数值计算插值法与拟合实验
MATLAB数值实验一(数据的插值运算及其应用完整版)
![MATLAB数值实验一(数据的插值运算及其应用完整版)](https://img.taocdn.com/s3/m/09b2c83e0b1c59eef8c7b4f9.png)
佛山科学技术学院实 验 报 告课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日一、实验目的1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法;2、讨论插值的Runge 现象3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。
二、实验原理1、拉格朗日插值多项式2、牛顿插值多项式3、三次样条插值 三、实验步骤1、用MATLAB 编写独立的拉格朗日插值多项式函数2、用MATLAB 编写独立的牛顿插值多项式函数3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形)4、已知函数在下列各点的值为:根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2,,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。
5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21(),(11)125f x x x=-≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。
6、下列数据点的插值可以得到平方根函数的近似,在区间[0,64]上作图。
(1)用这9个点作8次多项式插值8()L x 。
(2)用三次样条(第一边界条件)程序求()S x 。
7、对于给函数21()125f x x =+在区间[-1,1]上取10.2(0,1,,10)i x i i =-+=,试求3次曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。
四、实验过程与结果:1、Lagrange 插值多项式源代码:function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化%循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= jmu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end endya = ya + y(i) * mu ; mu = 1; end2、Newton 源代码:function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:D = zeros(length(x)-1);ya = y(1);xi = 1;%求出矩阵D,该矩阵第一行为牛顿插值多项式系数:for i=1:(length(x)-1)D(i,1) = (y(i+1) -y(i))/(x(i+1) -x(i));endfor j=2:(length(x)-1)for i=1:(length(x)-j)D(i,j) = (D(i+1,j-1) - D(i,j-1)) / (x(i+j) - x(i)); endend%xi为单个多项式(x-x(1))(x-x(2))...的值for i=1:(length(x)-1)for j=1:ixi = xi*(xa - x(j));endya = ya + D(1,i)*xi;xi = 1;end3、三次样条插值多项式(1)(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x) _____________(1)%第一类边界条件下三次样条插值;%xi 所求点;%yi 所求点函数值;%x 已知插值点;%y 已知插值点函数值;%f_0左端点一次导数值;%f_n右端点一次导数值;n = length(x0);z = length(y0);h = zeros(n-1,1);k=zeros(n-2,1);l=zeros(n-2,1);S=2*eye(n);for i=1:n-1h(i)= x0(i+1)-x0(i);endfor i=1:n-2k(i)= h(i+1)/(h(i+1)+h(i));l(i)= 1-k(i);end%对于第一种边界条件:k = [1;k]; _______________________(2)l = [l;1]; _______________________(3)%构建系数矩阵S:for i = 1:n-1S(i,i+1) = k(i);S(i+1,i) = l(i);end%建立均差表:F=zeros(n-1,2);for i = 