八年级数学下册《勾股定理的逆定理》同步练习1

合集下载

人教版八年级下册《勾股定理的逆定理》同步练习1

人教版八年级下册《勾股定理的逆定理》同步练习1

勾股定理的逆定理习题1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。

2.一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直,为什么?3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。

小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=904.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积。

AB5.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。

求证:△ABC是等腰三角形。

6.已知:如图,∠DAC=∠EAC,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。

求证:AB2=AE2+CE2。

7.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=14,试判定△ABC的形状。

参考答案:1.6米,8米,10米,直角三角形;2.△ABC、△ABD是直角三角形,AB和地面垂直。

3.提示:连结AC。

AC2=AB2+BC2=25,AC2+AD2=CD2,因此∠CAB=90°,S四边形=S△ADC+S△ABC=36平方米。

1.6;2.提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC。

3.提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2。

4.提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14。

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定2.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:153.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.,3,4D.1,,34.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm5.下列五组数:①4、5、6;②0.6、0.8、1;③7、4、25;④8、15、17;⑤9、40、41,其中是勾股数的组数为()A.2B.3C.4D.56.已知a、b、c为△ABC的三边,且满足(a﹣b)(a2+b2﹣c2)=0,则△ABC是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.△ABC中,已知AB=1,AC=2.要使∠B是直角,BC的长度是()A.B.C.3D.或8.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()A.17m B.18m C.25m D.26m9.一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口1.5小时后,则两船相距()A.10海里B.20海里C.30海里D.40海里二.填空题10.勾股数为一组连续自然数的是.11.已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.12.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.13.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.14.如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地可上,此处离树底部m处.15.如图,每个小正方形的边长为1,则∠ABC的度数为°.16.若一个三角形的三边长分别为5、12、13,则此三角形的面积为.17.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.18.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为米.三.解答题19.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.20.如图,点C是线段BD上的一点,∠B=∠D=90°,AB=3,BC=2,CD=6,DE=4,AE=,求证:∠ACE=90°.21.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.22.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD的面积;(3)如图2,以A为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=S四边形ABCD,求P的坐标.参考答案一.选择题1.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.2.解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.3.解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、()2+32=42,能构成直角三角形,故符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选:C.4.解:这根木棒最长==5(cm),故选:B.5.解:①42+52≠62,故不是勾股数;②0.6、0.8、1不都是正整数,故不是勾股数;③72+42≠252,故不是勾股数;④82+152=172,故是勾股数;⑤92+402=412,故是勾股数;其中勾股数有2组,故选:A.6.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a﹣b=0,或a2+b2﹣c2=0,即a=b或a2+b2=c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.7.解:∵∠B是直角,故AC为△ABC的斜边,AB为直角边,∴BC===.故选:A.8.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17(米).故选:A.9.解:如图所示:∠1=∠2=45°,AB=12×1.5=18(海里),AC=16×1.5=24(海里),∴∠BAC=∠1+∠2=90°,即△ABC是直角三角形,∴BC===30(海里).故选:C.二.填空题10.解:设中间的数是x,那么前面的一个就x﹣1,后面的一个就是x+1,根据题意(x﹣1)2+x2=(x+1)2,解得:x=0(舍去)或x=4;4﹣1=3,4+1=5;故答案为:3、4、5.11.解:∵∠C=90°,∴AC2+BC2=AB2,∵AB=k,AC=k﹣1,BC=3,∴(k﹣1)2+32=k2,解得:k=5,故答案为:5.12.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.13.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.14.解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.15.解:连接AC,由勾股定理得:AC2=22+12=5,BC2=22+12=5,AB2=12+32=10,∴AC2+BC2=5+5=10=BA2,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°,故答案为:45.16.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.17.解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.18.解:在直角△ABC中,已知AB=2.5米,BC=0.7米,∴AC===2.4米,在直角△CDE中,已知DE=AB=2.5米,AE=0.9米,∴CE=AC﹣AE=1.5米,∴CD===2米,∴BD=2米﹣0.7米=1.3米故答案为:1.3.三.解答题19.解:连接AC,如图,,在Rt△ABC中,AB=24 m,BC=7 m,∴AC==25 m,在△ADC中,CD=15 m,AD=20 m.AC=25 m,∵CD2+AD2=152+202=252=AC2,∴△ADC为直角三角形,∠D=90°.(2)由(1)知△ADC为直角三角形,∠D=90°,∴S△ADC==150 m²,∵S△ABC=m²,∴S四边形ABCD=S△ADC+S△ABC=150+84=234 m².20.证明:在Rt△ABC中,∠B=90°,AB=3,BC=2,∴AC===.在Rt△EDC中,∠D=90°,CD=6,DE=4,∴CE===2,∵AC2=13,CE2=52,AE2=65,∴AE2=AC2+CE2,∴△ACE是直角三角形,AE是斜边,∴∠ACE=90°.21.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.22.(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC=12m,CD=13m,∴BD2+BC2=CD2.∴BD⊥CB;(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=×3×4+×12×5=6+30=36(m2).故这块土地的面积是36m2;(3)∵S△PBD=S四边形ABCD,∴•PD•AB=×36,∴•PD×3=9,∴PD=6,∵D(0,4),点P在y轴上,∴P的坐标为(0,﹣2)或(0,10).。

2020年人教版数学八年级下册17.2勾股定理的逆定理同步练习(解析版)

2020年人教版数学八年级下册17.2勾股定理的逆定理同步练习(解析版)

17.2 勾股定理的逆定理1.下列命题的逆命题是真命题的是 ( )A .对顶角相等B .正方形的四个角都是直角C .两直线平行,同位角相等D .菱形的对角线互相垂直 2.下列定理有逆定理的是 ( )A .直角都相等B .同旁内角互补,两直线平行C .同位角相等D .全等三角形的对应角相等3.下列各组数是三角形的三边长,不能组成直角三角形的一组数是 ( )A .3,4,5B .6,8,10C .1.5,2,2.5D .543,,4.若一个三角形的三边长之比为8:15:17,则它为________三角形.5.如图17-2-1.以△ABC 的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为________.6.如图17-2-2,四边形ABCD 中,∠C=90º,BD 平分∠ABC ,AD=3,E 为AB 上一点,AE=4,ED=5,求CD 的长.7.下列四组数:(1)0.6,0.8,1;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中勾股数的组数为 ( )A .1B .2C .3D .4能力提升全练1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC是直角三角形的是 ( )A .∠A =∠C-∠B B .a:b:c=2:3:4C .a ²=b ²-c ²D .a=34,b=45,c=12.如图17-2-3,四边形ABCD 中,AB=4 cm,BC=3 cm,CD=12 cm, DA=13 cm ,且∠ABC=90º,则四边形ABCD 的面积为( )A .6 cm²B .30 cm²C .24 cm²D .36 cm² 3.阅读以下解题过程:已知a ,b ,c 为△ABC 的三边长,且满足a ²c ²-b ²c ²=a ⁴-b ⁴,试判断△ABC 的形状. 解:∵a ²c ²-b ²c ²=a ⁴-b ⁴,①∴c²(a²-b²)=(a²-b²)(a²+b²),②∴c²=a²+b².③∴△ABC为直角三角形,④(1)上述解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是________________________________________________________;(3)本题正确的结论是____________________________________________________. 三年模拟全练一、选择题1.F列四组线段中,可以构成直角三角形的是 ( )A.1.5,2,2.5 B.4,5,6C.2,3,4 D.1,2,32.下列各组数中,是勾股数的为 ( )A.1,1,2 B.1.5,2,2.5C.7,24,25 D.6,12,133.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A.乙客轮用20分钟到达点B,若A、B两点的直线距离为1000 m,甲客轮沿着北偏东30º的方向航行,则乙客轮的航行方向可能是 ( )A.南偏东60º B.南偏西60º C.北偏西30º D.南偏西30º二、填空题4.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是_________.三、解答题5.如图17-2-4,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?五年中考模拟一、选择题1.下列长度的三条线段能组成直角三角形的是 ( )A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 2.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米二、填空题3.如图17-2-5,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.则∠ACB 的大小为_______.核心素养全练1.王老师在一次“探究性学习”课中设计了如下数表:(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示a 、b 、c ;(2)猜想:以a 、b 、c 为边长的三角形是不是直角三角形,请证明你的猜想.2.如图17-2-6,南北线MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇曰密切注意,反走私艇A和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?3.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形, 理解:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?________(填“是”或“不是”);②若某三角形的三边长分别为1、7、2,则该三角形________(填“是”或“不是”)奇异三角形. 探究:在Rt △ABC 中,两边长分别是a 、c ,且a ²=50,c ²=100,则这个三角形是不是奇异三角形?请说明理由, 拓展:在Rt△ABC中,∠C=90º,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a²:b²:c².17.2 勾股定理的逆定理1.C“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是平行线判定定理,所以逆命题是真命题.2.B“直角都相等”的逆命题是“相等的角是直角”,选项A错误;“同旁内角互补,两直线平行”的逆命题是“两直线平行,同旁内角互补”,选项B正确;“同位角相等”的逆命题是“相等的角是同位角”,选项C错误;“全等三角形的对应角相等”的逆命题是“角对应相等的三角形是全等三角形”,选项D错误,故选B.3.D ∵3²+4²=5²,∴此三角形是直角三角形,选项A不合题意;∵6²+8²=10²,∴此三角形是直角三角形,选项B不合题意;∵1.5²+2²=2.5²,∴此三角形是直角三角形,选项C不合题意;()()()222543≠+,∴此三角形不是直角三角形,选项D符合题意,故选D.4.答案直角解析设三边长分别为8k,15k,17k( k>0),则(8k)²+(15k)²=289k²=(17k)²,由勾股定理的逆定理,可判断此三角形为直角三角形.5.答案直角三角形解析由题意得S₁+S₂=S₃,即222212121212121⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅+⎪⎭⎫⎝⎛ABACBCπππ,∴BC²+AC²=AB²,∴△ABC为直角三角形.6.解析∵AD=3,AE=4,ED=5,∴AD²+AE²=ED².∴∠A=90º,∴DA⊥AB.∵∠C=90º,∴DC⊥BC.∵BD平分∠A BC,∴CD=AD=3.7.B(1)中各数不全是正整数;(2)中5²+12²=13²;(3)中8²+15²=17²;(4)中4²+5²≠6².故有2组勾股数.1.B A.由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180º,可求得∠C=90º,故△ABC 为直角三角形;B.不妨设a=2,b=3,c=4,此时a²+b²=13,而c²=16,即a²+b²≠c²,故△ABC 不是直角三角形;C .由条件可得到a ²+c ²=b ²,满足勾股定理的逆定理,故△ABC 是直角三角形;D .由条件有a ²+c ²=2222451625143b =⎪⎭⎫ ⎝⎛==+⎪⎭⎫ ⎝⎛,满足勾股定理的逆定理,故△ABC 是直角三角形.故选B . 2.C 连接 AC, ∵∠A BC=90º,AB=4 cm,BC=3 cm,∴AC=5 cm,∵CD=12 cm,DA=13 cm,AC ²+CD ²=5²+12²=169=13²=DA ²,∴△ADC 为直角三角形,∴S 四边形ABCD =S △ACD - S △ABC=21AC •CD-21AB •BC =21×5×12-21×4×3=30-6=24(cm ²).故四边形ABCD 的面积为24 cm ².故选C .3.答案 (1)③ (2)不能确定a ²-b ²是不是0 (3)△ABC 是等腰三角形或直角三角形解析 ∵c ²(a ²-b ²)=(a ²-b ²)(a ²+b ²),∴(a ²-b ²)[c ²-(a ²+b ²)]=0,∴a ²-b ²=0或c ²-(a ²+b ²)=0,即a=b 或a ²+b ²=c ²,∴三角形为等腰三角形或直角三角形,故从第③步开始错误,其原因是不能确定a ²-b ²是不是0. 一、选择题1.A 根据勾股定理的逆定理判断,求出两短边的平方和与最长边的平方,判断是否相等即可.1.5²+2²=2.5².即三角形是直角三角形,故此选项正确.故选A . 2.C A ∵1²+1²≠2²,∴不是勾股数,此选项错误; B .1.5和2.5不是正整数,此选项错误;C .∴7²+24²=25²,且7,24,25是正整数,∴是勾股数,此选项正确;D .∵6²+12²≠13²,∴不是勾股数,此选项错误,故选C .3.A 如图,∵甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m).∵A 、B 两点间的直线距离为1000 m ,又∵600²+800²=1000²,∴∠A OB=90º, ∵甲客轮沿着北偏东30º的方向航行, ∴乙客轮沿着南偏东60º的方向航行,故选A .二、填空题4.答案 直角三角形解析化简(a+b )²=c ²+2ab ,得a ²+b ²=c ²,所以该三角形是直角三角形. 三、解答题5·解析(1)四边形ABCD 的面积为25-1-21×1×5-21×1×4-21×1×2-21×2×4=14.5, 周长为AB+BC+CD+AD=2617532026175++=+++.(2)∠D AB 是直角.理由如下:连接BD ,∴AB ²+AD ²=5+20=25,BD ²=25.∴AB ²+AD ²=BD ². ∴△ABD 是直角三角形,且∠D AB 是直角. 一、选择题1.A 根据勾股定理的逆定理,能组成直角三角形的三边长必须满足两条较短边的平方和等于最长边的平方.∵3²+4²=5²,∴长为3,4,5的三条线段能组成直角三角形.故选A .2.A 将里换算成以米为单位,则三角形沙田的三边长分别为2.5千米.6千米,6.5千米,因为2.5²+6²=6.5²,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=21×6×2.5=7.5(平方千米),故选A . 二、填空题 3.答案 90º解析在网格中,由勾股定理得AC=183322=+,BC=324422=+.AB=507122=+, ∴AC ²+BC ²=AB ².∴由勾股定理的逆定理,知△ABC 为直角三角形,且∠A CB=90º. 1.解析(1)由题表可以得出: n=2时.a=2²-1,b=2×2,c=2²+1;n=3时,a=3²-1,b=2×3,c=3²+1; n=4时,a=4²-1,b=2×4,c=4²+1; ……∴a=n ²-1,b=2n ,c=n ²+1(n >1,且n 为自然数). (2)以a 、b 、c 为边长的三角形是直角三角形, 证明:∵a ²+b ²=(n ²-1)²+4n ²=n ⁴+2n ²+1, c ²=(n ²+1)²=n ⁴+2n ²+1, ∴a ²+b 2=c 2.∴以a 、b 、c 为边长的三角形是直角三角形. 2.解析 设MN 与AC 相交于E ,则∠B EC=90º, ∴AB ²+BC ²=5²+12²=13²=AC ².∴△ABC 为直角三角形,且∠A BC=90。

