由高位数决定。
(2)位数不同时,以比较到的位数为准,不够0补齐。
3.小数的四则运算(1)相加减:保留相同位数,竖式相加减。
(2)相乘:先把小数变成整数,再按整数的乘法进行运算,最后把结果的小数点后移。
(3)相除:把被除数和除数都扩大10、100、1000……倍,使除数变成整数,然后按整数的除法进行运算,最后把结果的小数点前移。
三、倍数和约数1.倍数若a,b为正整数,其中a ≤ b,则b是a的倍数,a是b的因数。
一个数的倍数有无穷多个。
2.约数若a,b为正整数,其中a ≤ b,则a能整除b,称a是b的因数,b是a的倍数。
一个数的因数是有限多个。
四、整数1.正数、负数正整数和0,统称为正数,用“+”表示;负整数,用“-”表示。
2.整数的大小比较(1)一正一负,正数大。
(2)同号但绝对值不同时,绝对值大的数大。
(3)同号且绝对值相同时,大小相同。
3.绝对值表示一个数到原点的距离,用“|”表示。
数学六年级下册必考知识点
数学六年级下册必考知识点在数学学科中,数学知识点是学习的基础,也是衡量学生掌握程度的重要指标。
下面将介绍数学六年级下册的必考知识点,以帮助同学们更好地备考。
一、整数与分数1. 整数的概念及表示方法:正整数、负整数、零2. 整数的比较和大小关系3. 同号整数相加、相减的运算规则4. 同号整数相乘、相除的运算规则5. 分数的概念及表示方法:分子、分母6. 分数的大小比较和大小关系7. 带分数的运算:加法、减法、乘法、除法二、小数1. 小数的概念及表示方法:整数部分、小数部分、小数点2. 小数和分数的关系3. 小数的大小比较和大小关系4. 小数的加法、减法运算5. 小数的乘法、除法运算6. 小数的百分数表示和百分数的运算三、几何图形1. 角的概念和表示方法:顶点、边、内角、外角2. 直角、钝角、锐角的判断和性质3. 平行线和垂直线的判断、性质和表示方法4. 三角形、四边形、多边形的概念和性质5. 园的概念和表示方法:圆心、半径、直径、弧、弦6. 直角三角形、等腰三角形、等边三角形的性质四、数据统计1. 图表的读取和分析:柱状图、折线图、饼图等2. 平均数的计算3. 概率的概念和计算:事件发生的可能性五、代数1. 简单的代数式和方程式的书写和计算2. 代数式的展开和因式分解3. 一元一次方程的解法及应用六、时间和空间1. 时钟和时间的表示法2. 时间的加减法运算3. 单位换算:长度、容量、重量、面积等4. 空间中物体的位置和方向关系的表示和判断以上是数学六年级下册必考知识点的简要介绍,同学们可以根据这些知识点进行有针对性的复习和练习,提高数学成绩。
祝大家取得好成绩!。
六年级下核心考点清单
六年级下核心考点清单
六年级下核心考点清单:
1. 小学数学知识的巩固和运用:加减乘除的运算技巧、分数、百分数、小数、单位换算等。
2. 图形的认识和性质:平行四边形、长方形、正方形、三角形、圆等图形的性质、面积和周长的计算。
3. 数据的处理和分析:图表的读取和分析、统计图的制作和解读、平均数的计算等。
4. 代数的初步学习:代数式的认识和运算、方程的解法、一元一次方程的解法等。
5. 几何图形的绘制和变换:几何图形的画法、图形的平移、旋转和翻折等基本变换。
6. 时、空和形的关系:时间的计算和换算、空间的方位和位置、立体图形的认识和展开等。
7. 逻辑思维和问题解决:逻辑思维的训练、问题解决的方法和策略、应用题的解题思路等。
8. 数学语言和表达:数学语言的运用、数学步骤和过程的书写、数学问题的表述等。
这些是六年级下学期数学的核心考点,学生需要掌握这些知识和技能,才能够顺利完成六年级的数学学习。
数学六年级下册的知识点归纳
数学六年级下册的知识点归纳数学六年级下册的知识点一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
六年级下册数学全册知识点
六年级下册数学全册知识点一、数与代数数与代数的学习内容包括数的认识、数的运算、常见的量、式与方程、正比例和反比例、探索规律等。
1.数的认识主要包括进一步理解和掌握整数、小数、分数、百分数的意义以及十进制计数法,理解小数的性质与分数的基本性质之间的联系,体会整数、小数、分数、百分数等概念之间的联系与区别;理解和掌握自然数和整数、因数与倍数、质数与合数、公因数与公倍数等概念的含义;增强用数表达信息的意识和能力,发展数感。
⑴整数和小数都是采用十进制计数法,整理计数单位、相应的数位顺序、相邻计数单位之间的进率,再现整数、小数的数位顺序表。
结合数位顺序表,重点理解:数位、计数单位、进率以及位值原则。
⑵整数的读、写注意点包括:分级读、写,从高位到低位依次读、写,数中间“0”的读、写,数末尾“0”的读、写等。
小数的读、写要注意:先读整数部分、后读小数部分,而且整数部分的读法和小数部分的读法不同。
⑶数的改写与省略尾数求近似数,学生容易混淆,要注意其中的联系与区别:⑷奇数与偶数、质数与合数、公因数与公倍数等,都是“因数与倍数”范围里的概念。
这部分的知识较多,学生容易混淆。
建议要求孩子回顾相关知识点后,引导他们建构知识网络图,将知识结构化:⑸分母是10、100、1000……的分数可以用小数表示,小数是分母为10、100、1000……的特殊分数。
分数的基本性质是分子与分母乘或除以同一个不为零的数,大小不变;小数的基本性质简述为小数的末尾可以增减零,小数的大小不变,小数的这个性质也可以理解为分子与分母同时乘或除以相同的数,只是扩大与缩小的倍数是10倍、100倍……如0.3表示十分之三,0.30表示百分之三十。
去掉小数末尾的零即是分子与分母同时除以10。
所以说,分数的基本性质和小数的基本性质本质上是一致的,只是适用的范围不同。
⑹百分数是特殊的分数。
理解分数与百分数的意义,我们要弄清它们之间的联系和区别:小数、分数、百分数之间怎样进行互相改写呢?2.常见的量小学阶段我们学习过长度、面积、体积(容积)、时间、质量等单位。
六年级下册数学笔记知识归纳