1:n-1F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i));endD = zeros(n-2,1);for i = 1:n-2F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i));D(i,1) = 6 * F(i,2);end%构建函数D:d0 = 6*(F(1,2)-f_0)/h(1); ___________(4)dn = 6*(f_n-F(n-1,2))/h(n-1); ___________(5)D = [d0;D;dn]; ______________(6)m= S\D;%寻找x所在位置,并求出对应插值:for i = 1:length(x)for j = 1:n-1if (x(i)<=x0(j+1))&(x(i)>=x0(j))y(i) =( m(j)*(x0(j+1)-x(i))^3)/(6*h(j))+...(m(j+1)*(x(i)-x0(j))^3)/(6*h(j))+...(y0(j)-(m(j)*h(j)^2)/6)*(x0(j+1)-x(i))/h(j)+... (y0(j+1)-(m(j+1)*h(j)^2)/6)*(x(i)-x0(j))/h(j) ; break;else continue;endendend(2)(自然边界条件)源代码:仅仅需要对上面部分标注的位置做如下修改:__(1):function y=yt2(x0,y0,x)__(2):k=[0;k]__(3):l=[l;0]__(4)+(5):删除—(6):D=[0:D:0]4、——————————————PS:另建了一个f方程文件,后面有一题也有用到。
实验报告书
![实验报告书](https://img.taocdn.com/s3/m/fc955a7a10661ed9ac51f30d.png)
拟合多项式原理:假设给定数据点(i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得(1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘拟合多项式。
特别地,当n=1时,称为线性拟合或直线拟合。
显然为的多元函数,因此上述问题即为求的极值 问题。
由多元函数求极值的必要条件,得(2)即(3)(3)是关于的线性方程组,用矩阵表示为 (4) 式(3)或式(4)称为正规方程组或法方程组。
可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。
从式(4)中解出(k=0,1,…,n),从而可得多项式(5)可以证明,式(5)中的满足式(1),即为所求的拟合多项式。
我们把称为最小二乘拟合多项式的平方误差,记作由式(2)可得(6)四、实验内容 (列出实验的实施方案、步骤、数据准备、算法流程图以及可能用到的实验设备(硬件和软件)。
) 实验步骤:),(i i y x Φ)(m n n ≤Φ∈=∑=n k k k n x a x p 0)([]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I )(x p n n a a a Λ,,10),,(10n a a a I I Λ=n j x y x a a Im i j i nk i k i k j ,,1,0,0)(200Λ==-=∂∂∑∑==nj y x a xn k mi i j i k mi k j i,,1,0,)(0Λ==∑∑∑===+na a a Λ,,10⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+∑∑∑∑∑∑∑∑∑∑∑=====+==+====m i i n i m i i i m i i n mi n i m i n i m i n i mi n i m i i m i imi n i m i i y x y x y a a a x x x x x x x x m 000100201001020001M M ΛM M M ΛΛk a∑==nk kk n x a x p 0)()(x p n )(x p n []∑=-mi i i ny x p2)()(x p n ∑∑∑===-=mi nk mi i k i k iy x a y r222)(。
常用数值分析方法3插值法与曲线拟合
![常用数值分析方法3插值法与曲线拟合](https://img.taocdn.com/s3/m/b7def399e45c3b3566ec8b81.png)
p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值
插值数值实验报告(3篇)
![插值数值实验报告(3篇)](https://img.taocdn.com/s3/m/011f69b781eb6294dd88d0d233d4b14e85243e20.png)