17.2勾股定理的逆定理-2020-2021学年人教版八年级数学下册同步提升训练

17.2勾股定理的逆定理-2020-2021学年人教版八年级数学下册同步提升训练

2020-2021年人教版八年级数学下册《17.2勾股定理的逆定理》同步提升训练(附答案)1.下列各组线段中不能作为直角三角形三边长的是()A.1、、2B.1、、C.、2、D.、、2.下列说法不正确的是()A.△ABC中,若∠A﹣∠B=∠C,则△ABC是直角三角形B.△ABC中,若b2﹣c2=a2,则△ABC是直角三角形C.△ABC的三边之比是5:12:13,则△ABC是直角三角形D.△ABC中,若a2+b2≠c2,则△ABC不是直角三角形3.下列各组数是勾股数的是()A.0.3,0.4,0.5B.5,7,9C.4,5,6D.6,8,104.如果用,a、b、c表示△ABC的三边,那么分别满足下列条件的三角形中,直角三角形有()①b2=c2﹣a2②a:b:c=3:4:5③∠C=∠A﹣∠B④∠A:∠B:∠C=12:13:15A.1个B.2个C.3个D.4个5.如图,已知△ABC中AC=24,AB=25,BC=7,AB上取一点E,AC上取一点F使得∠EFC=136°,过点B作BD∥EF,则∠CBD等于()A.44°B.56°C.46°D.68°6.如图所示的是一种机器人行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m后往东一拐,仅走0.5m就到达了B.则点A与点B之间的直线距离是()A.10m B.8.5m C.7m D.6.5m7.如图,在△ABC中,AB=5,BC=4,AC=3,点O是三条角平分线的交点,则△BOC 的BC边上的高是()A.1B.2C.3D.4二.填空题(共12小题)8.将一根长为24cm的筷子置于底面直径为12cm,高为16cm的圆柱形水杯中,则筷子露在杯子外面的最短长度为cm.9.如图,正方形网格中,点A,B,C,D均在格点上,则∠AOB+∠COD=°.10.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.则旗杆的高度.11.《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC尺.12.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部B恰好碰到岸边的B',则这根芦苇的长度是尺.13.某会展中心在会展期间准备将高5m、长13m、宽2m的楼道铺上地毯,已知地毯每平方米20元,请你帮助计算一下,铺完这个楼道至少需要元.14.若一个三角形的三边长为m+1,12,m+5,当m=时,这个三角形是直角三角形,且斜边长为m+5.15.若正整数a,n满足a2+n2=(n+1)2,这样的三个整数a,n,n+1(如:3,4,5或5,12,13)我们称它们为一组“完美勾股数”.当n<150时,共有组这样的“完美勾股数”.16.将一根16cm长的细木棒放入长、宽、高分别为4cm、3cm和12cm的长方体无盖盒子中,则细木棒露在盒子外面的最短长度是.17.如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞米.18.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.19.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚3m,若梯子的顶端下滑1m,则梯足将滑动.20.如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉.经测量,∠EDC=90°,DC =6m,CE=10m,BD=14m,AB=16m,AE=2m.(1)求DE的长;(2)求四边形ABDE的面积.21.在△ABC中,AB=c,BC=a,AC=b.如图1,若∠C=90°时,根据勾股定理有a2+b2=c2.(1)如图2,当△ABC为锐角三角形时,类比勾股定理,判断a2+b2与c2的大小关系,并证明;(2)如图3,当△ABC为钝角三角形时,类比勾股定理,判断a2+b2与c2的大小关系,并证明;(3)如图4,一块四边形的试验田ABCD,已知∠B=90°,AB=80米,BC=60米,CD=90米,AD=110米,求这块试验田的面积.22.如图,把一块直角三角形(△ABC,∠ACB=90°)土地划出一个三角形(△ADC)后,测得CD=3米,AD=4米,BC=12米,AB=13米.(1)求证:∠ADC=90°;(2)求图中阴影部分土地的面积.23.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?24.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB =AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?25.如图,某电信公司计划在A,B两乡镇间的E处修建一座5G信号塔,且使C,D两个村庄到E的距离相等.已知AD⊥AB于点A,BC⊥AB于点B,AB=80km,AD=50km,BC=30km,求5G信号塔E应该建在离A乡镇多少千米的地方?26.如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.27.如图,在△ABC中,AB=5,AC=13,AD是边BC上的中线,点E在AD的延长线上,AD=ED=6.(1)求证:△ABD≌△ECD;(2)求△ABD的面积.参考答案1.解:A.∵12+()2≠22,∴以1,,2为边不能组成直角三角形,故本选项符合题意;B.∵12+()2=()2,∴以1,,为边能组成直角三角形,故本选项不符合题意;C.∵22+()2=()2,∴以2,,为边能组成直角三角形,故本选项不符合题意;D.∵()2+()2=()2,∴以,,为边能组成直角三角形,故本选项不符合题意;故选:A.2.解:A、△ABC中,若∠A﹣∠B=∠C,可得,∠A=90°,则△ABC是直角三角形,说法正确,不符合题意;B、△ABC中,若b2﹣c2=a2,可得,b2=c2+a2,则△ABC是直角三角形,说法正确,不符合题意;C、△ABC的三边之比是5:12:13,可得,(5x)2+(12x)2=(13x)2,则△ABC是直角三角形,说法正确,不符合题意;D、△ABC中,若a2+b2≠c2,而b2=c2+a2,则△ABC是直角三角形,说法错误,符合题意;故选:D.3.解:A、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;B、∵52+72≠92,∴这组数不是勾股数;C、∵52+42≠62,∴这组数不是勾股数;D、∵62+82=102,∴这组数是勾股数.故选:D.4.解:①b2=c2﹣a2,可以变形为b2+a2=c2,是直角三角形;②∵a:b:c=3:4:5,∴设a=3x,b=4x,c=5x,∵(3x)2+(4x)2=(5x)2,∴a2+b2=c2,∴是直角三角形;③∵∠C=∠A﹣∠B,∴∠C+∠B=∠A,∵∠C+∠B+∠A=180°,∴∠A=90°,∴是直角三角形;④∵∠A:∠B:∠C=12:13:15,∴设∠A=×180°≠90°∴不是直角三角形;则直角三角形有3个,故选:C.5.解:在△ABC中AC=24,AB=25,BC=7,∵242+72=625=252,即AC2+BC2=AB2,∴△ABC为直角三角形,∴∠ACB=90°.过点C作CM∥EF交AB于点M,则CM∥BD,如图所示.∵CM∥EF,∠EFC=136°,∴∠MCF=180°﹣∠EFC=44°,∴∠BCM=∠ACB﹣∠MCF=46°.又∵CM∥BD,∴∠CBD=∠BCM=46°.故选:C.6.解:过点B作BC⊥AD于C,从图中可以看出AC=4﹣2+0.5=2.5(m),BC=4.5+1.5=6(m),在直角△ABC中,AB为斜边,则AB==6.5(m).答:从点A到点B之间的距离是6.5m,故选:D.7.解:过O作OE⊥AC于E,OF⊥BC于F,OD⊥AB于D,在△ABC中,BC=4,CA=3,AB=5,∴△ABC是直角三角形,∵点O为△ABC的三条角平分线的交点,∴OE=OF=OD,设OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴×4×3=OD×5+OE×3+OF×4,∴5x+3x+4x=12,∴x=1,∴点O到BC的距离等于1.即△BOC的BC边上的高是1,故选:A.8.解:设筷子露在杯子外面的长度为h,当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===20(cm),故h=24﹣20=4(cm).故筷子露在杯子外面的最短长度为4cm.故答案为:4.9.解:连接BC,由勾股定理得:OC2=12+22=5,OB2=12+32=10,BC2=12+22,∴OC=BC,OC2+BC2=OB2,∴∠OCB=90°,即△COB是等腰直角三角形,∴∠COB=45°,∵∠DOA=90°,∴∠AOB+∠COD=∠DOA﹣∠COB=45°,故答案为:45.10.解:设旗杆的高度为x米,根据题意可得:(x+1)2=x2+52,解得:x=12,答:旗杆的高度为12米.故答案为:12米.11.解:设竹子折断处离地面x尺,则斜边为(9﹣x)尺,根据勾股定理得:x2+32=(9﹣x)2.解得:x=4,答:折断处离地面的高度为4尺.故答案为:=4.12.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故答案是:13.13.解:由勾股定理得AB===12(m),则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×20=680(元).故答案为:680.14.解:由题意可得,(m+1)2+122=(m+5)2,解得m=15.故答案为:15.15.解:∵n<150,(n+1)2﹣n2=2n+1,又∵149+150=299,大于等于9小于297的非偶数完全平方数有9,25,49,81,121,169,225,289,一共8个,∴共有8组这样的“完美勾股数”.故答案为:8.16.解:如图,由题意知:盒子底面对角长为=5(cm),盒子的对角线长:=13(cm),∵细木棒长16cm,∴细木棒露在盒外面的最短长度是:16﹣13=3cm.故答案为:3cm.17.解:如图所示,AB,CD为树,且AB=13米,CD=8米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12AE=AB﹣CD=5,在直角三角形AEC中,斜边长AC==13米,即小鸟至少要飞13米.故答案为13.18.解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△ECD(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.19.解:依照题意画出图形,如图所示.在Rt△AOB中,OB=3m,AB=5m,∴OA==4m.在Rt△COD中,OC=OA﹣AC=3m,CD=AB=5m,∴OD==4m,∴BD=OD﹣OB=4﹣3=1m.故答案为:1m.20.解:(1)在Rt△EDC中,∠EDC=90°,DC=6m,CE=10m,∴m;(2)如图,连接BE,在Rt△EBD中,BD=14m,ED=8m,∴BE2=BD2+ED2=142+82=260,∵AB=16m,AE=2m,∴AB2+AE2=162+22=260,∴AB2+AE2=BE2,∴△ABE是直角三角形,∠A=90°,∴S△ABE=×16×2=16(m2).又∵S△BDE=×14×8=56(m2).∴四边形ABDE的面积=S△ABE+S△BDE=72(m2).21.解:(1)a2+b2>c2,理由如下:过点A作AD⊥BC于D,设CD=x,则BD=a﹣x,由勾股定理得,b2﹣x2=AD2,c2﹣(a﹣x)2=AD2,∴b2﹣x2=c2﹣(a﹣x)2,整理得:a2+b2=c2+2ax,∵2ax>0,∴a2+b2>c2;(2)a2+b2<c2,理由如下:作AE⊥BC交BC的延长线于E,设CE=x,则c2﹣(a+x)2=AE2=b2﹣x2,整理得:a2+b2=c2﹣2ax,∵2ax>0,∴a2+b2<c2;(3)连接AC,作DF⊥AC于F,由勾股定理得,AC==100,由(1)可知,AD2﹣AF2=DC2﹣CF2,即1102﹣(100﹣CF)2=902﹣CF2,解得,CF=30,则DF==60,∴这块试验田的面积=×60×80+×100×60=(2400+3000)米222.(1)证明:∵∠ACB=90°,BC=12米,AB=13米,∴AC===5(米),∵CD=3米,AD=4米,∴AD2+CD2=AC2=25,∴∠ADC=90°;(2)解:图中阴影部分土地的面积=A×BC﹣AD×CD=×5×12﹣×4×3=24(平方米).23.解:设水深x尺,则芦苇长(x+1)尺.由题意得x2+52=(x+1)2.解得x=12.∴x+1=13.答:水深12尺;芦苇长13尺.24.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴CH⊥AB,所以CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,1.25﹣1.2=0.05(千米)答:新路CH比原路CA少0.05千米.25.解:设AE=xkm,则BE=(80﹣x)km,∵AD⊥AB,BC⊥AB,∴△ADE和△BCE都是直角三角形,∴DE2=AD2+AE2,CE2=BE2+BC2,又∵AD=50,BC=30,DE=CE,∴502+x2=(80﹣x)2+302,解得x=30.答:5G信号塔E应该建在离A乡镇30千米的地方.26.解:(1)△ABC为直角三角形,理由:由图可知,,BC=,AB==5,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.27.证明:(1)∵AD是边BC上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),(2)∵△ABD≌△ECD,∴AB=CE=5,∵AE=AD+ED=12,AC=13,CE=5,∴AE2+CE2=AC2,∴△ACE是直角三角形,∴△ABC的面积=△ACE的面积=×5×12=30,∴△ABD的面积=△ABC的面积=15。

