自动控制理论实验指导

合集下载

自动控制原理实验指导

自动控制原理实验指导

实验四 控制系统的稳定性判据一、实验目的熟练掌握系统的稳定性的判断方法。

二、基础知识及MATLAB 函数用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

1.直接求根判稳roots()控制系统稳定的充要条件是其特征方程的根均具有负实部。

因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。

MATLAB 中对多项式求根的函数为roots()函数。

若求以下多项式的根24503510234++++s s s s ,则所用的MATLAB 指令为: >> roots([1,10,35,50,24])ans =-4.0000-3.0000-2.0000-1.0000特征方程的根都具有负实部,因而系统为稳定的。

2.劳斯稳定判据routh ()劳斯判据的调用格式为:[r, info]=routh(den)该函数的功能是构造系统的劳斯表。

其中,den 为系统的分母多项式系数向量,r 为返回的routh 表矩阵,info 为返回的routh 表的附加信息。

以上述多项式为例,由routh 判据判定系统的稳定性。

den=[1,10,35,50,24];[r,info]=routh(den)r=1 35 2410 50 030 24 042 0 024 0 0info=[ ]由系统返回的routh 表可以看出,其第一列没有符号的变化,系统是稳定的。

注意:routh ()不是MATLAB 中自带的功能函数,须加载routh.m 文件(自编)才能运行。

三、实验内容1.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。

自动控制理论实验指导书(学生用)

自动控制理论实验指导书(学生用)

前言自动控制理论是“控制科学与工程”学科领域的重要技术基础课和骨干课,它起着将基础知识运用于专业问题的桥梁与示范作用,故理论性极强,又由于它涉及许多工程概念与方法的介绍,所以工程概念也非常重要。

自动控制理论课程无论在培养学生抽象思维能力和逻辑能力上,还是在培养学生处理工程问题的能力上都起着非常重要的作用。

自动控制理论课程培养学生系统掌握自动控制的理论基础,并具备对简单系统进行定性分析、定量估算和动态仿真(模拟仿真和数字仿真)的能力,为专业课的学习和参加控制工程实践打下必要的基础。

本实验指导书主要包括经典线性理论和非线性理论两大部分,使用的实验设备是上海航虹高科技有限公司的爱迪克labACT自控/计控原理教学实验系统。

该设备采用模块式结构,可构造出各种型式和阶次的模拟环节和控制系统。

本实验指导书可作为电气工程及其自动化专业《自动控制理论》课程实验指导书,也可作为机械设计制造及其自动化专业《控制工程基础》等课程的实验指导书。

I目录第一章LABACT自控/计控原理实验机构成及说明 (1)第二章虚拟示波器 (3)第三章自动控制原理实验 (5)3.1 线性系统的时域分析 (5)3.1.1典型环节及其阶跃响应 (5)3.1.2 二阶系统的阶跃响应和稳定性分析.......................................... ..9 3.2 线性控制系统频率特性测量 (10)3.2.1 一阶惯性环节的频率特性曲线 (10)3.2.2 二阶闭环系统的频率特性曲线 (11)3.2.3 二阶开环系统的频率特性曲线 (14)3.3 线性系统的校正 (16)3.3.1 频域法校正 (16)3.3.1.1连续系统串联校正 (16)3.4 非线性系统的相平面分析 (23)3.4.1典型非线性环节 (23)3.4.2 二阶非线性控制系统 (26)3.4.3 三阶非线性控制系统 (29)II第一章labACT自控/计控原理实验机构成及说明1.1 构成labACT自控/计控原理实验机由以下七个模块组成:1.自动控制原理实验模块2.计算机控制原理实验模块3.信号源模块4.控制对象模块5.虚拟示波器模块6.控制对象输入显示模块7.CPU控制模块各模块相互交联关系框图见图1-1-1所示:图1-1-1 各模块相互交联关系框图自动控制原理实验模块由六个模拟运算单元及元器件库组成,这些模拟运算单元的输入回路和反馈回路上配有多个各种参数的电阻、电容,因此可以完成各种自动控制模拟运算。

自动控制原理实验指导书

自动控制原理实验指导书

⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。

2、通过实验熟悉各种典型环节的传递函数和动态特性。

⼆、实验设备及器材配置1、⾃动控制理论实验系统。

2、数字存储⽰波器。

3、数字万⽤表。

4、各种长度联接导线。

三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。

1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。

自动控制原理实验实验指导书

自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。

二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。

1.比例(P)环节的模拟电路及其传递函数示于图1-1。

2.惯性(T)环节的模拟电路及其传递函数示于图1-2。

3.积分(I)环节的模拟电路及其传递函数示于图1-3。

4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。

5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。

6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。

三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。

2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。

附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

自动控制原理实验

自动控制原理实验

自控理论实验指导(一)第一部分 实验系统概述一. 实验系统硬件资源自控理论EL-AT-II 型实验系统主要由计算机、A/D&D/A 采集卡、自动控制理论实验箱组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,A/D&D/A 采集卡负责数据采集和计算机USB 口通信,实验箱主要构造被控模拟对象。

实验箱、面板实验面板主要由以下几部分构成,如图2:图2 实验箱面板布局(1) 模拟仿真模块:本实验系统有八组由放大器、电阻、电容组成的实验模块。

每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。

这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。

(2) 二极管、稳压管、电阻、电容区:该区域主要是为模拟非线性环节提供所需元件。

(3) A/D&D/A 卡模块:该区域是引出A/D&D/A 卡的输入输出端,一共引出两路输出端DA1、DA2、两路输入端AD1、AD2。

有一个按钮复位键,可对A/D&D/A 卡进行复位。

A/D&D/A 卡的输入和输出电压范围为-5V~+5V 。

做时域分析实验时,DA1输出阶跃信号,AD1为系统输出数据采集口(相当于示波器的Y 轴输入端),。

(4) 电源模块:电源模块有一个实验箱电源开关,有四个开关电源提供的DC 电源端子,分别是+12V 、-12V 、+5V 、GND ,这些端子给外扩模块提供电源。