第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
数值计算04-插值与拟合
![数值计算04-插值与拟合](https://img.taocdn.com/s3/m/e7568e04fad6195f312ba6bc.png)
二维插值的定义
第一种(网格节点):
y
O
x
已知 mn个节点 其中 互不相同,不妨设
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
第二种(散乱节点):
y
0
x
已知n个节点
其中 互不相同,
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
最邻近插值
y
( x1 , y2 ) ( x2 , y2 )
( x1 , y1 ) ( x2 , y1 )
x
O
注意:最邻近插值一般不连续。具有连续性的最简单 的插值是分片线性插值。
分片线性插值
速度最快,但平滑性差
linear
占有的内存较邻近点插值方法多,运算时间 也稍长,与邻近点插值不同,其结果是连续 的,但在顶点处的斜率会改变 运算时间长,但内存的占有较立方插值方法 要少,三次样条插值的平滑性很好,但如果 输入的数据不一致或数据点过近,可能出现 很差的插值结果 需要较多的内存和运算时间,平滑性很好 二维插值函数独有。插值点处的值和该点值 的导数都连续
x=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 y=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
海拔高度数据为: z=89 90 87 85 92 91 96 93 90 87 82 92 96 98 99 95 91 89 86 84 82 84 96 98 95 92 90 88 85 84 83 81 85 80 81 82 89 95 96 93 92 89 86 86 82 85 87 98 99 96 97 88 85 82 83 82 85 89 94 95 93 92 91 86 84 88 88 92 93 94 95 89 87 86 83 81 92 92 96 97 98 96 93 95 84 82 81 84 85 85 81 82 80 80 81 85 90 93 95 84 86 81 98 99 98 97 96 95 84 87 80 81 85 82 83 84 87 90 95 86 88 80 82 81 84 85 86 83 82 81 80 82 87 88 89 98 99 97 96 98 94 92 87
插值法和拟合实验报告
![插值法和拟合实验报告](https://img.taocdn.com/s3/m/43b2618509a1284ac850ad02de80d4d8d15a01f6.png)
插值法和拟合实验报告一、实验目的1.通过实验了解插值法和拟合法在数值计算中的应用;2.掌握拉格朗日插值法、牛顿插值法和分段线性插值法的原理和使用方法;3.学会使用最小二乘法进行数据拟合。
二、实验仪器和材料1.一台计算机;2. Matlab或其他适合的计算软件。
三、实验原理1.插值法插值法是一种在给定的数据点之间“插值”的方法,即根据已知的数据点,求一些点的函数值。
常用的插值法有拉格朗日插值法、牛顿插值法和分段线性插值法。
-拉格朗日插值法:通过一个n次多项式,将给定的n+1个数据点连起来,构造出一个插值函数。
-牛顿插值法:通过递推公式,将给定的n+1个数据点连起来,构造出一个插值函数。
-分段线性插值法:通过将给定的n+1个数据点的连线延长,将整个区间分为多个小区间,在每个小区间上进行线性插值,构造出一个插值函数。
2.拟合法拟合法是一种通过一个函数,逼近已知的数据点的方法。
常用的拟合法有最小二乘法。
-最小二乘法:通过最小化实际观测值与拟合函数的差距,找到最优的参数,使得拟合函数与数据点尽可能接近。
四、实验步骤1.插值法的实验步骤:-根据实验提供的数据点,利用拉格朗日插值法、牛顿插值法、分段线性插值法,分别求出要插值的点的函数值;-比较三种插值法的插值结果,评价其精度和适用性。
2.拟合法的实验步骤:-根据实验提供的数据点,利用最小二乘法,拟合出一个合适的函数;-比较拟合函数与实际数据点的差距,评价拟合效果。
五、实验结果与分析1.插值法的结果分析:-比较三种插值法的插值结果,评价其精度和适用性。
根据实验数据和插值函数的图形,可以判断插值函数是否能较好地逼近实际的曲线。
-比较不同插值方法的计算时间和计算复杂度,评价其使用的效率和适用范围。
2.拟合法的结果分析:-比较拟合函数与实际数据点的差距,评价拟合效果。
可以使用均方根误差(RMSE)等指标来进行评价。
-根据实际数据点和拟合函数的图形,可以判断拟合函数是否能较好地描述实际的数据趋势。