人教版八年级下册数学 17.2 勾股定理的逆定理 同步练习(含答案)

人教版八年级下册数学 17.2 勾股定理的逆定理 同步练习(含答案)

17.2 勾股定理的逆定理同步练习1.下列说法正确的是( )A.每个定理都有逆定理B.每个命题都有逆命题C.原命题是假命题,则它的逆命题也是假命题D.真命题的逆命题是真命题2.已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等.其中原命题与逆命题均为真命题的个数是( )A.0B.1C.2D.33.下列定理中,没有逆定理的是( )A.直角三角形的两锐角互余B.若三角形三边长a,b,c(其中a<c,b<c)满足a2+b2=c2,则该三角形是直角三角形C.全等三角形的对应角相等D.互为相反数的两数之和为04.下列长度的三条线段能组成直角三角形的是( )A.3,4,4B.3,4,5C.3,4,6D.3,4,75.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则( )A.∠A为直角B.∠B为直角C.∠C为直角D.△ABC不是直角三角形6.五根小木棒,其长度(单位:cm)分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是( )7.如图,每个小正方形的边长均为1,A,B,C是小正方形的顶点,则∠ABC的度数为( )A.90°B.60°C.45°D.30°8.△ABC的三边长分别为a、b、c,下列条件:①∠A=∠B-∠C;②∠A∶∠B∶∠C=3∶4∶5;③a2=(b+c)(b-c);④a∶b∶c=5∶12∶13,其中能判定△ABC是直角三角形的有( )9.下面几组数中,为勾股数的一组是( )A.4,5,6B.12,16,20C.-10,24,26D.2.4,4.5,5.110.下列几组数:①9,12,15;②8,15,17;③7,24,25;④n2-1,2n,n2+1(n是大于1的整数),其中是勾股数的有( )A.1组B.2组C.3组D.4组11.给出下列命题:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是一组勾股数;②如果直角三角形的两边长分别是3和4,那么另一边长的平方必为25;③如果一个三角形的三边长分别是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边长分别是a,b,c,其中a是斜边长,那么a2∶b2∶c2=2∶1∶1.其中正确的是( )A.①②B.①③C.①④D.②④12.下列各组数能构成勾股数的是.(填序号)①6,8,10; ②7,8,10; ③,,1.13.如图,每个小方格都是边长为1的正方形,(1)求四边形ABCD的面积;(2)求∠ABC的度数.14.如图,已知△ABC中,AB=8,BC=10,AC=6.(1)判断△ABC是什么三角形;(2)用尺规作出边BC的垂直平分线,交BC于点D,交AB于点E;(不写作法,保留作图痕迹)(3)连接CE,求CE的长.15.观察下列勾股数:①3,4,5,且32=4+5;②5,12,13,且52=12+13;③7,24,25,且72=24+25;④9,b,c,且92=b+c;…(1)请你根据上述规律,并结合相关知识可得:b= ,c= ;(2)猜想第n组勾股数(n为正整数),并证明你的猜想.16.如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数.参考答案1.【答案】B2.【答案】A解:试题分析:①若a>b,则ac>bc是假命题,逆命题:若ac>bc,则a>b 也是假命题;②若a=1,则=a是真命题,逆命题:若=a,则a=1是假命题;③内错角相等是假命题,逆命题:相等的角是内错角也是假命题;故选A.3.【答案】C4.【答案】C5.【答案】A解:∵(a+b)(a-b)=c2,∴a2-b2=c2,即c2+b2=a2,故此三角形是直角三角形,a为直角三角形的斜边,∴∠A为直角.故选A.6.【答案】C7.【答案】C解:连接AC,根据勾股定理可以得到AC2=BC2=5,AB2=10.即AC2+BC2=AB2,所以△ABC是等腰直角三角形.所以∠ABC=45°.故选C.8.【答案】C解:①中,∵∠A=∠B-∠C,∠A+∠B+∠C=180°,∴∠B=90°,∴△ABC是直角三角形;②中,由∠A∶∠B∶∠C=3∶4∶5得△ABC中最大角∠C=180°×=75°,则△ABC为锐角三角形;③中,a2=(b+c)(b-c)=b2-c2,即a2+c2=b2,所以△ABC是直角三角形;④中,因为a∶b∶c=5∶12∶13,所以a2+b2=c2,故△ABC是直角三角形,故选C.9.【答案】B解:A中虽然4,5,6均为正整数,但42+52≠62;C中虽然(-10)2+242=262,但-10<0;D 中虽然满足2.42+4.52=5.12,但不是整数.方法总结:勾股数的特征:勾股数为三个正整数,且满足两个较小数的平方和等于最大数的平方.常见的勾股数有:3,4,5;5,12,13;8,15,17;9,40,41.记住常见的勾股数可以提高做题速度. 10.【答案】D 11.【答案】C12.【答案】①易错总结:首先要注意到勾股数必须是一组正整数,其次要满足两个较小数的平方和等于最大数的平方.本题易误认为③也是勾股数.13.解:(1)S四边形ABCD =S△ABC+S△ACD=×5×2+×5×3=.(2)因为AB2=22+42=20,BC2=12+22=5,AC2=52=25,所以AB2+BC2=AC2.所以∠ABC=90°.14.解:(1)因为AB=8,BC=10,AC=6,102=82+62,所以BC2=AB2+AC2,所以△ABC是直角三角形.(2)如图所示.(3)如图,设CE=x,因为DE垂直平分BC,所以BE=CE=x,在Rt△ACE中,可得:CE2=AE2+AC2,即:x2=(8-x)2+62,解得:x=6.25.所以CE的长为6.25.15.解:(1)40;41(2)猜想第n组勾股数为2n+1,2n2+2n,2n2+2n+1.证明如下:因为(2n+1)2+(2n2+2n)2=4n4+8n3+8n2+4n+1,(2n2+2n+1)2=4n4+8n3+8n2+4n+1,所以(2n+1)2+(2n2+2n)2=(2n2+2n+1)2.因为n是正整数,所以2n+1,2n2+2n,2n2+2n+1是一组勾股数.16.解:如图,将△CPB绕点C顺时针旋转90°,得△CP'A,则P'C=PC=2,P'A=PB=1,连接PP'.∵∠PCP'=90°,∴PP'2=22+22=8.又P'A=1,PA=3,而PP'2+P'A2=8+1=9,PA2=9,∴PP'2+P'A2=PA2.∴∠AP'P=90°,又∠CP'P=45°.∴∠BPC=∠CP'A=135°.。