1 图1 实验系统构成(5) 模拟开关模块:模拟开关是专门为积分环节的电容放电而设定的,实验时需将积分环节的电容并接在模拟开关上。

(6) 变阻箱、变容箱模块:该模块有2个变阻箱、1个变容箱。

只要按动变阻箱、变容箱数字旁边的“+”、“-”按钮便可调节电阻电容的值,而且电阻电容值可以直接读出。

二. 实验系统软件1. 软件启动接通实验箱电源,在Windows 桌面上或“开始-程序”中双击“Cybernation_A.exe ”快捷方式,便可启动软件如图3所示。

自动控制理论实验指导及操作说明书

自动控制理论实验指导及操作说明书

第一部分 THBDC-1控制理论·计算机控制技术实验平台使用说明书第一章系统概述“THBDC-1型控制理论·计算机控制技术实验平台”是我公司结合教学和实践的需要而进行精心设计的实验系统。

适用于高校的控制原理、计算机控制技术等课程的实验教学。

该实验平台具有实验功能全、资源丰富、使用灵活、接线可靠、操作快捷、维护简单等优点。

实验台的硬件部分主要由直流稳压电源、低频信号发生器、阶跃信号发生器、低频频率计、交/直流数字电压表、数据采集接口单元、步进电机单元、直流电机单元、温度控制单元、单容水箱、通用单元电路、电位器组等单元组成。

上位机软件则集中了虚拟示波器、信号发生器、VBScript和JScript脚本编程器、实验仿真等多种功能于一体。

其中虚拟示波器可显示各种波形,有X-T、X-Y、Bode图三种显示方式,并具有图形和数据存储、打印的功能,而VBScript脚本编程器提供了一个开放的编程环境,用户可在上面编写各种算法及控制程序。

实验台通过电路单元模拟控制工程中的各种典型环节和控制系统,并对控制系统进行仿真研究,使学生通过实验对控制理论及计算机控制算法有更深一步的理解,并提高分析与综合系统的能力。

同时通过对本实验装置中四个实际被控对象的控制,使学生熟悉各种算法在实际控制系统中的应用。

在实验设计上,控制理论既有模拟部分的实验,又有离散部分实验;既有经典理论实验,又有现代控制理论实验;而计算机控制系统除了常规的实验外,还增加了当前工业上应用广泛、效果卓著的模糊控制、神经元控制、二次型最优控制等实验。

数据采集部分则采用实验室或工业上常用的USB数据采集卡。

它可直接插在IBM-PC/AT 或与之兼容的计算机USB通讯口上,其采样频率为350K;有16路单端A/D模拟量输入,转换精度均为14位;4路D/A模拟量输出,转换精度均为12位;16路开关量输入,16路开关量输出。

第二章硬件的组成及使用一、直流稳压电源直流稳压电源主要用于给实验平台提供电源。

自动控制理论实验指导书

自动控制理论实验指导书

自动控制理论实验指导书第一章硬件资源EL-AT-II型实验系统主要由计算机、AD/DA采集卡、自动控制原理实验箱、打印机(可选)组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,打印机主要记录各种实验数据和结果,实验箱主要构造被控模拟对象。

显示器打印机计算机 AD/DA卡实验箱电路图1 实验系统构成实验箱面板如图2所示:图2 实验箱面板下面主要介绍实验箱的构成:一、系统电源EL-AT-II系统采用本公司生产的高性能开关电源作为系统的工作电源主要技术性能指标为:1.输入电压:AC 220V2.输出电压/电流:+12V/0.5A,-12V/0.5A,+5V/2A 3.输出功率:22W4.工作环境:-5℃~+40℃。

二、 AD/DA采集卡AD/DA采集卡如图3采用ADUC812芯片做为采集芯片,负责采样数据- 1 -自动控制理论实验指导书 .及与上位机的通信,其采样位数为12位,采样率为10KHz。

在卡上有一块32KBit的RAM62256,用来存储采集后的数据。

AD/DA采集卡有两路输出(DA1、DA2)和四路输入(AD1、AD2、AD3、AD4),其输入和输出电压均为-5V~+5V。

图3 AD/DA采集卡另外在AD/DA卡上有一个9针RS232串口插座用来连接AD/DA卡和计算机,20针的插座用来和控制对象进行通讯。

三、实验箱面板实验箱面板布局如图4所示。

AD/DA卡输入输出模块实验模块1 实验模块2 二极管区 EL-CAT-II 电阻、电容、二极管区实验模块3 变阻箱、变容箱模块实验模块5 实验模块6 实验模块7 图4 实验箱面板布局实验箱面板主要由以下几部分构成: 1.实验模块本实验系统有八组由放大器、电阻、电容组成的实验模块。