插值与拟合的实验报告心得
![插值与拟合的实验报告心得](https://img.taocdn.com/s3/m/287af152a66e58fafab069dc5022aaea998f419f.png)
插值与拟合的实验报告心得1.引言1.1 概述插值与拟合是数值分析和数据处理领域中常见的重要技术方法,通过对已知数据点进行插值计算,得到未知点的数值估计。
插值方法可以帮助我们填补数据间的空缺、平滑曲线和预测未来趋势,因此在科学研究、工程建模和数据分析中具有广泛的应用价值。
本实验报告将对插值的基本概念进行介绍,探讨插值方法的分类和在实际应用中的意义。
同时,我们将总结实验结果,评述插值与拟合的优缺点,并提出对进一步研究的建议,希望通过本报告对插值与拟合的方法和应用有一个全面的了解。
1.2文章结构文章结构部分的内容可以包括:在本报告中,将包括以下几个部分的内容:1. 引言:介绍插值与拟合的基本概念,以及本实验的目的和意义。
2. 正文:包括插值的基本概念、插值方法的分类以及插值在实际应用中的意义。
我们将深入探讨这些内容,并解释它们在实验中的具体应用。
3. 结论:总结本次实验的结果,分析插值与拟合的优缺点,并提出对进一步研究的建议。
通过以上内容的分析和探讨,我们希望能够全面地了解插值与拟合的理论基础和实际应用,为进一步的研究和实践提供一定的参考和启发。
1.3 目的本实验的目的在于通过对插值和拟合的实验研究,探索和了解这两种数学方法在现实生活中的应用。
通过实验,我们将深入了解插值的基本概念和分类方法,以及插值在实际应用中的意义。
同时,我们还将对插值和拟合的优缺点进行分析,为进一步的研究提供建议和启示。
通过本实验,我们的目的是掌握插值与拟合方法的应用和特点,为实际问题的求解提供更多的数学工具和思路。
2.正文2.1 插值的基本概念插值是指通过已知数据点构建出一个函数,该函数经过这些数据点,并且在每个数据点上都有相应的函数值。
换句话说,插值是一种通过已知离散数据点来推断未知数据点的方法。
在数学上,插值可以用于近似未知函数的值,或者用于填补数据间的空隙。
在插值过程中,我们通常会选择一个合适的插值函数,比如多项式函数、三角函数或者样条函数等,来拟合已知的数据点。
数值分析实验插值与拟合
![数值分析实验插值与拟合](https://img.taocdn.com/s3/m/3ba8b6be710abb68a98271fe910ef12d2af9a9bc.png)
数值分析实验插值与拟合插值是指根据已知的数据点,通过其中一种数学方法来构造一个函数,使得该函数在已知的数据点上与被插值函数相等。
插值方法可以分为两类:基于多项式的插值和非多项式插值。
基于多项式的插值方法中,最常用的是拉格朗日插值和牛顿插值。
拉格朗日插值方法通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的所有点。
牛顿插值方法则通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的前m+1个点。
非多项式插值方法中,最常用的是分段线性插值和样条插值。
分段线性插值方法将插值区间划分为多个小段,在每一段内使用线性函数来逼近被插值函数。
样条插值方法则使用分段低阶多项式来逼近被插值函数,保证了插值函数和原函数在插值区间内的连续性、光滑性。
拟合是指在给定的离散数据点集合上,通过选取一个函数,使得该函数与数据点之间的误差最小化。
拟合方法可以分为两类:线性拟合和非线性拟合。
线性拟合方法中,最简单的是最小二乘法。
最小二乘法拟合是通过最小化观测数据与拟合函数的残差平方和来选择最佳函数参数。
在实验中,最小二乘法常用于线性回归问题,例如估计一个直线或者平面来拟合数据。
非线性拟合方法中,最常用的是非线性最小二乘法和局部加权回归。
非线性最小二乘法通过将非线性拟合问题转化为线性问题,使用最小二乘法来寻找最佳参数。
局部加权回归方法则通过给予不同数据点不同的权重,以更好地逼近数据点。
在数值分析实验中,插值与拟合可以应用于各种实际问题。
例如,在地理信息系统中,通过已知的地理坐标点来插值出未知点的地理信息。
在气象学中,通过已知的气象数据点来插值出未知点的气象信息。
在工程学中,通过已知的测量数据点来拟合出一个最佳的拟合函数来预测未来的测量值。
需要注意的是,插值和拟合的精度在很大程度上取决于数据的分布和拟合函数的选择。
如果数据点过于稀疏或者数据点中存在异常值,可能导致插值和拟合结果不准确。
因此,在进行插值和拟合之前,需要对数据进行预处理,例如去除异常值、平滑数据等。
《计算方法》实验报告材料
![《计算方法》实验报告材料](https://img.taocdn.com/s3/m/e2820466804d2b160b4ec0e1.png)
double Newton(double x,vector<double>&X,vector<double>&Y);
int main(){
char a='n';