人教版八年级下册数学勾股定理的逆定理同步练习解析版

人教版八年级下册数学勾股定理的逆定理同步练习解析版

17.2勾股定理的逆定理同步练习参考答案与试题解析一.选择题(共10小题)1.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形 B.锐角三角形C.钝角三角形 D.以上答案都不对选A2.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则()A.∠A为直角 B.∠C为直角C.∠B为直角 D.不是直角三角形解:∵(a+b)(a﹣b)=c2,∴a2﹣b2=c2,即c2+b2=a2,故此三角形是直角三角形,a为直角三角形的斜边,∴∠A为直角.故选A.3.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50° B.60° C.70° D.80°解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°,故选C.4.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个 B.2个 C.3个 D.4个解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC 是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选:C.5.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的顶端B下降至B′,那么BB′()A.小于1m B.大于1m C.等于1m D.小于或等于1m解:在直角三角形AOB中,因为OA=2,OB=7由勾股定理得:AB=,由题意可知AB=A′B′=,又OA′=3,根据勾股定理得:OB′=,∴BB′=7﹣<1.故选A.6.下列各组数中不是勾股数的是()A.3,4,5 B.4,5,6 C.5,12,13 D.6,8,10 解:A、∵32+42=52,∴以3、4、5为边能组成直角三角形,即3、4、5是勾股数,故本选项错误;B、∵42+52≠62,∴以4、5、6为边不能组成直角三角形,即4、5、6不是勾股数,故本选项正确;C、∵52+122=132,∴以5、12、13为边能组成直角三角形,即5、12、13是勾股数,故本选项错误;D、∵62+82=102,∴以6、8、10为边能组成直角三角形,即6、8、10是勾股数,故本选项错误;故选B.7.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13m,所以旗杆折断之前高度为13m+5m=18m.故选D.8.如图,有两棵树,一棵树高8m,另一棵树高3m,两树相距12m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.12m B.14m C.13m D.15m解:如图,过点A作AB⊥BC于点B,连接AC,∵一棵树高8m,另一棵树高3m,两树相距12m,∴AB=12m,BC=8﹣3=5m,∴AC==13m.故选C.9.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多米?()A.4 B.8 C.9 D.7解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是3+4=7米.故选D.10.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5 B. C.5或 D.5或6解:分两种情况:当c为斜边时,c==5;当长4的边为斜边时,c==(根据勾股定理列出算式).故选C.二.填空题(共4小题)11.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于96 .解:连接AC,在Rt△ACD中,AD=8,CD=6,∴AC===10,在△ABC中,∵AC2+BC2=102+242=262=AB2,∴△ABC为直角三角形;∴图形面积为:S△ABC﹣S△ACD=×10×24﹣×6×8=96.故答案为:96.12.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm .解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.13.我们把符合等式a2+b2=c2的a、b、c三个称为勾股数.现请你用计算器验证下列各组的数是否勾股数.你能发现其中规律吗?请完成下列空格.3,4,5;5,12,13;7,24,25;9,40,41;11,60 ,61 ;…解:先用计算机验证是勾股数;通过观察得到:这组勾股数用n表示为:2n+1,2n2+2n,2n2+2n+1,11是第5组勾股数的第一个小数,所以其它2个数为:2×52+2×5=60,2×52+2×5+1=61,故答案为:60、61.14.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍能放入(填“能”或“不能”).解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案是:能.三.解答题(共6小题)15.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;(2)∵a=,b=5,c=4,∴a+b=+5>4,∴以a、b、c为边能构成三角形,∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形,∴S△==.16.已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2,①求证:∠A=90°.②若DE=3,BD=4,求AE的长.(1)证明:连接CE,如图,∵D是BC的中点,DE⊥BC,∴CE=BE…(2分)∵BE2﹣EA2=AC2,∴CE2﹣EA2=AC2,∴EA2+AC2=CE2,∴△ACE是直角三角形,即∠A=90°;(2)解:∵DE=3,BD=4,∴BE==5=CE,∴AC2=EC2﹣AE2=25﹣EA2,∵BC=2BD=8,∴在Rt△BAC中由勾股定理可得:BC2﹣BA2=64﹣(5+EA)2=AC2,∴64﹣(5+AE)2=25﹣EA2,解得AE=.17.我们把满足方程x2+y2=z2的正整数的解(x、y、z)叫做勾股数,如,(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:( 6 、8 、10 ),(9 、12 、15 );(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2﹣1,z=n2+1,那么以x,y,z为三边的三角形为直径三角形(即x,y,z为勾股数),请你加以证明.解:(1)写出两组勾股数:( 6,8,10),( 9,12,15).(2)证明:x2+y2=(2n)2+(n2﹣1)2=4n2+n4﹣2n2+1=n4+2n2+1=(n2+1)2=z2,即x,y,z为勾股数.故答案为:6,8,10;9,12,15.18.如图所示,在△ABC中,AC=8cm,BC=6cm;在△ABE中,DE为AB边上的高,DE=12cm,△ABE的面积S=60cm2.(1)求出AB边的长;(2)你能求出∠C的度数吗?请试一试.解:(1)∵DE=12,S△ABE=DE•AB=60,∴AB=10;(2)∵AC=8,BC=6,62+82=102,∴AC2+BC2=AB2,由勾股定理逆定理得∠C=90°.19.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB==12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD===(米),∴BD=AB﹣AD=12﹣(米),答:船向岸边移动了(12﹣)米.20.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,∵AD⊥BC,∴BD=CD=BC,在Rt△ABD中,BD===30m,∴BC=60m,∵重型运输卡车的速度为18千米/时=300米/分钟,∴重型运输卡车经过BC的时间=60÷300=0.2分钟=12秒,答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

人教版数学八年级下册17.2 勾股定理的逆定理同步练习(解析版)

人教版数学八年级下册17.2  勾股定理的逆定理同步练习(解析版)

17.2 勾股定理的逆定理1.下列命题的逆命题是真命题的是 ( )A .对顶角相等B .正方形的四个角都是直角C .两直线平行,同位角相等D .菱形的对角线互相垂直 2.下列定理有逆定理的是 ( )A .直角都相等B .同旁内角互补,两直线平行C .同位角相等D .全等三角形的对应角相等3.下列各组数是三角形的三边长,不能组成直角三角形的一组数是 ( )A .3,4,5B .6,8,10C .1.5,2,2.5D .543,,4.若一个三角形的三边长之比为8:15:17,则它为________三角形.5.如图17-2-1.以△ABC 的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为________.6.如图17-2-2,四边形ABCD 中,∠C=90º,BD 平分∠ABC ,AD=3,E 为AB 上一点,AE=4,ED=5,求CD 的长.7.下列四组数:(1)0.6,0.8,1;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中勾股数的组数为 ( )A .1B .2C .3D .4能力提升全练1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC是直角三角形的是 ( )A .∠A =∠C-∠B B .a:b:c=2:3:4C .a ²=b ²-c ²D .a=34,b=45,c=12.如图17-2-3,四边形ABCD 中,AB=4 cm,BC=3 cm,CD=12 cm, DA=13 cm ,且∠ABC=90º,则四边形ABCD 的面积为( )A .6 cm²B .30 cm²C .24 cm²D .36 cm² 3.阅读以下解题过程:已知a ,b ,c 为△ABC 的三边长,且满足a ²c ²-b ²c ²=a ⁴-b ⁴,试判断△ABC 的形状. 解:∵a ²c ²-b ²c ²=a ⁴-b ⁴,①∴c²(a²-b²)=(a²-b²)(a²+b²),②∴c²=a²+b².③∴△ABC为直角三角形,④(1)上述解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是________________________________________________________;(3)本题正确的结论是____________________________________________________. 三年模拟全练一、选择题1.F列四组线段中,可以构成直角三角形的是 ( )A.1.5,2,2.5 B.4,5,6C.2,3,4 D.1,2,32.下列各组数中,是勾股数的为 ( )A.1,1,2 B.1.5,2,2.5C.7,24,25 D.6,12,133.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A.乙客轮用20分钟到达点B,若A、B两点的直线距离为1000 m,甲客轮沿着北偏东30º的方向航行,则乙客轮的航行方向可能是 ( )A.南偏东60º B.南偏西60º C.北偏西30º D.南偏西30º二、填空题4.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是_________.三、解答题5.如图17-2-4,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?五年中考模拟一、选择题1.下列长度的三条线段能组成直角三角形的是 ( )A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 2.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米二、填空题3.如图17-2-5,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.则∠ACB 的大小为_______.核心素养全练1.王老师在一次“探究性学习”课中设计了如下数表:(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示a 、b 、c ;(2)猜想:以a 、b 、c 为边长的三角形是不是直角三角形,请证明你的猜想.2.如图17-2-6,南北线MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇曰密切注意,反走私艇A和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?3.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形, 理解:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?________(填“是”或“不是”);②若某三角形的三边长分别为1、7、2,则该三角形________(填“是”或“不是”)奇异三角形. 探究:在Rt △ABC 中,两边长分别是a 、c ,且a ²=50,c ²=100,则这个三角形是不是奇异三角形?请说明理由, 拓展:在Rt△ABC中,∠C=90º,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a²:b²:c².17.2 勾股定理的逆定理1.C“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是平行线判定定理,所以逆命题是真命题.2.B“直角都相等”的逆命题是“相等的角是直角”,选项A错误;“同旁内角互补,两直线平行”的逆命题是“两直线平行,同旁内角互补”,选项B正确;“同位角相等”的逆命题是“相等的角是同位角”,选项C错误;“全等三角形的对应角相等”的逆命题是“角对应相等的三角形是全等三角形”,选项D错误,故选B.3.D ∵3²+4²=5²,∴此三角形是直角三角形,选项A不合题意;∵6²+8²=10²,∴此三角形是直角三角形,选项B不合题意;∵1.5²+2²=2.5²,∴此三角形是直角三角形,选项C不合题意;()()()222543≠+,∴此三角形不是直角三角形,选项D符合题意,故选D.4.答案直角解析设三边长分别为8k,15k,17k( k>0),则(8k)²+(15k)²=289k²=(17k)²,由勾股定理的逆定理,可判断此三角形为直角三角形.5.答案直角三角形解析由题意得S₁+S₂=S₃,即222212121212121⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅+⎪⎭⎫⎝⎛ABACBCπππ,∴BC²+AC²=AB²,∴△ABC为直角三角形.6.解析∵AD=3,AE=4,ED=5,∴AD²+AE²=ED².∴∠A=90º,∴DA⊥AB.∵∠C=90º,∴DC⊥BC.∵BD平分∠A BC,∴CD=AD=3.7.B(1)中各数不全是正整数;(2)中5²+12²=13²;(3)中8²+15²=17²;(4)中4²+5²≠6².故有2组勾股数.1.B A.由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180º,可求得∠C=90º,故△ABC 为直角三角形;B.不妨设a=2,b=3,c=4,此时a²+b²=13,而c²=16,即a²+b²≠c²,故△ABC 不是直角三角形;C .由条件可得到a ²+c ²=b ²,满足勾股定理的逆定理,故△ABC 是直角三角形;D .由条件有a ²+c ²=2222451625143b =⎪⎭⎫ ⎝⎛==+⎪⎭⎫ ⎝⎛,满足勾股定理的逆定理,故△ABC 是直角三角形.故选B . 2.C 连接 AC, ∵∠A BC=90º,AB=4 cm,BC=3 cm,∴AC=5 cm,∵CD=12 cm,DA=13 cm,AC ²+CD ²=5²+12²=169=13²=DA ²,∴△ADC 为直角三角形,∴S 四边形ABCD =S △ACD - S △ABC=21AC •CD-21AB •BC =21×5×12-21×4×3=30-6=24(cm ²).故四边形ABCD 的面积为24 cm ².故选C .3.答案 (1)③ (2)不能确定a ²-b ²是不是0 (3)△ABC 是等腰三角形或直角三角形解析 ∵c ²(a ²-b ²)=(a ²-b ²)(a ²+b ²),∴(a ²-b ²)[c ²-(a ²+b ²)]=0,∴a ²-b ²=0或c ²-(a ²+b ²)=0,即a=b 或a ²+b ²=c ²,∴三角形为等腰三角形或直角三角形,故从第③步开始错误,其原因是不能确定a ²-b ²是不是0. 一、选择题1.A 根据勾股定理的逆定理判断,求出两短边的平方和与最长边的平方,判断是否相等即可.1.5²+2²=2.5².即三角形是直角三角形,故此选项正确.故选A . 2.C A ∵1²+1²≠2²,∴不是勾股数,此选项错误; B .1.5和2.5不是正整数,此选项错误;C .∴7²+24²=25²,且7,24,25是正整数,∴是勾股数,此选项正确;D .∵6²+12²≠13²,∴不是勾股数,此选项错误,故选C .3.A 如图,∵甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m).∵A 、B 两点间的直线距离为1000 m ,又∵600²+800²=1000²,∴∠A OB=90º, ∵甲客轮沿着北偏东30º的方向航行, ∴乙客轮沿着南偏东60º的方向航行,故选A .二、填空题4.答案 直角三角形解析化简(a+b )²=c ²+2ab ,得a ²+b ²=c ²,所以该三角形是直角三角形. 三、解答题5·解析(1)四边形ABCD 的面积为25-1-21×1×5-21×1×4-21×1×2-21×2×4=14.5, 周长为AB+BC+CD+AD=2617532026175++=+++.(2)∠D AB 是直角.理由如下:连接BD ,∴AB ²+AD ²=5+20=25,BD ²=25.∴AB ²+AD ²=BD ². ∴△ABD 是直角三角形,且∠D AB 是直角. 一、选择题1.A 根据勾股定理的逆定理,能组成直角三角形的三边长必须满足两条较短边的平方和等于最长边的平方.∵3²+4²=5²,∴长为3,4,5的三条线段能组成直角三角形.故选A .2.A 将里换算成以米为单位,则三角形沙田的三边长分别为2.5千米.6千米,6.5千米,因为2.5²+6²=6.5²,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=21×6×2.5=7.5(平方千米),故选A . 二、填空题 3.答案 90º解析在网格中,由勾股定理得AC=183322=+,BC=324422=+.AB=507122=+, ∴AC ²+BC ²=AB ².∴由勾股定理的逆定理,知△ABC 为直角三角形,且∠A CB=90º. 1.解析(1)由题表可以得出: n=2时.a=2²-1,b=2×2,c=2²+1;n=3时,a=3²-1,b=2×3,c=3²+1; n=4时,a=4²-1,b=2×4,c=4²+1; ……∴a=n ²-1,b=2n ,c=n ²+1(n >1,且n 为自然数). (2)以a 、b 、c 为边长的三角形是直角三角形, 证明:∵a ²+b ²=(n ²-1)²+4n ²=n ⁴+2n ²+1, c ²=(n ²+1)²=n ⁴+2n ²+1, ∴a ²+b 2=c 2.∴以a 、b 、c 为边长的三角形是直角三角形. 2.解析 设MN 与AC 相交于E ,则∠B EC=90º, ∴AB ²+BC ²=5²+12²=13²=AC ².∴△ABC 为直角三角形,且∠A BC=90。