每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。

这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。

自动控制理论实验指导

自动控制理论实验指导
(2)逆时针调节实验箱的旋钮,使阶跃信号为正。
(3)阶跃信号接到示波器上,调节实验箱和示波器的幅度旋钮。使跳变幅度为为一格(模拟为+1V)。
(4)1<ξ:
令R1=100k、R2=51k、R3=200k、C1=1uF、C2=1uF。K=R2/R1=2,T1=R2C1=51*1=0.051s,T2=R3C2=200*1=0.2s。
1)将接地夹就近接于待测信号的地端。
2)将信号探头接于待测信号。
3)调整示波器的输入幅度档位选择开关,选择合适的档位使信号幅度便于观察。
4)将输入幅度档位选择开关中心的旋钮顺时针旋到底。
5)选择时间“TIME/DIV”使波形正确显示。调节“微调”旋钮使波形稳定。
6)将波形水平方向压缩为重合于Y轴的一条竖线,其底端点位于0点,或选择扫描时间使波形为一条水平带。
其中: 阻尼自然频率
、β=ζ t
、 、
按下阶跃信号按钮,观察示波器的衰减震荡波形。如图3-5所示。
图3-5衰减震荡波形
(6)ξ=0:令R3=0,属于无阻尼状态,系统的响应为等幅震荡波形,无阻尼自然角频率为 。
五.实验报告:
1.绘制出实验的原理图,并标明参数。
2.绘制出实验的波形。分析各波形结果。
例如:从输入的方波读出幅度所占Y轴的格数为6。
则6*0.63=3.8
从Y轴的3.8处读出X轴上的时间值为1格,此时时间档位的值为5ms,则1*5ms=5ms。
(7)将实验结果填入表2-1中。
表2-1实验结果
1.T的理论值
2.电压
3..实测T值
4.误差
R
C
T0
E(V)
0.632E对应的t(格)
时间单位t0(ms/格)

自动控制理论实验指导书(新)

自动控制理论实验指导书(新)

自动控制理论实验指导书实验1 典型环节的模拟研究一、实验目的1.了解并掌握TD -ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。

3.了解参数变化对典型环节动态特性的影响。

二、实验设备TD -ACC+型实验系统一套;数字示波器、万用表。

三、实验内容及步骤1.实验准备:将信号源单元的“ST ”插针与“S ”端插针用“短路块”短接。

将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为2V ,周期为10s 左右。

2.观测各典型环节对阶跃信号的实际响应曲线 (1) 比例( P )环节① 按模拟电路图1-1接好线路。

注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。

以后的实验中用到的运放也如此。

② 将模拟电路输入 (U i ) 端与信号源的输出端“OUT ”相连接;用示波器观测模拟电路的输入 (U i ) 端和输出 (U o ) 端,观测实际响应曲线U o (t ),记录实验波形及结果于表1-1中。

表1-1阶跃响应: U O (t )=K (t ≥0) 其中 K =R 1R 0⁄实验参数理论计算示波器观测值输入输出波形0R 1Ro 1i 0U R U R =i U o Uo iU U Ωk 200Ωk 1000.5Ωk 2001R 0=200kΩ;R 1=100kΩ或200kΩ图1-1U i R 0R 1RR 10K 10K U o(2) 积分( I )环节①按图1-2接好线路。

② 将模拟电路输入 (U i ) 端与信号源的输出端“OUT ”相连接;用示波器观测模拟电路的输入 (U i ) 端和输出 (U o ) 端,观测实际响应曲线U o (t ),测量积分时间T ,记录实验波形及结果于表1-2中。

表1-2阶跃响应: o 01()U t t R C=(t ≥0) 注意:积分时间T 是指积分初始时间到输出值等于输入值时的时间。

自控理论实验实验指导书(LABVIEW)

自控理论实验实验指导书(LABVIEW)

目录一.自动控制理论实验指导1.概述 (1)2.实验一典型环节的电路模拟和软件仿真研究 (5)3.实验二典型系统动态性能和稳定性分三典型环节(或系统)的析 (12)4.实验频率特性测量 (16)5.实验四线性系统串联校正 (21)6.实验五典型非线性环节的静态特性 (26)7.实验六非线性系统相平面法 (31)8.实验七非线性系统描述函数法 (37)9.实验八极点配置全状态反馈控制 (42)10.实验九采样控制系统动态性能和稳定性分析的混合仿真研究 (49)11.实验十采样控制系统串联校正的混合仿真研究 (53)二.自动控制理论对象实验指导1.实验一直流电机转速控制实验 (57)2.实验二温度控制实验 (60)3.实验三水箱液位控制实验 (62)三.自动控制理论软件说明1.概述 (64)2.安装指南及系统要求 (67)3.功能使用说明 (69)4.使用实例 (79)概述一.实验系统功能特点1.系统可以按教学需要组合,满足“自动控制原理”课程初级和高级实验的需要。

只配备ACT-I实验箱,则实验时另需配备示波器,且只能完成部分基本实验。

要完成和软件仿真、混合仿真有关的实验必须配备上位机(包含相应软件)及USB2.0通讯线。

2.ACT-I实验箱内含有实验必要的电源、信号发生器以及非线性和高阶电模拟单元,可根据教学实验需要进行灵活组合,构成各种典型环节和系统。

此外,ACT-I实验箱内还可含有数据处理单元,用于数据采集、输出以及和上位机的通讯。

3.配备PC微机作操作台时,将高效率支持“自动控制原理”的教学实验。

系统提供界面友好、功能丰富的上位机软件。

PC微机在实验中,除了满足软件仿真需要外,又可成为测试所需的虚拟仪器、测试信号发生器以及具有很强柔性的数字控制器。

4.系统的硬件、软件设计,充分考虑了开放型、研究型实验的需要。

除了指导书所提供的10个实验外,还可自行设计实验。

二.系统构成实验系统由上位PC微机(含实验系统上位机软件)、ACT-I实验箱、USB2.0通讯线等组成。

自动控制理论实验指导书

自动控制理论实验指导书

自动控制理论实验指导书《自动控制理论》是一门理论性和实践性都很强的专业基础课。

实验课是本课程不可少的教学环节。

通过实验课可以使学生掌握基本的实验方法和操作技能。

认真地进行实验,有助于加深对理论知识的理解;有助于培养动手能力;有助于养成良好的工作习惯;有助于培养应用型人才。

本实验指导书安排以下几项实验:实验一一、二阶系统的模型及阶跃响应的动态分析实验二控制系统根轨迹实验实验三频率特性的测试实验四控制系统的校正实验时间安排如下:实验一在第三章时域分析法结束之后进行;实验二在第四章根轨迹法结束之后进行;实验三在第五章频率法结束之后进行;实验四在第六章控制系统的校正结束之后进行。