do{
int n;
cout<<"请输入插值点个数:"<<endl;
for(int i=0;i<N;i++){
X[i]=p;
Y[i]=1/(1+p*p);
p=p+c;
}
cout<<"请输入要求值x的值:"<<endl;
double x;
cin>>x;
double result=fenduan(N,X,Y,x,c);
cout<<"由分段线性插值法得出结果: "<<result<<endl;
cin>>n;
vector<double>X(n,0);
vector<double>Y(n,0);
cout<<"请输入插值点对应的值及函数值(Xi,Yi):"<<endl;
for(int i=0;i<n;i++){
cin>>X[i]>>Y[i];
}
cout<<"请输入要求值x的值:"<<endl;
插值与拟合实验总结
![插值与拟合实验总结](https://img.taocdn.com/s3/m/b6f930e3970590c69ec3d5bbfd0a79563d1ed462.png)
插值与拟合实验总结《插值与拟合实验总结》哎呀!说起这个插值与拟合实验,那可真是让我大开眼界呀!实验一开始,老师就像个神奇的魔法师,给我们展示了各种奇妙的数据和图形。
我瞪大眼睛,心里直犯嘀咕:“这都是些啥呀?” 旁边的同桌小明也皱着眉头,小声跟我说:“这可难倒我啦,你能明白不?” 我摇摇头,感觉脑袋都要变成浆糊啦。
老师先给我们讲了插值的概念,这就好比我们要在一些分散的点之间,找到那些“失踪”的点,把它们连起来,形成一条光滑的曲线。
这难道不像我们玩拼图游戏,要把那些缺失的部分找出来,拼出完整的图案吗?我心里想着,这也太有趣了吧!接着我们就开始动手操作啦。
我紧紧握着笔,眼睛盯着屏幕,手忙脚乱地计算着。
哎呀,这数字怎么就不听我使唤呢?我急得直跺脚。
“别着急,慢慢来!”后桌的小红安慰我道。
在做拟合实验的时候,那感觉就像是要给一群调皮的孩子找到一个合适的队伍,让他们排得整整齐齐。
我们尝试着用不同的方法,去找到那个最能代表这些数据的曲线。
这过程可不轻松,一会儿这个方法不行,一会儿那个又出错。
我都快被这些数据绕晕啦!“这到底怎么才能做好呀?”我忍不住抱怨起来。
“别灰心,我们再试试别的办法。
”小组里的小刚鼓励着大家。
经过一次次的尝试和失败,我们终于有了一些成果。
当看到那漂亮的曲线完美地贴合了数据点,我高兴得差点跳起来!那种成就感,就像在沙漠里走了好久好久,终于找到了一片绿洲。
你说,这插值与拟合实验是不是像一场刺激的冒险?我们在数据的海洋里探索,有时候迷失方向,有时候又柳暗花明。
通过这次实验,我明白了做事情不能着急,要有耐心,要不断尝试。
就像我们在实验里,一次不行就再来一次,总会找到解决办法的。
而且团队合作也特别重要,大家一起出主意,互相鼓励,才能取得好结果。
所以呀,这次实验虽然充满了挑战,但真的让我学到了好多好多!。
数值计算中的插值和拟合方法
![数值计算中的插值和拟合方法](https://img.taocdn.com/s3/m/f6fae11ea4e9856a561252d380eb6294dd8822ae.png)
在数值计算中,插值和拟合是两种常用的方法,用于通过已知数据点推测未知数据点的数值。
插值是一种通过已知数据点构建一个函数,以便在这些数据点之间进行预测。
而拟合是一种将一个函数与已知数据点进行匹配,以便预测未知数据点的数值。
插值的目标是通过经过已知数据点的连续函数来准确地估计未知数据点的数值。
最简单的插值方法是线性插值,它假设两个相邻数据点之间的函数值是线性变化的。
线性插值可以用于计算两个已知数据点之间的任何位置的函数值。
如果我们有更多的数据点,可以使用更高阶的插值方法,如二次插值或三次插值。
这些方法使用多项式来表示数据点之间的函数,以便更准确地预测未知数据点。
然而,插值方法并不总是最理想的选择。
在某些情况下,通过已知数据点精确地构建一个连续函数是不可能的。
这可能是因为数据点之间的差异太大,或者数据点的数量太少。
在这种情况下,拟合方法可以提供更好的预测结果。
拟合的目标是找到一个函数,使其与已知数据点的误差最小。
最常用的拟合方法是最小二乘拟合,它通过最小化数据点的残差的平方和来找到最佳拟合函数。
最小二乘拟合可以用于各种不同的函数类型,如线性拟合、多项式拟合、指数拟合等。
根据数据点的分布和特性,我们可以选择适当的拟合函数来获得最准确的预测结果。
在实际应用中,插值和拟合方法经常同时使用。
例如,在地理信息系统中,我们可能需要通过已知地点的气温数据来估计未知地点的气温。
我们可以使用插值方法来构建一个连续函数,以便在已知地点之间预测未知地点的气温。
然后,我们可以使用拟合方法来匹配这个连续函数与其他已知数据点,以提高预测的准确性。
插值和拟合方法在科学、工程、金融等各个领域都有广泛的应用。
在科学研究中,它们可以用于数据分析和预测,以帮助我们理解和解释实验结果。
在工程中,它们可以用于控制系统设计、信号处理和机器学习等领域。