八年级数学《勾股定理的逆定理》练习题含答案

八年级数学《勾股定理的逆定理》练习题含答案

八年级数学《勾股定理的逆定理》练习题一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26 (D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由.17.已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.勾股定理的逆定理1.直角,逆定理.2.互逆命题,逆命题.3.(1)(2)(3).4.①锐角;②直角;③钝角.5.90°.6.直角.7.24.提示:7<a<9,∴a=8.8.13,直角三角形.提示:7<c<17.9.D.10.C.11.C.112.CD=9.13..514.提示:连结AE,设正方形的边长为4a,计算得出AF,EF,AE的长,由AF2+EF2=AE2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a-5)2+(b-12)2+(c-13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.18.352+122=372,[(n+1)2-1]2+[2(n+1)]2=[(n+1)2+1]2.(n≥1且n为整数)。

2020-2021学年人教版八年级下册数学17.2勾股定理的逆定理 同步习题

2020-2021学年人教版八年级下册数学17.2勾股定理的逆定理 同步习题

17.2勾股定理的逆定理同步习题一.选择题1.下列长度的三条线段,能组成直角三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,12,132.在△ABC中,∠A、∠B、∠C的对边分别是a,b,c.下列条件中,不能说明△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠C=∠A﹣∠BC.b2=a2﹣c2D.a:b:c=5:12:133.为了打造“绿洲”,计划在市内一块如图所示的三角形空地上种植某种草皮,已知AB=10米,BC=15米,∠B=150°,这种草皮每平方米售价2a元,则购买这种草皮需()元.A.75a B.50a C.a D.150a4.在下列四个条件:①AB2+BC2=AC2,②∠A=90°﹣∠B,③∠A=∠B=∠C,④∠A:∠B:∠C=5:3:2中,能确定△ABC是直角三角形的条件有()A.①③B.①②③C.①②④D.①②③④5.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形6.如图,已知△ABC中AC=24,AB=25,BC=7,AB上取一点E,AC上取一点F使得∠EFC=136°,过点B作BD∥EF,则∠CBD等于()A.44°B.56°C.46°D.68°7.如图,在边长为1的正方形方格中,A,B,C,D均为格点,构成图中三条线段AB,BC,CD.现在取出这三条线段AB,BC,CD首尾相连拼三角形.下列判断正确的是()A.能拼成一个直角三角形B.能拼成一个锐角三角形C.能拼成一个钝角三角形D.不能拼成三角形8.下列三角形中,是直角三角形的是()A.三角形的三边a,b,c满足关系a+b>cB.三角形的三边长分别为32,42,52C.三角形的一边等于另一边的一半D.三角形的三边长为20,15,259.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的点C有()个.A.2个B.3个C.4个D.5个10.如图,在△ABC中,AC=8,BC=6,AB=10,P为边AB上一动点,PD⊥AC于D,PE⊥BC于E,则DE的最小值为()A.3.6B.4.8C.5D.5.2二.填空题11.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是.12.在△ABC中,AB=c,AC=b,BC=a,当a、b、c满足时,∠B=90°.13.如图,在5×3的正方形网格中,△ABC的顶点均在格点上,则∠ABC+∠ACB=.14.如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD的面积为.15.△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中能判定是直角三角形的是.(填写序号)(1)a:b:c=5:12:13,(2)a=1.5,b=2.5,c=2,(3)(a﹣b)2+2ab=c2,(4)∠A:∠B:∠C=3:4:5,(5)a=n2﹣1,b=2n,c=n2+1(n为大于1的正整数)三.解答题16.如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.17.如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)连接BC,求BC的长;(2)判断△BCD的形状,并说明理由.18.阅读下列一段文字,然后回答下列问题.已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点间的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=丨x1﹣x2丨或丨y1﹣y2丨.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于x轴的同一条直线上,点A的横坐标为5,点B的横坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC 的形状吗?请说明理由.参考答案一.选择题1.解:A、32+42≠82,不能构成直角三角形,故本选项不符合题意;B、52+62≠102,不能构成直角三角形,故本选项不符合题意;C、52+52≠112,不能构成直角三角形,故本选项不符合题意;D、52+122=132,能构成直角三角形,故本选项符合题意.故选:D.2.解:A、∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,所以∠C=180°×=75°≠90°,故△ABC不是直角三角形;B、因为∠C=∠A﹣∠B,即∠A=∠B+∠C,且∠A+∠B+∠C=180°,所以2∠A=180°,解得∠A=90°,故△ABC是直角三角形;C、因为b2=a2﹣c2,所以a2=b2+c2,故△ABC是直角三角形;D、因为a:b:c=5:12:13,设a=5x,b=12x,c=13x,(5x)2+(12x)2=(13x)2,故△ABC是直角三角形.故选:A.3.解:如图,作BA边的高CD,设与AB的延长线交于点D,∵∠ABC=150°,∴∠DBC=30°,∵CD⊥BD,BC=15米,∴CD=7.5米,∵AB=10米,∴S△ABC=AB×CD=×10×7.5=37.5(平方米),∵每平方米售价2a元,∴购买这种草皮至少为37.5×2a=75a(元),故选:A.4.解:①∵AB2+BC2=AC2,∴∠B=90°,∴△ABC是直角三角形;②∵∠A=90°﹣∠B,∴∠A+∠B=90°,∴∠C=90°,∴△ABC是直角三角形;③∵∠A=∠B=∠C,∴∠C=180°=90°,∴△ABC是直角三角形;④∵∠A:∠B:∠C=5:3:2,∴∠A=180°×=90°,∴△ABC为直角三角形.∴能确定△ABC是直角三角形的有①②③④共4个,故选:D.5.解:如果∠A﹣∠B=∠C,那么△ABC是直角三角形,A正确;如果a2=b2﹣c2,那么△ABC是直角三角形且∠B=90°,B错误;如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=2x,∠C=3x,则x+3x+2x=180°,解得,x=30°,则3x=90°,那么△ABC是直角三角形,C正确;如果a2:b2:c2=9:16:25,则如果a2+b2=c2,那么△ABC是直角三角形,D正确;故选:B.6.解:在△ABC中AC=24,AB=25,BC=7,∵242+72=625=252,即AC2+BC2=AB2,∴△ABC为直角三角形,∴∠ACB=90°.过点C作CM∥EF交AB于点M,则CM∥BD,如图所示.∵CM∥EF,∠EFC=136°,∴∠MCF=180°﹣∠EFC=44°,∴∠BCM=∠ACB﹣∠MCF=46°.又∵CM∥BD,∴∠CBD=∠BCM=46°.故选:C.7.解:由网格图可得:AB2=22+32=4+9=13,CB2=22+12=4+1=5,CD2=22+22=4+4=8,∴CB2+CD2=5+8=13=AB2,∴线段AB,BC,CD首尾相连拼成的三角形是直角三角形,故选:A.8.解:A、三角形的三边满足关系a+b>c,不符合勾股定理的逆定理,故本选项不符合题意;B、∵(32)2+(42)2≠(52)2,∴此三角形不是直角三角形,故本选项不符合题意;C、三角形的一边等于另一边的一半无法判断三角形的形状,故本选项不符合题意;D、∵152+202=252,∴此三角形是直角三角形,故本选项符合题意.故选:D.9.解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形.故选:C.10.解:∵△ABC中,∠C=90°,AC=8,BC=6,AB=10,82+62=102,∴△ABC是直角三角形,∠C=90°,连接CP,∵PD⊥AC于D,PE⊥CB于E,∴四边形DPEC是矩形,∴DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,∴DE=CP==4.8,故选:B.二.填空题11.解:设三角形的三边是3x:4x:5x,∵(3x)2+(4x)2=(5x)2,∴此三角形是直角三角形,∵它的周长是36,∴3x+4x+5x=36,∴3x=9,4x=12,∴三角形的面积=×9×12=54,故答案为:54.12.解:∵a2+c2=b2时,△ABC是以AC为斜边的直角三角形,∴当a、b、c满足a2+c2=b2时,∠B=90°.故答案为:a2+c2=b2.13.解:方法一:如图,取格点D,连接AD、CD,根据网格和勾股定理,得AD=DC==,AC==,∴AD2+DC2=AC2,∴∠ADC=90°,∴∠DAC=45°.∴∠DAC=∠ABC+∠ACB=45°.故答案为:45°.方法二:如图,取格点D,连接BD,根据网格和勾股定理,得AB==,AC==,BC=5,在△ABD中,AD=1,BD==,AB=,∵=,==,==,∴==,∴△ABC∽△DAB,∴∠BAC=∠ADB=180°﹣45°=135°,∴∠ABC+∠ACB=180°﹣135°=45°.故答案为:45°.14.解:如图,连接BD,∵在Rt△ABD中,AB⊥AD,AB=3,AD=4,根据勾股定理得,BD=5,在△BCD中,BC=12,CD=13,BD=5,∴BC2+BD2=122+52=132=CD2,∴△BCD为直角三角形,∴S四边形ABCD=S△ABD+S△BCD=AB•AD+BC•BD=×3×4+×12×5=36.故答案为:36.15.解:(1)(5x)2+(12x)2=(13x)2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;(2)(1.5)2+(2)2=(2.5)2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;(3)由(a﹣b)2+2ab=c2,可得:a2+b2=c2,符合勾股定理的逆定理,能够判断△ABC 是直角三角形,符合题意;(4)∠A:∠B:∠C=3:4:5,此时∠C=100°,不能够判断△ABC是直角三角形,不符合题意;(5)(n2﹣1)2+(2n)2=(n2+1)2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;故答案为:(1)(2)(3)(5).三.解答题16.(1)证明:连接CD,∵BC的垂直平分线DE分别交AB、BC于点D、E,∴CD=DB,∵BD2﹣DA2=AC2,∴CD2﹣DA2=AC2,∴CD2=AD2+AC2,∴△ACD是直角三角形,且∠A=90°;(2)解:∵AB=8,AD:BD=3:5,∴AD=3,BD=5,∴DC=5,∴AC===4.17.解:(1)∵∠A=90°,∴BC===15;(2)△BCD是直角三角形,理由:∵BC2=152=225,BD2=82=64,CD2=172=289,∴BC2+BD2=CD2=289,∴△BCD是直角三角形.18.解:(1)AB==;(2)AB=丨5﹣(﹣1)丨=6;(3)△ABC是直角三角形理由:∵AB==,BC==5,AC==,∴AB2+AC2=()2+()2=25,BC2=52=25.∴AB2+AC2=BC2∴△ABC是直角三角形.。