实验仪器设备:微型计算机一台实验报告:实验报告是实验工作的最终总结,是反映分析能力和工作能力的重要手段,要求学生独立完成,每人一份。

实验报告主要内容有:1、实验名称、专业班级、本人姓名、同组人员名单、实验日期、实验地点;2、实验目的、要求;3、实验内容、步骤、方法;4、实验数据及记录或绘制的实验曲线;5、分析实验数据,写出心得体会,总结经验,提出改进意见。

实验一 一、二阶系统的模型及阶跃响应的动态分析一、实验目的1、熟悉并掌握MATLAB 在自动控制仿真中的应用。

2、学习时域响应的测试方法,树立时域的概念。

3、明确一、二阶系统的阶跃响应及其性能指标与结构参数的关系。

二、实验内容1、建立一阶系统的模型,观察并测量不同时间常数T 的阶跃响应及性能指标调节时间t s 。

2、建立二阶系统的模型,观察并测量不同阻尼比ξ时的阶跃响应及性能指标调节时间t s 、超调量σ%。

三、实验原理及方法1、一阶系统 传递函数()11s +=Ts φ,系统结构如图所示运用MATLAB 建立系统模型,选取参数T 分别为0.1、0.5、1秒时,分别观测系统的阶跃响应曲线,测试并纪录性能指标调节时间t s 。

2、二阶系统 传递函数()2222s nn ns s ωξωωφ++=建立系统模型,参数选取见下表,分别观测系统的阶跃响应曲线,测试并纪录性能指标调节时间t s、超调量σ%。

自动控制理论实验指导(新)

自动控制理论实验指导(新)

⾃动控制理论实验指导(新)《⾃动控制理论》课程实验指导⼀、实验注意事项1、接线前务必熟悉实验线路的原理及实验⽅法。

2、实验接线前必须先断开总电源与各分电源开关,严禁带电接线。

接线完毕,检查⽆误后,才可进⾏实验。

3、实验⾃始⾄终,实验板上要保持整洁,不可随意放置杂物,特别是导电的⼯具和多余的导线等,以免发⽣短路等故障。

4、实验完毕,应及时关闭各电源开关,并及时清理实验板⾯,整理好连接导线并放置到规定的位置。

5、实验前必须充分预习实验指导书。

⼆、实验模拟装置使⽤注意事项1、⽆源阻容元件可供每个运算放⼤器使⽤。

2、运算放⼤器是有源器件,故连在运算放⼤器上的阻容元件只能供本运算放⼤器选⽤。

3、信号幅值不宜过⼤,按指导书中指⽰的幅值。

否则,可能使运算放⼤器处于饱和状态。

三、每次实验内容第⼀次:实验⼆第⼆次:实验三第三次:实验四备注:实验⼀作为实验前的预习及热⾝实验⼀控制系统典型环节的模拟⼀、实验⽬的1)、熟悉数字⽰波器的使⽤⽅法2)、掌握⽤运放组成控制系统典型环节的电⼦电路 3)、测量典型环节的阶跃响应曲线4)、通过实验了解典型环节中参数的变化对输出动态性能的影响⼆、实验仪器1)、THSSC-1实验箱⼀个 2)、数字⽰波器⼀台三、实验原理以运算放⼤器为核⼼元件,由其不同的R-C 输⼊⽹络和反馈⽹络组成的各种典型环节,如图1-1所⽰。

图中Z 1和Z 2为复数阻抗,它们都是由R 、C 构成。

基于图中A 点的电位为虚地,略去流⼊运放的电流,则由图1-1得:由上式可求得由下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。

1)、⽐例环节⽐例环节的模拟电路如图1-2所⽰:图1-1、运放的反馈连接1u o图1-2 ⽐例环节(1) )(12Z Z u u S G i o =-=2100200)(12===KKZ Z S G2)、惯性环节图1-3、惯性环节3)、积分环节图1-4、积分环节4)、⽐例微分环节(PD ),其接线图如图及阶跃响应如图1-5所⽰。

自动控制理论实验指导书4

自动控制理论实验指导书4

%100%max ⨯-=∞∞Y Y Y σ实验一 典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。

2. 掌握控制系统时域性能指标的测量方法。

二、实验仪器1. EL-AT-III 型自动控制系统实验箱一台 2. 计算机一台 三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2. 时域性能指标的测量方法: 超调量Ó %:1) 启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2) 检查USB 线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信 正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。

3) 连接被测量典型环节的模拟电路。

电路的输入U1接A/D 、D/A 卡的DA1 输出,电路的输出U2接A/D 、D/A 卡的AD1输入。

检查无误后接通电源。

4) 在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。

5) 鼠标单击按钮,弹出实验课题参数设置对话框。

在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

6) 用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:T P与T S:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T S。