(一)基本算式被除数÷除数=商被除数=商×除数除数=被除数÷商一个因数×另一个因数=积一个因数=积÷另一个因数另一个因数=积÷一个因数一个加数+另一个加数=和一个加数=和—另一个加数另一个加数=和—个加数(二)行程问题路程=速度×时间速度=路程÷时间时间=路程÷速度(三)购买东西总价=单价×数量单价=总价÷数量数量=总价÷单价(四)工程问题工作量=工作效率×时间工作效率=工作量÷时间时间=工作量÷工作效率(五)利息问题利息=本金×利率×时间利率=利息÷本金÷时间时间=利息÷本金÷利率4、常见单位换算(一)面积单位1平方米=100平方分米1平方分米=100平方厘米1公顷=10000平方米1平方千米=100公顷1毫升=1立方厘米(二)体积、容积单位1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升1升=1立方分米5、常见公式。
(一)圆的周长、面积周长C=2πr 或c=πd面积S=πr²(二)圆柱、圆锥侧面积、表面积(三)圆柱、圆锥体积圆柱体积=底面积×高圆锥体积=底面积×高×1/36、常见应用题类型。
(一)分数、百分数问题(1)求一个数的几分之几、百分之几是多少。
(一个数×几分之几(百分之几))(2)求一个数是另一个数的(几倍)几分之几、百分之几。
(一个数÷另一个数)(3)求一个数比另一个数多(少)几分之几、百分之几。
((大—小)÷“比”字后面的)(4)已知一个数的几分之几(百分之几)是多少,求这个数。
(多少÷几分之几(百分之几))(5)已知比一个数多几分之几(百分之几)是多少,求这个数(多少÷(1+几分之几(百分之几)))(6)已知比一个数少几分之几(百分之几)是多少,求这个数(多少÷(1-几分之几(百分之几)))(7)前面是分数、百分数、后面是比,先把比转化为分数、百分数再计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学下册必考知识点归纳第一单元 负数1.负数:任何正数前加上负号就是一个负数。
在数轴线上,负数都在0的左侧,所有的负数都比自然数小。
负数用负号“-”标记,如-2,-5.33,-45,-0.6等。
2.正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有无数个,其中有正整数,正分数和正小数。
3. (0)既不是正数,也不是负数,它是正、负数的分界数。
正数都大于0,负数都小于0,正数大于一切负数。
应用举例:16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃. 如果2000表示存入2000元,那么-500表示支出了500元。
向东走3m 记作+3,向西4m 记作-4。
4、在直线上表示数:(1)正数、0和负数可以用直线上的点表示出来。
直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。
(2)用有正数和负数的直线可以表示距离和相反的方向。
题型:1、将以下数字按要求分类 1.25、5、-7、3、3.011……、-51、0、712、正数 负数自然数 非正数 2、写数下列数相对的负数形式0.33……、1973132753、、、、++3、如果﹢20%表示增加20%,那么﹣20%表示什么?4、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是_摄氏度。
5、在数轴上表示下列个数1.75 -31 -4 4315 0-3.26、写出下列各点表示的数A B C D E F G-8 -6 -4 -2 0 2 4 6 8 10第二单元 百分数(二)1、折扣:几折就是十分之几,也就是百分之几十例如:八五折表示现价是原价的85% 原价×折扣=现价 现价÷折扣=原价现价÷原价=折扣2、成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”例如:二成就是(十分之二),改写成百分数是20%。
3、税率:4、利率: 存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息和本金的比值叫做利率。
利息=本金×利率×时间题型:1、王叔叔看中一套运动装,标价200元,经过还价,打八五折买到,王叔叔实际付了()元买了这套运动装。
2、一本书定价75元,售出后可获利50%,如果按定价的七折出售,可获利()元。
3、王叔叔买了一辆价值16000元的摩托车。
按规定,买摩托车要缴纳10%的车辆购置税。
王叔叔买这辆摩托车一共要花多少钱?4、小强的妈妈在银行存了5000元,定期两年,年利率是4.50%,到期时,她应得利息()元。
5、张叔叔把5000元钱存入银行,定期三年,年利率是4.25%,到期后从银行取回()元A、5000×4.25%×3B、5000×4.25%C、5000×4.25%×3+5000第三单元圆柱和圆锥(一)圆柱1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相同的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;4、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:圆柱的侧面积 = 底面周长×高即S侧=Ch 或×h5、圆柱的表面积:圆柱的表面积=侧面积+2个底面面积。
即S表=S侧+S底×2或×h + 2×6、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
V=Sh即或×h(二)圆锥1、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的旋转体叫做圆锥。
该直角边叫圆锥的轴。
2、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
4、把圆锥的侧面展开得到一个扇形。
5、圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式V=Sh(V= h),得出圆锥体积公式:V=1/3Sh6、圆柱与圆锥的关系:(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