2019-2020人教版八年级数学下册17.2勾股定理的逆定理同步课件(共32张)

2019-2020人教版八年级数学下册17.2勾股定理的逆定理同步课件(共32张)
第十七章 勾股定理
17.2 勾股定理的逆定理
第十七章 勾股定理
17.2 勾股定理的逆定理
考场对接
第十七章 勾股定理
考场对接
题型一 识别二次根式
例题 1 满足下列条件的△ABC 中, 不是直角三角形的是( D ).
A.b2=c2-a2
B.a∶b∶c=3∶4∶5
C.∠C=∠A-∠B
D.∠A∶∠B∶∠C=12∶13∶15
中,有 EF2=(a2)2+(a4)2=156a2, 在 Rt△ADF 中,有 AF2=(a2)2+a2=54a2,在 Rt△ABE
中,有
13 BE=a-4a=4a,
所以
AE2=a2+(34a)2=1265a2,所以
AF2+EF2=AE2,所以△AFE
为直角三角形, 且∠AFE=90°, 即 AF⊥EF.
谢 谢 观 看!
12=36.
第十七章 勾股定理
锦囊妙计 求不规则图形的面积
在求不规则图形的面积时, 关键是通过将其分割或拼接, 转化为求规则图形 的面积, 这是转化思想的具体应用.
第十七章 勾股定理
题型五 利用勾股定理的逆定理解决实际问题
例题 8 如图 17-2-7 所示, 甲、乙两船同时从 A 港出发, 甲船沿北 偏东 35°的方向, 以每小时 9 海里的速度向 B 岛驶去, 乙船沿另 一个方向, 以每小时 12 海里的速度向 C 岛驶去, 3 小时后两船同 时到达目的地. 如果两船航行的速度不变, 且 C, B 两岛相距 45 海里, 那么乙船航行的方向是南偏东多少度?
则△ABC 是( A ).
A.直角三角形 C.钝角三角形
B.锐角三角形 D.以上都不对

2018年春八年级数学下册 17.2 勾股定理的逆定理(第1课时)练习 (新版)新人教版

2018年春八年级数学下册 17.2 勾股定理的逆定理(第1课时)练习 (新版)新人教版

第十七章勾股定理17.2 勾股定理的逆定理(第1课时)基础导练1.下列各组数中,以它们为边的三角形不是直角三角形的是()A.1.5,2,3 B.7,24,25C.6,8,10 D.3,4,52.一个直角三角形,有两边长分别为6和8,下列说法正确的是()A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为103.下列命题中是假命题的是( )A.△ABC中,若∠B=∠C-∠A,则△ABC是直角三角形B.△ABC中,若a2=(b+c)(b-c) ,则△ABC是直角三角形C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则△ABC是直角三角形D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形4.若△ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则△ABC是 ( )A.等腰三角形 B.等边三角形C.等腰直角三角形 D.等腰三角形或直角三角形5.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里 B.30海里 C.35海里D.40海里北A 东南6. 在Rt △ABC 中,∠C=90°. (1)若a=5,b=12,则c= ;(2)b=8,c=17 ,则ABC S ∆= .7.已知甲、乙两人从同一处出发,甲往东走了12km ,乙往南走了5km ,这时甲、乙两人相距 千米.8. △ABC 中,若C B A ∠=∠=∠3121,AC=33,则∠A= °,AB= . 9.已知两条线段的长为5cm 和12c m,当第三条线段的长为 c m时,这三条线段能组成一个直角三角形.10. 在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=___________.能力提升11. 已知:如图,△ABC 中,∠C=90°,D 是AC 的中点,求证:AB 2+3BC 2=4BD 2.12.如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?A BC D L参考答案1.A 2.D 3.C 4.D 5.D6.13 60 7.13 8.90 391310.511.略12. 150万提示:两点之间线段最短.本文档仅供文库使用。