四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1.比例环节的模拟电路及其传递函数如图1-1。

自动控制理论实验指导书

自动控制理论实验指导书

自动控制理论实验指导书自动控制理论实验室2012-11-06目 录自动控制理论实验说明 (2)§1自动控制原理实验箱 (3)1.1自动控制原理实验箱构成 (3)1.2软件操作说明 (3)§2控制系统时域与频域特性分析(6学时) (7)§3角随动系统 (11)3.1系统组成及基本原理 (11)3.2系统各个元件的工作原理与输入输出特性 (12)3.3实验箱面板及说明 (18)§4 角随动系统的数学建模及串联校正(8学时) (20)§5数字随动系统 (23)5.1系统组成及工作原理 (23)5.2系统各个环节的电路构成及数学模型 (24)5.3实验箱面板说明 (27)5.4系统的初始设置 (28)§6 数字随动系统数学建模及控制器设计(8学时) (29)§7 非线性控制系统Matlab分析(2学时) (32)自动控制理论实验说明1.自动控制理论实验的实验项目序号实验项目名称实验学时内容提要实验类型1 控制系统时域与频域特性分析6基于古典控制理论半实物仿真平台,搭建一阶系统,测量其阶跃响应曲线,分析参数对一阶系统时域特性的影响;搭建二阶系统,改变二阶系统的阻尼比和无阻尼振荡频率,分析它们对二阶系统时域特性的影响;搭建控制系统,分析开环增益和时间常数对闭环系统稳定性的影响,并与理论计算进行对比分析;设计一阶系统、二阶系统的频率特性测试实验,绘制它们的幅频和相频特性曲线,并与渐进频率特性曲线对比分析。

设计型2 角随动系统模型建立及串联校正8以角随动系统为研究对象,分析系统的组成和工作原理,在对系统各个环节机理分析的基础上,利用实验法分别设计测量各环节数学模型参数的方法,进而得到各环节的传递函数,从而得出固有系统的开环传递函数;分析固有系统的动态与稳态性能,根据期望的性能指标要求,选择合适的方法设计串联校正环节,利用有源阻容网络实现校正环节,将有源校正网络接入到系统中进行校验及调试,总结调试规律。

自动控制理论实验指导书

自动控制理论实验指导书

《自动控制理论》实验指导书李烽黄效国张黎军编北京科技大学机械工程学院2007年6月前言“自动控制理论”所研究的对象是非常广泛的,它可以是物理或化学性质绝无相似的对象(例如,机械的、电子的……),在归结成微分方程或传递函数后,却常会发现它们互相之间有共同之处,往往方程形式完全相同,所差的仅是参数和输入输出信号。

在工程实践中,研究电信号远比研究机械量等来得方便,用电子元件构成的系统可以很方便地实施,便于更改,便于定性及定量地观察。

因此,用研究电系统的方法来模拟其它物理系统,从而间接地研究这些系统,这是一种相当实用的手段。

另外,实际系统中的各种变量参数往往是不容易或无法测得的。

因此,利用本实验所介绍的观察动态特性曲线的方法来识别传递函数,是实践中研究系统特性并进一步校正系统的工程实用方法,有着重要的实用价值。

“自动控制理论”课程中的书本教学往往是大量公式的推导,不容易形成形象化的概念,配套实验的引入,使学生们将课堂理论直接用于研究实际的物理系统,从而加深对课堂内容的理解,提高分析和解决问题的能力,可以提高学习兴趣并获得成就感。

目录实验守则 (1)实验一典型环节及二阶系统阶跃响应 (2)(一)比例环节的阶跃响应 (3)(二)积分环节的阶跃响应 (9)(三)惯性环节的阶跃响应 (11)(四)比例积分微分环节的阶跃响应 (13)(五)二阶系统的阶跃响应 (14)实验二控制系统稳定性分析 (20)附录一T H K K L-5型实验箱使用简介 (25)附录二“T H K K L-5软件”虚拟示波器的使用 (31)实验守则1.实验前必须认真预习实验指导书,对所要进行的实验项目有基本的了解。

2.认真听指导老师讲解实验要点,做到心中有数。

3.遵循课堂秩序,不影响他人实验。

4.按实验要求进行实验,不做无关的操作。

5.爱护实验设备,严禁违章操作和野蛮操作。

6.注意用电安全,不随意打开仪器触摸内部结构。

如有意外,应立即切断本组桌上的电源开关,并向指导教师报告。

自动控制实验指导

自动控制实验指导

实验一 控制系统典型环节的模拟一、实验目的1、熟悉超低频扫描示波器的使用方法;2、掌握用运放组成控制系统典型环节的电子模拟电路;3、测量典型环节的阶跃响应曲线;4、通过本实验了解典型环节中参数的变化对输出动态性能的影响。

二、实验仪器1、控制理论电子模拟试验箱一台;2、超低频慢扫描双踪示波器一台;3、万能表一只。

三、实验原理以运算放大器为核心元件,由其不同的输入R-C 网络和反馈R-C 网络构成控制系统的各种典型环节。

四、实验内容1、示波器的调节:打开双踪示波器,选CH1作为触发信号,DC/AC 档选择DC 档,y轴衰减细调和x 轴扫描时间细调均打到校正位置。

“+” “-”触发选择“-”触发位置,Y 1、Y 2探头在没特殊说明下均选⨯1档。

2、典型环节的测量 (a):比例环节(图1-1)1)(1=s G 2)(2=s G图1-1 比例环节原理图分别选择两组不同的R1,R2将所测量的结果填入下表1-1:表1-1分别画出K=1,K=2的阶跃响应波形,并比较二者的差别:(b): 积分环节(图1-2)s s G 1.0/1)(1= s s G 2.0/1)(2=图1-2 积分环节原理图分别选择R=100k Ω,R=200 k Ω作为参数,画出相应的阶跃响应波形图,并观察波形分析积分环节的特点。

(c):惯性环节(图1-3)11.01)(1+=s s G 101.01)(2+=s s G图1-3 惯性环节的原理图分别选择不同参数:C 1=1µF,C 2=0.1µF,画出相应的阶跃响应波形图,观察时间常数τ和上升时间s t 填入下表1-2,并和实际计算值比较是否吻合。

表1-2其阶跃响应的波形图:(d):微分环节(图1-4)21.0)(1+=s s G 101.0)(2+=s s G图1-4微分环节的原理图按照图1-4接好线路,示波器探头Y 2选⨯10档,y 轴衰减粗调打1V 位置,分别选择R=51 K Ω,C=1µF,Rf=100K Ω和R=100 K Ω,C=0.1µF,Rf=100K Ω两组参数,观察示波器画出阶跃响应波形并比较两组不同参数的差别。

