分支定界法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分支定界法
分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。
这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。
定义
分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。
这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。
算法步骤
第1步:放宽或取消原问题的某些约束条件,如求整数解的条件。
如果这时求出的最优解是原问题的可行解,那么这个解就是原问题的最优解,计算结束。
否则这个解的目标函数值是原问题的最优解的上界。
第2步:将放宽了某些约束条件的替代问题分成若干子问题,要求各子问题的解集合的并集要包含原问题的所有可行解,然后对每个子问题求最优解。
这些子问题的最优解中的最优者若是原问题的可行解,则它就是原问题的最优解,计算结束。
否则它的目标函数值就是原问题的一个新的上界。
另外,各子问题的最优解中,若有原问题的可行解的,选这些可行解的最大目标函数值,它就是原问题的最优解的
一个下界。
第3步:对最优解的目标函数值已小于这个下界的问题,其可行解中必无原问题的最优解,可以放弃。
对最优解的目标函数值大于这个下界的子问题,都先保留下来,进入第4步。
第4步:在保留下的所有子问题中,选出最优解的目标函数值最大的一个,重复第1步和第2步。
如果已经找到该子问题的最优可行解,那么其目标函数值与前面保留的其他问题在内的所有子问题的可行解中目标函数值最大者,将它作为新的下界,重复第3步,直到求出最优解。