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.下列几组数据中,不能作为直角三角形的三条边的是()A.1,2,B.3,4,5C.1,,D.4,12,13 2.在△ABC中,若AB=3,BC=5,AC=,则下列说法正确的是()A.△ABC是锐角三角形B.△ABC是直角三角形且∠C=90°C.△ABC是钝角三角形D.△ABC是直角三角形且∠B=90°3.如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定4.下列各组数中,是勾股数的是()A.7,8,9B.6,8,10C.5,12,14D.3,4,65.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=45°6.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=2m.若梯子的顶端沿墙下滑0.5米,这时梯子的底端也恰好外移0.5米,则梯子的长度AB为()A.2.5m B.3m C.1.5m D.3.5m7.如图,在以下四个正方形网格中,各有一个三角形,不是直角三角形的是()A.B.C.D.8.如图,正方形网格中,每一小格的边长为1.网格内有△P AB,则∠P AB+∠PBA的度数是()A.30°B.45°C.50°D.60°二.填空题9.一个三角形的三边长为8cm、17cm、15cm,则其面积为cm2.10.如图,已知∠BAC=90°,BC=,AB=1,AD=CD=1,则∠BAD=.11.如图,长方体木箱的长、宽、高分别为12cm,4cm,3cm,则能放进木箱中的直木棒最长为cm.12.观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑤组勾股数为.13.如图,露在水面上的鱼线BC长为6m,钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8m,若BB'的长为2m,则钓鱼竿AC的长为m.14.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.15.如图是某公园的一角,有人为了抄近道而避开路的拐角∠ABC(∠ABC=90°),于是在草坪内走出了一条不该有的“捷径路AC”.已知AB=8米,BC=6米,他们踩坏了米的草坪,只为少走米的路.16.图是屋架设计图的一部分,点E、F分别为斜梁AB、AC的中点,D为横梁BC的中点,EM⊥BC于点M,FN⊥BC于点N,若AB=AC=6m,∠BAC=120°,则EM+AD+FN 等于m,四边形AEDC的周长为m.三.解答题17.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.18.为了绿化环境,我市某中学有一块四边形的=空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要300元,问总共需投入多少元?19.“某市道路交通管理条例”规定:小汽车在城市道路上行驶速度不得超过60千米/时,如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方24米的C处,过了1.5秒后到达B处(BC⊥AC),测得小汽车与车速检测仪间的距离AB为40米,判断这辆小汽车是否超速?若超速,则超速了多少?若没有超速,说明理由.20.如图,有一艘货船和一艘客船同时从港口A出发,客船与货船速度的比为4:3,出发1小时后,客船比货船多走了5海里.货船沿东偏南10°方向航行,2小时后货船到达B 处,客船到达C处,若此时两船相距50海里.(1)求两船的速度分别是多少?(2)求客船航行的方向.21.《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…;翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺)将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索OB的长度.22.位于沈阳的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,问此时游船移动的距离AD的长是多少?23.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海.上午9时50分,我国反走私艇A发现正东方有一走私艇C以16海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.(1)如图1,若反走私艇A和走私艇C的距离是10海里,A、B两艇的距离是6海里;反走私艇B测得距离C艇8海里,若走私艇C的速度不变,则再过多少小时它会进入我国领海?(2)如图2,若反走私艇A和走私艇C的距离是12海里,A、B两艇的距离是8海里,反走私艇B测得距离C艇10海里,发现走私艇C时,反走私艇B便立即沿领海线MN 对走私艇C进行拦截.若要使拦截成功,假设走私艇C的速度不变,那么反走私艇B的速度至少应为多少海里/时?(结果中若有根号,则保留根号).参考答案一.选择题1.解:A、12+()2=22,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、32+42=52,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、12+()2=()2,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、42+122≠132,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选:D.2.解:在△ABC中,AB=3,BC=5,AC=,∴AC2=34,AB2+BC2=9+25=34,∴AC2=AB2+BC2,∴△ABC是直角三角形,∠B=90°,故选:D.3.解:设原直角三角形的两直角边分别为a,b,斜边为c,则a2+b2=c2,∵三条边长同时扩大10倍为10a,10b,10c,∴(10a)2+(10b)2=100a2+100b2=100(a2+b2)=100c2,∴(10c)2=100c2,∴(10a)2+(10b)2=(10c)2,∴如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是直角三角形,故选:C.4.解:A、72+82≠92,故不是勾股数,故选项不符合题意;B、62+82=102,能构成直角三角形,都是整数,是勾股数,故选项符合题意;C、52+122≠142,故不是勾股数,故选项不符合题意;D、32+42≠62,故不是勾股数,故选项不符合题意.故选:B.5.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.6.解:设BO=xm,依题意得:AC=0.5m,BD=0.5m,AO=2m.在Rt△AOB中,根据勾股定理得:AB2=AO2+OB2=22+x2,在Rt△COD中,根据勾股定理得:CD2=CO2+OD2=(2﹣0.5)2+(x+0.5)2,∴22+x2=(2﹣0.5)2+(x+0.5)2,解得:x=1.5,∴AB==2.5(m),即梯子的长度AB为2.5m,故选:A.7.解:选项A如图:A、∵AC2=12+32=10,BC2=12+22=5,AB2=12+42=17,∴△ABC不是直角三角形,故本选项符合题意;选项B如图:B、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项不符合题意;选项C如图:C、∵AB2=22+22=8,AC2=22+22=8,BC2=16,∴△ABC是直角三角形,故本选项不符合题意;选项D如图:D、∵AC2=12+32=10,BC2=12+32=10,AB2=22+42=20,∴△ABC是直角三角形,故本选项不符合题意.故选:A.8.解:延长AP到点C,连接BC,如右图所示,由图可得,∠CPB=∠P AB+∠PBA,PC==,BC==,PB==,∴BC2+PC2=PB2,CP=CB,∴△BCP是等腰直角三角形,∴∠CPB=45°,∴∠P AB+∠PBA=45°,故选:B.二.填空题9.解:∵82+152=172,∴此三角形是直角三角形,∴此直角三角形的面积为:×8×15=60(cm2).故答案为:60.10.解:∵∠BAC=90°,BC=,AB=1,∴AC==,∵AD=CD=1,12+12=()2,AD2+CD2=AC2,∴∠D=90°,∴∠DAC=45°,∴∠BAD=90°﹣45°=45°.故答案为:45°.11.解:∵侧面对角线BC2=32+42=52,∴CB=5cm,∵AC=12cm,∴AB==13(cm),∴空木箱能放的最大长度为13cm,故答案为:13.12.解:根据题目给出的前几组数的规律可得:这组数中的第一个数是2(n+2),第二个是:(n+1)(n+3),第三个数是:(n+2)2+1,故可得第⑤组勾股数是14,48,50.故答案为:14,48,50.13.解:设AB′=xm,∵AC′=AC,∴AB′2+B′C′2=AB2+BC2,∴x2+82=(x+2)2+62.解得x=6,∴AB=8m,∴AC===10(m),故答案为:10.14.解:若设湖水的深度x尺.则荷花的长是(x+0.5)米.在直角三角形中,根据勾股定理,得:(x+0.5)2=x2+22,解之得:x=3.75,∴湖水的深度为3.75尺.故答案为:3.75.15.解:在Rt△ABC中,∠ABC=90°,AB=8米,BC=6米,∴AC===10(米),∴BC+AB﹣AC=6+8﹣10=4(米),∴他们踩坏了10米的草坪,只为少走4米的路,故答案为:10,4.16.解:∵AB=AC=6m,∠BAC=120°,D为横梁BC的中点,∴∠B=∠C=30°,∠BAD=∠DAC=60°,∵点E、F分别为斜梁AB、AC的中点,EM⊥BC于点M,FN⊥BC于点N,∴AE=AD=AB=3m,FN=EM=BE=AB=1.5m,∴△AED是等边三角形,∴EM+AD+FN=3+1.5+1.5=6(m),∵AD=3m,AC=6m,∴DC==3(m),∴四边形AEDC的周长为:3+3+3+6=(12+3)m.故答案为:6,(12+3).三.解答题17.解:如图,连接AC,∵AD=4,CD=3,∠ADC=90°,∴AC==5,∴S△ACD=6,在△ABC中,∵AC=5,BC=12,AB=13,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴Rt△ABC的面积=30,∴四边形ABCD的面积=30﹣6=24.18.解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,则S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC=×4×3+×12×5=36(平方米);(2)需费用36×300=10800(元).19.解:小汽车已超速,理由如下:根据题意得:AC=24米,AB=40米,∠ACB=90°,在Rt△ACB中,根据勾股定理得:BC===32(米),∵小汽车1.5秒行驶32米,∴小汽车行驶速度为76.8千米/时,∵76.8>60,∴小汽车已超速,超速76.8﹣60=16.8(千米/时).20.解:(1)设两船的速度分别是4x海里/小时和3x海里/小时,依题意得4x﹣3x=5.解得x=5,∴4x=20,3x=15,∴两船的速度分别是20海里/小时和15海里/小时;(2)由题可得,AB=15×2=30,AC=20×2=40,BC=50,∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠BAC=90°,又∵货船沿东偏南10°方向航行,∴客船航行的方向为北偏东10°方向.21.解:设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5.则秋千绳索的长度为14.5尺.22.解:在Rt△ABC中,∠ABC=90°,BC=8m,AC=17m,∴AB===15(m),∵工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,∴CD=17﹣0.35×20=10(m),∴BD===6(m),∴AD=AB﹣BD=9(m).答:此时游船移动的距离AD的长是9m.23.解:(1)由题意,AC=10海里,AB=6海里,BC=8海里,∴AB2+BC2=AC2,∴∠ABC=90°.由面积法得AC•BE=AB•BC,即10BE=6×8,∴BE=.在Rt△BEC中,CE==,∵艇C的速度为16海里/时,∴所求的时间为÷16=,答:再过小时艇C会进入我国领海.(2)由题意,AC=12海里,AB=8海里,BC=10海里,设CE=x,由勾股定理,得AB2﹣AE2=BC2﹣CE2,即82﹣(12﹣x)2=102﹣x2,解得x=,∴CE==7.5,再由勾股定理,得BE==(海里)设反走私艇B的速度为y海里/时,则=,解得y=.检验可知y=是方程的解,且适合题意.答:反走私艇B的速度至少应为海里/时.。

2021-2022学年人教版八年级数学下册《17-2勾股定理的逆定理》同步达标测试题(附答案)

2021-2022学年人教版八年级数学下册《17-2勾股定理的逆定理》同步达标测试题(附答案)

2021-2022学年人教版八年级数学下册《17-2勾股定理的逆定理》同步达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列条件:①b2=c2﹣a2;②∠C=∠A﹣∠B;③a:b:c=::;④∠A:∠B:∠C=3:4:5,能判定△ABC是直角三角形的有()A.4个B.3个C.2个D.1个2.如图,在每个小正方形的边长为1的网格中,△ABC的的顶点都在格点上.则∠ABC的度数为()A.120°B.135°C.150°D.165°3.如图长方体木箱的长、宽、高分别为12m,4m,3m,则能放进木箱中的直木棒最长为()A.12m B.13m C.15m D.24m4.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km5.如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是()A.26尺B.24尺C.17尺D.15尺6.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米7.一个圆桶底面直径为7cm,高24cm,则桶内所能容下的最长木棒为()A.20cm B.25cm C.26cm D.30cm8.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.55二.填空题(共8小题,满分32分)9.若8,a,17是一组勾股数,则a=.10.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了步路.(假设2步为1米)11.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.12.如图,每个小正方形的边长为1,则∠ABC的度数为°.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了cm.14.如图,阴影部分是一个正方形,此正方形的面积为cm2.15.2021年在甘肃省白银市景泰县黄河石林景区举行了黄河石林山地马拉松百公里越野赛.如图,是矗立在水平地面上的马拉松赛道路牌.经测量得到以下数据:AC=4m,BE =8m,∠DAC=45°,∠EBC=30°,∠DCA=90°,则DE的高为m.16.如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为米.三.解答题(共7小题,满分56分)17.如图,已知等腰△ABC的底边BC=10cm,D是腰AC上一点,且CD=6cm,BD=8cm.(1)判断△BCD的形状,并说明理由;(2)求△ABC的周长.18.如图:四边形ABCD中,AB=BC=,DA=1,CD=,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.19.如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.20.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧的墙上时,梯子的顶端在B点,当它靠在另一侧的墙上时,梯子的顶端在D点,已知∠BAC=60°,∠DAE=45°,点B到地的垂直距离BC=米,求两堵墙之间的距离CE.21.如图所示,AB=DE=25,AC=24,∠C=90°.(1)这个梯子底端B离墙有多少米?(2)如果梯子的顶端下滑的距离AD=4m,求梯子的底部B在水平方向滑动的距离BE 的长.22.如图,一条笔直的公路l经过树湘纪念馆A和何宝珍故里B两个红色文化景区,我县准备进一步开发月岩景区C,经测量景区C位于A的北偏东60°方向上,C位于B的北偏东30°的方向上,且AB=20km,(1)求何宝珍故里B与月岩景区C的距离;(2)为了方便游客到月岩景区C游玩,景区管委会准备由景区C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)23.已知,如图,AD∥BE,C为BE上一点,CD与AE相交于点F,连接AC.∠1=∠2,∠3=∠4.(1)求证:AB∥CD;(2)已知AE=12cm,AB=5cm,BE=13cm,求AC的长度.参考答案一.选择题(共8小题,满分32分)1.解:∵b2=c2﹣a2,∴a2+b2=c2,∴△ABC是直角三角形,故①能判断是直角三角形,∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故②能判断是直角三角形,∵a:b:c=::,∴可以假设,a=20k,b=15k,c=12k,∴a2≠b2+c2,∴△ABC不是直角三角形,故③不能判断是直角三角形,∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=()°>90°,故④不能判断是直角三角形故选:C.2.解:延长CB交网格于E,连接AE,由勾股定理得:AE=AB==,BC=BE==,∴AE2+AB2=BE2,∴△EAB是等腰直角三角形(∠EAB=90°),∴∠EBA=∠AEB=45°,∴∠ABC=180°﹣45°=135°,故选:B.3.解:∵侧面对角线BC2=32+42=52,∴CB=5m,∵AC=12m,∴AB==13(m),∴空木箱能放的最大长度为13m,故选:B.4.解:过点B作BC⊥AC,垂足为C.观察图形可知AC=AF﹣MF+MC=8﹣3+1=6(km),BC=2+5=7(km),在Rt△ACB中,AB===10(km).答:登陆点到宝藏埋藏点的直线距离是10km,故选:D.5.解:设水池的深度为x尺,由题意得:x2+82=(x+2)2,解得:x=15,所以x+2=17.即:这个芦苇的高度是17尺.故选:C.6.解:在Rt△ABC中,AC==4米,故可得地毯长度=AC+BC=7米,故选:D.7.解:如图,AC为圆桶底面直径,CB是桶高,∴AC=7cm,CB=24cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===25(cm).故桶内所能容下的最长木棒的长度为25cm.故选:B.8.解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.二.填空题(共8小题,满分32分)9.解:①a为最长边,a=,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.10.解:∵∠C=90°,AC=6m,BC=8m,∴AB==10(m),则(8+6﹣10)×2=8,∴他们仅仅少走了8步,故答案为:8.11.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.12.解:连接AC,由勾股定理得:AC2=22+12=5,BC2=22+12=5,AB2=12+32=10,∴AC2+BC2=5+5=10=BA2,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°,故答案为:45.13.解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.解:由图可知正方形的边长为=8cm,正方形的面积为8×8=64cm2.15.解:∵∠DCA=90°,∠DAC=45°,∴∠ADC=∠CAD=45°,∴AC=CD=4m,在Rt△BCE中,∵∠EBC=30°,BE=8m,∴CE==×8=4(m),∴DE=CE﹣CD=(4﹣4)m,故答案为:(4﹣4).16.解:过点D作DE⊥AB于E,如图所示:则CD=BE,DE=BC=1.2米=米,在Rt△ADE中,AD=1.5米=米,由勾股定理得:AE===0.9(米),∴BE=AB﹣AE=2.5﹣0.9=1.6(米),∴CD=BE=1.6米,故答案为:1.6.三.解答题(共7小题,满分56分)17.解:(1)∵BC=10cm,CD=8cm,BD=6cm,∴BC2=BD2+CD2.∴△BDC为直角三角形;(2)设AB=xcm,∵等腰△ABC,∴AB=AC=x,∵AC2=AD2+CD2,即x2=(x﹣6)2+82,∴x=,∴△ABC的周长=2AB+BC=(cm).18.解:(1)如图,连接AC.∵AB=BC=,∠B=90°,∴AC==2,∠BAC=∠ACB=45°,∵AD=1,CD=,∴AD2+AC2=CD2,∴∠CAD=90°,∴∠BAD=∠BAC+∠CAD=45°+90°=135°.(2)S四边形ABCD=S△ABC+S△ADC=•AB•BC+•AD•AC=××+×1×2=2.19.解:(1)△ABC为直角三角形,理由:由图可知,,BC=,AB==5,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.20.解:在直角△ABC中,∠BAC=60°,∴∠ABC=30°,∴AB=2AC,根据勾股定理计算AB2﹣AC2=,得:AC=5,AB=10.即AD=10,根据AD2=AE2+DE2,AE=DE,计算得:AE=DE=,∴CE=CA+AE=5+.答:两墙之间的距离CE=5+.21.解:(1)由题意知AB=DE=25米,AC=24米,AD=4米,在直角△ABC中,∠C=90°,∴BC2+AC2=AB2,∴米,∴这个梯子底端离墙有7米;(2)已知AD=4米,则CD=24﹣4=20(米),在直角△CDE中,∠C=90°,∴BD2+CE2=DE2,∴(米),∴BE=15﹣7=8(米),答:梯子的底部在水平方向滑动了8m.22.解:(1)根据题意得:∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣120°=30°,∴∠CAB=∠ACB,∴BC=AB=20(km).答:何宝珍故里B到月岩景区C的距离为20km;(2)过点C作CD⊥l,垂足为D,则CD的长是这条最短公路的长.∵CD⊥l,∴∠CDB=90°,∵∠CBD=180°﹣∠ABC=180°﹣120°=60°,∴∠BCD=180°﹣∠CBD﹣∠CDB=180°﹣60°﹣90°=30°,在Rt△BCD中,∠CDB=90°,∠BCD=30°,BC=20km,∴,(km).答:这条最短公路的长为km.23.(1)证明:∵AD∥BE,∴∠DAC=∠3,即∠2+∠EAC=∠3,∵∠1=∠2,∠3=∠4,∴∠1+∠EAC=∠4,即∠BAE=∠4,∴AB∥CD;(2)解:在△ABE中,AE=12cm,AB=5cm,BE=13cm,∴AE2+AB2=BE2,∴△ABE为直角三角形,∠BAE=90°,由(1)得:∠4=∠BAE=90°,∴∠3=∠4=90°,∴AC⊥BE,∵S△ABE=AE•AB=BE•AC,∴AC===(cm).。