自控原理实验指导书

自控原理实验指导书

实验一典型环节及其阶跃响应一、实验目的1、学习构成典型环节的模拟电路。

2、熟悉各种典型环节的阶跃响应曲线。

3、了解参数变化对典型环节动态特性的影响,并学会由阶跃响应曲线计算典型环节的传递函数。

二、实验内容各典型环节的模拟电路及结构图如下:图1-1-1 比例环节电路图图1-2-1 惯性环节电路图图1-1-2 比例环节结构图2-2 惯性环节结构图图1-3-1 积分环节电路图图1-4-1 微分环节电路图图1-3-2 积分环节结构图图1-4-2 微分环节结构图三、实验步聚1、 将输入端ui 与数据通道接口板上的DAO 连接、输出端uo 与实验平台信号引出区的INO 孔连接。

(若无特别声明,其它实验中涉及运放电路板及ui 及uo 均按此连线,不再赘述)。

2、 启动计算机,运行“系统设置”菜单,选择串口。

(若无特别声明,其它实验中均同此,不再赘述。

如不选择,则设为默认值,选择COM1通讯端口)3、 打开“自动控制原理实验系统”,打开“实验选择”菜单,选择“典型环节及其阶跃响应”实验。

4、 选择“参数设置”命令,设置采样周期,采样点数和设定电压。

5、 选择“运行观测”命令,观察阶跃响应曲线,改变模拟电路参数后,再重新观察阶跃响应曲线的变化。

6、 为了更好的观察曲线,再“参数设置”命令中,设置“曲线放大”倍数,“运行观测”。

7、 记录波形及数据(保存结果、打印图象)。

8、 连接其它模拟电路,重复步骤3、4、5、6注:打印图像只有在曲线放大为“1”时打印(其它实验相同)四、实验报告1、 画出惯性环节、积分环节、比例微分环节的电路图和所记录的响应曲线。

2、 由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与值比较。

图1-5-1 比例微分环节电路图传递函数为:G(s) = (R3/R2) ((R1+R2)CS+1)图1-5-2 比例微分环节结构图实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的阻尼比ξ和无阻尼自然频率ω对系统动态性能的影响。

自动控制理论II实验指导书

自动控制理论II实验指导书

目录实验一系统状态响应、输出响应、能控性、能观性及稳定性测量.................................. ...... . (1)实验二线性系统的极点配置及响应分析 (7)实验一系统状态响应、输出响应、能控性、能观性及稳定性测量一、实验目的1.掌握线性系统能控性及能观性的判别方法。

2.掌握连续系统的离散化方法。

3.熟悉求解连续和离散系统动态响应的方法。

3.掌握用MATLAB实现现代控制理论基本算法的方法。

二、实验设备及条件微型计算机一台(带有MATLAB7.0以上的软件环境)。

三、MATLAB知识1.矩阵函数运算(1) 求秩函数rank()。

(2) 矩阵求逆函数inv()。

(3) 求矩阵特征值函数eig()。

(4) 求行列式函数det()。

(5) 建立全1矩阵函数ones()。

2.多项式、模型特性及转化(1) c2d()--将连续系统离散化。

(2) d2c()--将离散系统连续化。

(3) ctrb()--求能控判别阵。

(4) obsv()--求能观判别阵。

(5) ss2tf()--将状态空间模型转化成传递函数模型。

(6) tf2ss()--将传递函数模型转化成状态空间模型。

(7) poly—由多项式的根生成一多项式,其结果是由多项式系数组。

成的行矢量。

若poly输入参数为矩阵,则可得到该矩阵的特征多项式。

{ Δ(λ)=det(λI-A) }。

3.绘图命令(1) plot(x,y)--绘制y对应x的轨迹的命令。

x、y均为矢量且具有相同的元素数量。

(2) axis--定义坐标轴的特殊定标尺度,格式为:axis([x-min,x-max,y-min,y-max])。

(3) figure--建立图形(窗口)。

(4) subplot()--建立和控制多个坐标系。

(5) xlabel()、ylabel()、zlabel()—建立x、y、z轴的标注。

4.时域响应(1) filter()--一维数字滤波函数,在求离散系统动态响应时常使用本函数,格式为y =filter(num,den,x ),其中,x 是输入,y 是输出。