在金融领域,它们可以用于市场预测和风险管理等重要任务。
总而言之,插值和拟合是数值计算中常用的方法,用于通过已知数据点推测未知数据点的数值。
数值分析插值法与拟合实验
![数值分析插值法与拟合实验](https://img.taocdn.com/s3/m/d2048589b9d528ea81c77959.png)
实验报告
一、实验目的
感受插值效果的比较以及拟合多项式效果的比较。
二、实验题目
1.插值效果的比较
将区间[-5,5]5等分和10等分,对下列函数分别计算插值节点错误!未找到引用源。
的值,进行不同类型的插值,做出插值函数的图形并与错误!未找到引用源。
的图形进行比较:
做拉格朗日插值。
2.拟合多项式实验
分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数错误!未找到引用源。
和拟合函数的图形。
三、实验原理
拉格朗日插值和多项拟合插值的通用程序
四、实验内容及结果
五、实验结果分析
(1)实验1中通过图象,可以很明显的辨别出拉格朗日插值并不是插值点越多图象就一定越精确,会有高阶插值的振荡现象。
(2)通过三个图象的对比,发现基本都是重合在一起的。
.三次多项式五次多项式拟合的平方误差分别为1.8571e-004和4.7727e-005,可知五次多项式拟合比三次多项式拟合更加准确。
但是后面去计算一下拟合所需要的时间,会发现拟合次数越大,时间越长,所以也不一定是次数越大越好,需要把时间也考虑进去。
数值分析实验报告插值与拟合
![数值分析实验报告插值与拟合](https://img.taocdn.com/s3/m/78037227647d27284b735192.png)
结果分析:高次插值稳定性差,而低次插值对于较大区间逼近精度又不够,而且,随着节点的加密,采用高次插值,插值函数两端会发生激烈震荡。解决这一矛盾的有效方法就是采用分段低次代数插值。
(2)
通过采用分段线性插值得到以下结果:
结果分析:通过采用分段线性插值,发现随着插值节点增多,插值计算结果的误差越来越小,而且分段线性插值的优点是计算简单,曲线连续和一致收敛,但是不具有光滑性。
拟合是指通过观察或测量得到一组离散数据序列 ,i=1,2,…,m,构造插值函数 逼近客观存在的函数 ,使得向量 与 的误差或距离最小。
可知当基函数的选择不同时,拟合函数的误差也会不同,所以在对数据进行拟合时应选择适合的基函数。
三、练习思考
整体插值有何局限性?如何避免?
答:整体插值的过程中,若有无效数据则整体插值后插值曲线的平方误差会比较大,即在该数据附近插值曲线的震动幅度较大。在插值处理前,应对原始数据进行一定的筛选,剔除无效数据。
②相同点:通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律目的
四、本次实验的重点难点分析
答:加强了对插值和拟合的认识,了解了其算法思想,并使用matlab将其实现。学会了观察插值拟合后的图形,并分析其问题。
画图进行比较:
通过观察图像,经比较可知两结果是很接近的。
2.区间 作等距划分: ,以 ( )为节点对函数 进行插值逼近。(分别取 )
(1)用多项式插值对 进行逼近,并在同一坐标系下作出函数的图形,进行比较。写出插值函数对 的逼近程度与节点个数的关系,并分析原因。
(2)试用分段插值(任意选取)对 进行逼近,在同一坐标下画出图形,观察分段插值函数对 的逼近程度与节点个数的关系。
数值分析拟合实验报告(3篇)
![数值分析拟合实验报告(3篇)](https://img.taocdn.com/s3/m/dcb926929f3143323968011ca300a6c30d22f17d.png)
第1篇一、实验目的本次实验旨在通过数值分析方法对一组已知数据点进行拟合,掌握线性插值、多项式插值、样条插值等方法的基本原理和实现过程,并学会使用MATLAB进行数值拟合。
二、实验内容1. 线性插值线性插值是一种简单的插值方法,适用于数据点分布较为均匀的情况。
其基本原理是通过两个相邻的数据点,利用线性关系拟合出一条直线,然后通过该直线来估算未知的值。
2. 多项式插值多项式插值是一种较为精确的插值方法,通过构造一个多项式函数来逼近已知数据点。
其基本原理是利用最小二乘法求解多项式的系数,使得多项式在已知数据点上的误差最小。
3. 样条插值样条插值是一种更灵活的插值方法,通过构造一系列样条曲线来逼近已知数据点。
其基本原理是利用最小二乘法求解样条曲线的系数,使得样条曲线在已知数据点上的误差最小。