人教版数学八年级下册《勾股定理的逆定理》练习巩固 (1)

人教版数学八年级下册《勾股定理的逆定理》练习巩固 (1)

17.2勾股定理的逆定理(练习巩固)一、单选题1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.√3,√4,√5B.1,√2,√3C.6a,7a,8a D.2a,3a,4a2.如图所示,有一个高16cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底2cm 的点S处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口内侧距开口处2cm的点F处有一滴凝固的蜂蜜,则蚂蚁到凝固蜂蜜所走的最短路径的长度是()cm.A.12√2B.20C.24D.283.下列命题中,其中正确命题的个数为()个①在△ABC中,若三边长a:b:c=4:5:3,则ABC是直角三角形;②有一个内角等于其他两个内角和的三角形是直角三角形;③三角形的三边分别为a,b,c,若a2+c2=b2,则△C=90°:④在△ABC中,△A:△B:△C=1:5:6,则△ABC是直角三角形。

A.1B.2C.3D.4 4.五根小木棒,其长度分别为7,15,20,24,25,现想把它们摆成两个直角三角形,图中正确的是()A.B.C.D.5.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm6.坐标轴上到点P(−1,0)的距离等于4的点有()A.1个B.2个C.3个D.4个7.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为()A.4√3B.2√3C.4√5D.2√5 8.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB= 13S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A.B.C.D.9.如图,在长方体透明容器(无盖)内的点B处有一滴糖浆,容器外A点处的蚂蚁想沿容器壁爬到容器内吃糖浆,已知容器长为5cm,宽为3cm,高为4cm,点A距底部1cm,请问蚂蚁需爬行的最短距离是(容器壁厚度不计)()A.3√17cm B.10cm C.5√5cm D.√113cm 10.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6。

青岛版(五四)数学八年级下7.4勾股定理的逆定理(同步练习)

青岛版(五四)数学八年级下7.4勾股定理的逆定理(同步练习)

7.4勾股定理的逆定理1.下列各组数据中,不能作为直角三角形三边长的是( ) A.9,12,15 B.43,1,45 C.0.2,0.3,0.4 D.40,41,9 2.满足下列条件的三角形中,不是直角三角形的是( ) A.三个内角比为1∶2∶1 B.三边之比为1∶2∶5 C.三边之比为3∶2∶5 D. 三个内角比为1∶2∶33.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为( ) A.2 B.102 C.10224或 D.以上都不对4. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)5. △ABC 的三边分别是7、24、25,则三角形的最大内角的度数是 .6.三边为9、12、15的三角形,其面积为 .7.已知三角形ABC 的三边长为c b a ,,满足18,10==+ab b a ,8=c ,则此三角形为 三角形. 8.在三角形ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,则BC 边上的高为AD= cm . 9. 如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13, 求四边形ABCD 的面积.10. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.11. 如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面F E A C BDB ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .12. 观察下列勾股数:第一组:3=2×1+1, 4=2×1×(1+1), 5=2×1×(1+1)+1; 第二组:5=2×2+1, 12=2×2×(2+1), 13=2×2×(2+1)+1; 第三组:7=2×3+1, 24=2×3×(3+1), 25=2×3×(3+1)+1; 第三组:9=2×4+1, 40=2×4×(4+1), 41=2×4×(4+1)+1; ……观察以上各组勾股数的组成特点,你能求出第七组的c b a ,,各应是多少吗?第n 组呢?参考答案1.C ;2.C ;3.C ,提示:当已经给出的两边分别为直角边时,第三边为斜边=;1026222=+当6为斜边时,第三边为直角边=242622=-;4. C ;5.90°提示:根据勾股定理逆定理得三角形是直角三角形,所以最大的内角为 90°.6.54,提示:先根基勾股定理逆定理得三角形是直角三角形,面积为.5412921=⨯⨯ 7.直角,提示:2222222864182100,1002,100)(c b a ab b a b a ===⨯-=+=++=+得;8.1360,提示:先根据勾股定理逆定理判断三角形是直角三角形,再利用面积法求得AD ⨯⨯=⨯⨯132151221; 9.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5.在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°. 故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.10. 解:由勾股定理得AE 2=25,EF 2=5,AF 2=20,∵AE 2= EF 2 +AF 2,∴△AEF 是直角三角形11. 设AD =x 米,则AB 为(10+x )米,AC 为(15-x )米,BC 为5米,∴(x +10)2+52=(15-x )2,解得x =2,∴10+x =12(米)12. 解:第七组,.1131112,112)17(72,15172=+==+⨯⨯==+⨯=c b a第n 组,1)1(2),1(2,12++=+=+=n n c n n b n a初中数学试卷桑水出品。

人教版八年级下册17.2勾股定理逆定理练习题(word无答案)

人教版八年级下册17.2勾股定理逆定理练习题(word无答案)

17.2勾股定理逆定理练习一、选择题1.已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24 B.30 C.40 D.482.有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8m B.10m C.12m D.14m3.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15 4.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时5.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形二、填空题6.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.7.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.8.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有米.9.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面(填”合格”或”不合格”).10.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.11.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.12.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.三、解答题13.如图,为修铁路需凿通隧道AC,现测量出∠ACB=90°,AB=5km,BC=4km,若每天凿隧道0.2km,问几天才能把隧道AC凿通?14.已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9.(1)求AC的长;(2)求四边形ABCD的面积.15.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.16.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD 长)多少米?17.小明和小颖在如图所示的四边形场地上,沿边骑自行车进行场地追逐赛(两人只要有一个人回到自己的出发点,则比赛结束).小明从A地出发,沿A→B→C→D→A的路线匀速骑行,速度为8米/秒;小颖从B地出发,沿B→C→D→A→B的路线匀速骑行,速度为6米/秒.已知∠ABC=90°,AB=40米,BC=80米,CD=90米.设骑行时间为t秒,假定他们同时出发且每转一个弯需要额外耗时2秒.(1)填空:当t=秒时,两人第一次到B地的距离相等;(2)试问小明能否在小颖到达D地前追上她?若能,求出此时t的值;若不能,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册《勾股定理的逆定理》同步练习1
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。

2.一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直,为什么?
3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。

小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90
4.若△ABC 的三边a 、b 、c 满足a 2
+b 2
+c 2
+50=6a+8b+10c ,求△ABC 的面积。

A
5.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。

求证:△ABC是等腰三角形。

6.已知:如图,∠DAC=∠EAC,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。

求证:AB2=AE2+CE2。

7.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=14,试判定△ABC的形状。

参考答案:
1.6米,8米,10米,直角三角形;
2.△ABC、△ABD是直角三角形,AB和地面垂直。

3.提示:连结AC。

AC2=AB2+BC2=25,AC2+AD2=CD2,因此∠CAB=90°,
S四边形=S△ADC+S△ABC=36平方米。

1.6;
2.提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC。

3.提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2。

4.提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14。

又因为c2=14,所以a2+b2=c2 。

相关文档
最新文档