自动控制理论实验指导(新)解析

自动控制理论实验指导(新)解析
的方框图,其中T=R0C。由图图2-1一阶系统模拟电路图
2-2得:
图2-3为一阶系统的单位阶跃响应曲线。
当t= T时,C(T)=1–e-¹=0.632。这表示当C(t)上升到稳定值的63.2%时,对应的时间就是一阶系统的时间常数T,根据这个原理,由图2-3可测得一阶系统的时间常数T。由上式(1)可知,系统的稳态值为1,因而该系统的跟踪阶跃输入的稳态误差ess = 0。
令G(S)=1/(0.5S+1),则其相应的模拟电路如图6-2所示。测量时示波器的X轴停止扫描,把扫频电源的正弦信号同时送到被测环节的输入端和示波器的X轴,被测环节的输出送到示波器的Y轴,如图6-3所示。
(实验时取R1=R2=510K,C=1uF)
图4-2惯性环节的模拟电路图
图4-3相频特性测试的接线图
四、实验内容与步骤
1、根据图3-1,调节相应的参数,使系统的开环传递函数为:
2、令ui(t)=1V,在示波器上观察不同K(K=10,5,2,0.5)时的单位
阶跃响应的波形,并由实验求得相应的Mp、tp和ts的值。
3、调节开环增益K,使二阶系统的阻尼比=1/2 =0.707,观察并记录
此时的单位阶跃响应波形和Mp、tp和ts的值。
3、把实测求得的传递函数与理论值进行比较,并分析产生差异的原因。
2)、数字示波器一台
三、实验原理
以运算放大器为核心元件,由其不同的R-C输入网络和反馈网络组成的各种典型环节,如图1-1所示。图中Z1和Z2为复数阻抗,它们都是由R、C构成。
基于图中A点的电位为虚地,略去流入运放的电流,则由图1-1得:
由上式可求得由下列模拟电
路组成的典型环节的传递函数及
其单位阶跃响应。
当扫频电源输出一个正弦信号,则在示波器的屏幕上呈现一个李沙育图形------椭圆。据此,可测得在该输入信号频率下得相位值:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《自动控制理论》实验指导书适用专业:电气、测控、信息课程代码: 8402510总学时:总学分:编写单位:电气信息学院编写人:审核人:审批人:批准时间:年月日目录实验一(实验代码1)典型系统的瞬态响应和稳定性 (2)实验二(实验代码2)线性系统的频率响应分析 (7)实验三(实验代码3)系统校正 (12)实验四(实验代码4)直流电机闭环调速 (16)实验一典型系统的瞬态响应和稳定性一、实验目的和任务1、通过模拟实验,定性和定量地分析二阶系统的两个参数T和ζ对二阶系统动态性能的影响。

2、通过模拟实验,定性和定量地分析系统开环增益K对系统稳定性的影响。

3、观测系统处于稳定、临界稳定和不稳定情况下的输出响应的差别。

二、实验内容1、观察二阶系统的阶跃响应,分析二阶系统的两个参数T和ζ对二阶系统动态性能的影响。

2、观察三阶系统的阶跃响应,分析系统开环增益K对系统稳定性的影响。

三、实验仪器、设备及材料TDN-AC/ACS教学实验系统、导线四、实验原理1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。

图1-1(2) 对应的模拟电路图:如图1-2所示。

(其中R取10 KΩ,50 KΩ,160 KΩ,200 KΩ)图1-2(3) 理论分析系统开环传递函数为:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图1-2),系统闭环传递函数为:其中自然振荡角频率:;阻尼比:。

2.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。

图1-3(2) 模拟电路图:如图1-4所示。

图1-4(3) 理论分析系统的开环传函为:,系统的特征方程为:(4) 实验内容实验前由Routh判断得Routh行列式为:为了保证系统稳定,第一列各值应为正数,所以有得:五、主要技术重点、难点1、用示波器观察系统阶跃响应C(t)时,超调量σp %,峰值时间tp和调节时间ts的测量。

2、从系统阶跃响应C(t)波形分析系统稳定性六、实验步骤1. 典型二阶系统瞬态性能指标的测试(1) 按模拟电路图1-2接线,将阶跃信号接至输入端,取R = 10K。

(2) 用示波器观察系统响应曲线C(t),测量并记录超调MP 、峰值时间tp和调节时间tS。

(3) 分别按R = 50K;160K;200K;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标M P 、tp和tS,及系统的稳定性。

并将测量值和计算值(实验前必须按公式计算出)进行比较。

将实验结果填入表1-1中。

2.典型三阶系统的性能(1) 按图1-4接线,将1中的方波信号接至输入端,取R = 30K。

(2) 观察系统的响应曲线,并记录波形。

(3) 减小开环增益,观察响应曲线,并将实验结果填入表1-2中。

七、实验报告要求表1-1表1-2八、实验注意事项1、作实验前要预习。

2、实验内容较多,作实验时注意抓紧时间。

九、思考题1、在实验线路中如何确保系统实现负反馈?如果反馈回路中有偶数个运算放大器,则构成什么反馈?2、有那些措施能增加系统的稳定度?它们对系统的性能有什么影响?实验二线性系统的频率响应分析一、实验目的和任务1.掌握波特图的绘制方法及由波特图来确定系统开环传函。

2.掌握实验方法测量系统的波特图。

二、实验内容1、绘制波特图及由波特图来确定系统开环传函。

2、实验方法测量系统的波特图三、实验仪器、设备及材料PC机一台,TD-ACC +系列教学实验系统一套四、实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率 ( ω由0变至∞ ) 而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

2.线性系统的频率特性系统的正弦稳态响应具有和正弦输入信号的幅值比)(ωjΦ和相位差)(ωjΦ∠随角频率 (ω由0变到∞) 变化的特性。

而幅值比)(ωjΦ和相位差)(ωjΦ∠恰好是函数)(ωjΦ的模和幅角。

所以只要把系统的传递函数)(sΦ,令ωjs=,即可得到)(ωjΦ。

我们把)(ωjΦ称为系统的频率特性或频率传递函数。

当ω由0到∞变化时,)(ωjΦ随频率ω的变化特性成为幅频特性,)(ωjΦ∠随频率ω的变化特性称为相频特性。

幅频特性和相频特性结合在一起时称为频率特性。

3.频率特性的表达式(1) 对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。

这两组曲线连同它们的坐标组成了对数坐标图。

对数频率特性图的优点:①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。

②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。

③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。

(2) 极坐标图 (或称为奈奎斯特图)(3) 对数幅相图 (或称为尼柯尔斯图)本次实验中,采用对数频率特性图来进行频域响应的分析研究。

实验中提供了两种实验测试方法:直接测量和间接测量。

直接频率特性的测量用来直接测量对象的输出频率特性,适用于时域响应曲线收敛的对象(如:惯性环节)。

该方法在时域曲线窗口将信号源和被测系统的响应曲线显示出来,直接测量对象输出与信号源的相位差及幅值衰减情况,就可得到对象的频率特性。

间接频率特性的测量用来测量闭环系统的开环特性,因为有些线性系统的开环时域响应曲线发散,幅值不易测量,可将其构成闭环负反馈稳定系统后,通过测量信号源、反馈信号、误差信号的关系,从而推导出对象的开环频率特性。