三、实验步骤1. 线性插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`linspace`生成插值点:xi = linspace(1, 5, 100);(3)使用MATLAB内置函数`interp1`进行线性插值:yi = interp1(x, y, xi, 'linear');(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');2. 多项式插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`polyfit`求解多项式系数:p = polyfit(x, y, 3);(3)使用MATLAB内置函数`polyval`进行多项式插值:yi = polyval(p, xi);(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');3. 样条插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`spline`进行样条插值:yi = spline(x, y, xi);(3)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');四、实验结果与分析1. 线性插值线性插值方法简单易行,但精度较低,适用于数据点分布较为均匀的情况。
数值计算方法实验报告
![数值计算方法实验报告](https://img.taocdn.com/s3/m/e8b24b00a9956bec0975f46527d3240c8447a1df.png)
数值计算方法实验报告数值计算方法实验报告引言:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
在科学研究和工程应用中,数值计算方法被广泛应用于求解方程、优化问题、模拟仿真等领域。
本实验报告将介绍数值计算方法的基本原理和实验结果。
一、二分法求根二分法是一种通过不断折半缩小搜索区间来求解方程根的方法。
在实验中,我们选取了一个简单的方程f(x) = x^2 - 4 = 0来进行求根实验。
通过不断将搜索区间进行二分,我们可以逐步逼近方程的根。
实验结果表明,通过二分法,我们可以得到方程的根为x = 2。
二、牛顿迭代法求根牛顿迭代法是一种通过不断逼近方程根的方法。
在实验中,我们同样选取了方程f(x) = x^2 - 4 = 0进行求根实验。
牛顿迭代法的基本思想是通过对方程进行线性近似,求得近似解,并不断迭代逼近方程的根。
实验结果表明,通过牛顿迭代法,我们可以得到方程的根为x = 2。
三、高斯消元法求解线性方程组高斯消元法是一种通过变换线性方程组的系数矩阵,将其化为上三角矩阵的方法。
在实验中,我们选取了一个简单的线性方程组进行求解实验。
通过对系数矩阵进行行变换,我们可以将其化为上三角矩阵,并通过回代求解得到方程组的解。
实验结果表明,通过高斯消元法,我们可以得到线性方程组的解为x = 1,y = 2,z = 3。
四、插值与拟合插值与拟合是一种通过已知数据点来构造函数模型的方法。
在实验中,我们选取了一组数据点进行插值与拟合实验。
通过拉格朗日插值多项式和最小二乘法拟合,我们可以得到数据点之间的函数模型。
实验结果表明,通过插值与拟合,我们可以得到数据点之间的函数关系,并可以通过该函数模型来进行预测和拟合。
结论:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
通过本次实验,我们学习了二分法求根、牛顿迭代法求根、高斯消元法求解线性方程组以及插值与拟合的基本原理和应用。
这些方法在科学研究和工程应用中具有广泛的应用前景。
数值分析插值与拟合实验
![数值分析插值与拟合实验](https://img.taocdn.com/s3/m/36bd36855ebfc77da26925c52cc58bd6318693c7.png)
数值分析插值与拟合实验数值分析是一门研究利用数字计算方法解决数学问题的学科。
插值与拟合是数值分析的重要内容之一,可以用于数据分析、信号处理以及数学建模等领域。
本实验将使用MATLAB软件进行插值与拟合的实验,主要包括插值多项式与拟合曲线的构造,以及评价拟合效果的方法。
实验一:插值多项式的构造1. Lagrange插值Lagrange插值是一种构造多项式来拟合已知数据点的方法。
给定n 个数据点(xi, yi),其中xi不相等,Lagrange插值多项式可以写成:P(x) = ∑(i=0 to n) yi * l_i(x)其中l_i(x)是Lagrange基函数,定义为:l_i(x) = ∏(j=0 to n,j!=i) (x-xj)/(xi-xj)通过计算l_i(x),然后将其乘以相应的数据点yi,最后相加就可以得到插值多项式P(x)。
2. Newton插值Newton插值使用差商的概念来构造插值多项式。
首先定义差商F[x0,x1,...,xn]如下:F[x0]=f(x0)F[x0,x1]=(f(x1)-f(x0))/(x1-x0)F[x0,x1,x2]=(F[x1,x2]-F[x0,x1])/(x2-x0)...F[x0,x1,...,xn] = (F[x1,x2,...,xn] - F[x0,x1,...,xn-1])/(xn-x0)其中f(x)是已知数据点的函数。