(2)体积和高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。
(3)体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。
7、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面的路程(求几个底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
题型:1、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。
2、用一张长4.5分米,宽1.2分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。
(接口处不计)3、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。
4、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。
5、求下面图形的体积。
(单位:厘米)6、如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?(单位:厘米)第四单元比例(一)比例的意义和基本性质1、比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:3 组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
2、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2: 1.5。
3、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例有基本性质,它是解比例的依据。
4、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。
例如:3:x = 4:8,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。
(二)正比例和反比例1、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④、y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
2、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②、总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
③、长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。
④、40÷x=y,x和y成反比例,因为:x×y=40(一定)。
⑤、煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。
3、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
(三)比例的应用1、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺3、图上距离:实际距离=比例尺例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。
实际距离×比例尺=图上距离例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)图上距离÷比例尺=实际距离例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。
4、图形的放大与缩小:形状相同,大小不同。
5、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
题型:1、在一个比例中,两个内项正好互为倒数,已知一个外项是52,则另一个外项是()。
2、北京到天津的实际距离是120千米,在比例尺是50000001的地图上,两地的图上距离是()厘米。
3、如果2a=3b,那么a:b=():()。
4、在一副平面图上,用图上距离2cm表示实际距离200m,这幅图的比例尺是()A、1:100B、 1:1000 C 1:100005、按1:5将长方形缩小,就是将长方形的面积缩小到原来的()A、51B、101C、2516、算一算,解比例x:10=41:310.4:x=1.2:24.212=x37、一根木料,锯3段需要4分钟,如果钜5段,需要多少分钟?第五单元数学广角-鸽巢问题1、抽屉原理(一):把多于n个的物体放到n 个抽屉里,则至少有一个抽屉里的东西不少于两件。
2、抽屉原理(二):把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
3、抽屉原理解题的关键是正确地判断什么抽屉,什么是物体?4、物体数÷抽屉数=商……余数至少数=商+1题型:1.一个小组13个人,其中至少有()人是同一个月出生的。
2.6只鸽子飞回5个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。
3.7只兔子要装进6个笼子,至少有()只兔子要装进同一个笼子里。
A.3 B.2 C.4 D.5 4.张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总是至少有两个孩子的颜色一样,她至少有()孩子。
A.2 B.3 C.4 D.6 5、7个人住进5个房间,至少要有两个人住同一间房。
为什么?(请你用图示的方法说明理由)6、把9本书放进2个抽屉里,总有一个抽屉至少放进5本书,为什么?六年级数学下册必背知识点总结负数知识点1、0既不是正数,也不是负数,它是正数和负数的分界。