4.举例说明间接和直接频率特性测量方法的使用。

(1) 间接频率特性测量方法①对象为积分环节:1/0.1S由于积分环节的开环时域响应曲线不收敛,稳态幅值无法测出,我们采用间接测量方法,将其构成闭环,根据闭环时的反馈及误差的相互关系,得出积分环节的频率特性。

②将积分环节构成单位负反馈,模拟电路构成如图2-1所示。

图2-1③理论依据图3.1-1所示的开环频率特性为:采用对数幅频特性和相频特性表示,则上式表示为:其中G(jw)为积分环节,所以只要将反馈信号、误差信号的幅值及相位按上式计算出来即可得积分环节的波特图。

④测量方式:实验中采用间接方式,只须用两路表笔CH1和CH2来测量图2-1中的反馈测量点和误差测量点,通过移动游标,确定两路信号和输入信号之间的相位和幅值关系,即可间接得出积分环节的波特图。

(2) 直接频率特性测量方法只要环节的时域响应曲线收敛就不用构成闭环系统而采用直接测量法直接测量输入、输出信号的幅值和相位关系,就可得出环节的频率特性。

①实验对象:选择一阶惯性其传函为②结构框图:如图所示图2-2③模拟电路图图2-3④测量方式:实验中选择直接测量方式,用CH1路表笔测输出测量端,通过移动游标,测得输出与信号源的幅值和相位关系,直接得出一阶惯性环节的频率特性。

五、实验内容及实验步骤一、实验内容本次实验利用教学实验系统提供的频率特性测试虚拟仪器进行测试,画出对象波特图。

1.实验对象的结构框图图2-42.模拟电路图图2-5开环传函为:,闭环传函:,得转折频率。

二、实验步骤此次实验,采用直接测量方法测量对象的闭环波特图及间接测量方法测量对象的开环波特图。

将信号源单元的“ST”插针分别与“S”插针和“+5V”插针断开,运放的锁零控制端“ST”此时接至示波器单元的“SL”插针处,锁零端受“SL”来控制。

实验过程中“SL”信号由虚拟仪器自动给出。

1.实验接线:按模拟电路图2-5接线,检查无误后方可开启设备电源。

2.直接测量方法 (测对象的闭环波特图)(1) 将示波器单元的“SIN”接至图2-5中的信号输入端,“CH1”路表笔插至图2-5中的4#运放的输出端。

(2) 打开集成软件中的频率特性测量界面,弹出时域窗口,点击按钮,在弹出的窗口中根据需要设置好几组正弦波信号的角频率和幅值,选择测量方式为“直接”测量,每组参数应选择合适的波形比例系数,具体如下图所示:(3) 确认设置的各项参数后,点击需要用户自行移动游标,将两路游标同时放置在两路信号的相邻的波峰 (波谷) 处,或零点处,来确定两路信号的相位移。

两路信号的幅值系统将自动读出。

重复操作(3),直到所有参数测量完毕。

(4)点构成,幅频和相频上同一角频率下两个点对应一组参数下的测量结果。

(5) 根据所测图形可适当修改正弦波信号的角频率和幅值重新测量,达到满意的效果。

3.间接测量方法:(测对象的开环波特图)将示波器的“CH1”接至3#运放的输出端,“CH2”接至1#运放的输出端。

按直接测量的参数将参数设置好,将测量方式改为间接测量。

此时相位差是指反馈信号和误差信号的相位差,应将两根游标放在反馈和误差信号上。

测得对象的开环波特图。

测得对象的开环极坐标图。

4.注意:(1) 测量过程中要去除运放本身的反相的作用,即保持两路测量点的相位关系与运放无关,所以在测量过程中可能要适当加入反相器,滤除由运放所导致的相位问题。

(2) 测量过程中,可能会由于所测信号幅值衰减太大,信号很难读出,须放大,若放大的比例系数不合适,会导致测量误差较大。

所以要适当地调整误差或反馈比例系数。

六、实验报告要求1、采用直接测量法测得二阶闭环系统的波特图为:2、采用直接测量法测得二阶闭环系统的极坐标图为:3、采用间接测量法测得二阶开环系统的波特图为:4、采用间接测量法测得二阶开环系统的极坐标图为:实验三 系统校正一、实验目的和任务1、 学会分析校正装置对系统稳定性和暂态指标的影响。

2、学会设计串联校正装置二、实验内容观察一个二阶系统校正前后的阶跃响应曲线,分析超调量σp %和调节时间t s 的变化情况。

三、实验仪器、设备及材料TDN-AC/ACS 教学实验系统、导线四、 实验原理1、 原系统的原理方框图:见图3-1图3-1由闭环传函()2%60%6.324040.15824020/p n s vs t s s s K l sσωζ=⎧=⎧⎪Φ=⇒⇒=⎨⎨=++⎩⎪=⎩对应的模拟电路图:见图3-2图3-22、设计串联校正装置,使系统满足性能指标:%25%120/psvt sK l sσ≤⎧⎪≤⎨⎪≥⎩。

3.串联校正环节的理论推导由公式,设校正后的系统开环传函为,由期望值得:。

校正后系统的闭环传函为:取ξ=0.5,则T =0.05s,ωn=20满足ωn≥10,得校正后开环传函为:因为原系统开环传函为:,且采用串联校正,所以串联校正环节的传函为:,加校正环节后的系统结构框图:见图3-3图3-3对应的模拟电路图:见图3-4图3-4 五、主要技术重点、难点分析校正装置对系统稳定性和暂态指标的影响。

相关文档
最新文档