然后,利用差商来构造插值多项式:P(x) = ∑(i=0 to n) F[x0,x1,...,xi] * ∏(j=0 to i-1) (x-xj)通过计算差商F[x0,x1,...,xi]和对应的乘积∏(x-xj),最后相加得到插值多项式P(x)。
实验二:拟合曲线的构造1.多项式拟合多项式拟合是通过构造一个多项式函数来拟合已知数据点的方法。
假设给定n个数据点(xi, yi),可以使用多项式函数来表示拟合曲线:P(x) = a0 + a1*x + a2*x^2 + ... + an*x^n其中a0, a1, ..., an是待确定的系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dy0=-10.*(1-5.^4)./(1+5.^4).^2;dyn=10.*(1-5.^4)./(1+5.^4).^2;
m=maspline(x1,y1,dy0,dyn,xx);
plot(xx,m,'ok')
2、
程序:
x=[-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5]';
plot(xx,m,'ok')
第二个方程
程序
x=-5:0.2:5;
y=atan(x);
plot(x,y,'r');
hold on
x1=-5:1:5;
y1=atan(x1);
xx=-4.5:0.5:4.5;
yy=malagr(x1,y1,xx);
plot(xx,yy,'+')
dy0=1./(1+25);dyn=1./(1+25);
实验报告三
一、实验目的
通过本实验的学习,各种插值法的效果,如多项式插值法,牛顿插值法,样条插值法,最小二乘法拟合(即拟合插值),了解它们各自的优缺点及插值。
二、实验题目
1、插值效果比较
实验题目:将区间 10等份,对下列函数分别计算插值节点 的值,进行不同类型的插值,作出插值函数的图形并与 的图形进行比较:
y=[-4.45 -0.45 0.55 0.05 -0.44 0.54 4.55]';
plot(x,y,'or');hold on
%三.2:1.5;
y1=p1(1)*x1.^3+p1(2)*x1.^2+p1(3)*x1+p1(4);
plot(x1,y1,'-')
m=maspline(x1,y1,dy0,dyn,xx);
plot(xx,m,'ok')
第三个方程
程序
x=-5:0.2:5;
y=x.*x./(1+x.^4);
plot(x,y,'r');
hold on
x1=-5:1:5;
y1=x1.*x1./(1+x1.^4);
xx=-4.5:0.5:4.5;
yy=malagr(x1,y1,xx);
2、
六、实验结果分析
1、实验一表明三次样条插值比拉格朗日插值更准确。
2.在试验2中,对于拟合多项式实验表明三次多项式拟合与五次多项式拟合的效果是差不多的。
; ; 。
(1)做拉格朗日插值;
(2)做三次样条插值。
2、拟合多项式实验
实验题目:给定数据点如下表所示:
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-4.45 -0.45 0.55 0.05 -0.44 0.54 4.55
分别对上述数据做三次多项式和五次多项式拟合,并求平方误差,作出离散函数 和拟合函数的图形。
三次样条插值原理
第一步:由 , , ,其中, ,计算出 等辅助量。/
第二步,用追赶法求解 = 得 ;
第三步:判断插值点所在区间;
第四步:用
多项式的基函数一般取幂函数
由于
这样,法方程组为
计算插值。
四、实验内容
1、第一个方程
程序
x=-5:0.2:5;
y=1./(1+x.*x);
plot(x,y,'r');
hold on
x1=-5:1:5;
y1=1./(1+x1.*x1);
xx=-4.5:0.5:4.5;
yy=malagr(x1,y1,xx);
plot(xx,yy,'+')
dy0=10./(1+25)*(1+25);dyn=-10./(1+25)*(1+25);
m=maspline(x1,y1,dy0,dyn,xx);
%五次多项式拟合
p2=mafit(x,y,5);
x1=-1.5:0.2:1.5;
y2=p2(1)*x1.^5+p2(2)*x1.^4+p2(3)*x1.^3+p2(4)*x1.^2+p2(5)*x1+p2(6);
plot(x1,y2,'g')
五、实验结果
1、第一个方程
第二个方程
第三个方程
从三个图形中可以看出三次样条插值较准确。
三、实验原理
n阶拉格朗日插值
设已知 及 为不超过n次的多项式,且满足插值条件 由对 的构造经验,可设
其中, 均为n次多项式且满足 不难验证,这样构造出的 满足插值条件。因此问题归结为求 的表达式。因
是n次多项式 的n个根,故可设
再由
得
故有
(4.13)
公式(4.13)称为n阶拉格朗日插值公式,其中 称为n阶拉格朗日插值的基函数。