08结构动力学数值分析方法.pdf

合集下载

《结构动力学》PPT课件

《结构动力学》PPT课件
0


P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)


Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)

j
Y T j

2 j

K
* j
/
M
* j
k Y j


2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)

N
y(t) Yi Di (t)
EI
D2 (t)


2 2
D2
(t )

P2* (t)
/
M
* 2
D2 (t)

0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.

结构动力学方程及有限元方程

结构动力学方程及有限元方程
上一页 下一页 返回
8.4 振动系统响应分析
• 式中
——固有频率的对角阵。
• n 自由度无阻尼系统自由振动的动力学方程解耦后就转换为n 个独立 的微分方程的求解问题。求出特征方程的n 个特征值和对应的特征向 量后,就得到振动方程的n 个线性无关的特解,则式(8.66)可以写 为:
上一页 下一页 返回
上一页
返回
8.4 振动系统响应分析
• 8.4.1 响应的分析方法
• 振动响应的分析方法主要有两种,一种是以系统主振型为基础的振型 叠加法,另一类是数值积分法。
• 8.4.2 无阻尼系统的自由振动
• 无阻尼系统自由振动的运动微分方程为:
• 令:
下一页 返回
8.4 振动系统响应分析
• 对振动方程进行正则变换后可得到: • 方程左乘以[Φ ]T ,得: • 由振型向量的正交性得:
上一页 ቤተ መጻሕፍቲ ባይዱ一页 返回
8.2 单元特性矩阵
• (3)矩形平面单元的一致质量矩阵为:
上一页
返回
8.3 固有特性分析
• 结构的固有特性由结构本身(质量与刚度分布)决定,而与外部载荷 无关,它可以由一组模态参数来定量描述。固有特性包括固有频率、 模态振型、模态质量、模态刚度以及模态阻尼比等。
• 固有特性分析就是对模态参数进行计算,其目的主要是避免结构出现 共振和有害的振型,同时为响应分析提供必要的依据。
阻尼力
(其中ρ 为材料的密度,v 是线性阻尼系数)
• ,则外力所做的虚功为:
上一页 下一页 返回
8.1 结构动力学方程及有限元方程
• 式中
——作用于单元上的动态体积力、
• 动态表面力和动态集中力; • V——单元体积; • S——单元面积。

结构动力学-4节.ppt

结构动力学-4节.ppt

fs ky (t) fd c y ( t) m y c y ky m u g
u g (t )
二、隔振设计 基底振动的隔离(对象是m,如地震) 力的传递与隔振(对象是地基,如 轻轨影响地基) 1.基底振动的隔离 设质量相对于地面的位移为yr
y ( t ) y ( t ) u ( t ) r g



y P i i y y cos t sin t ( 1 cos t ) i 1 i k
i 1 / y i sin t y i y cos t
P (t )
Pi


Pi 1
P i sin t k
2 2
3 2 tan 1 2 4 22
A 1 4 22 B ( 1 2)2 4 22
传导比
m y c y ky kB sin t cB cos t

A/ B
0
1/ 5
2
m
k
y (t )
c
1/ 4
1/ 3 1/ 3
k
y y d y yy k 1 k 1 y k 1 k 1 y ( ) k t d tk t t t 2 t k 1 k 1
t k 的加速度为: y y y y k 1 k 1 k k y 2 y y t t k 1 k k 1 y k 2 t ( t )
0
1 t y ( t ) p () s i n( t ) d 0 m
t
1 t ( p r ) s i n( t ) d 0 0 m

结构动力学课件PPT

结构动力学课件PPT

地震作用
200 0 -200
t(sec)
0 5 10 15 20 25 30 35 40 45 50
结构在确定性荷载作用下的响应分析通 常称为结构振动分析。 结构在随机荷载作用下的响应分析, 被称为结构的随机振动分析。 本课程主要学习确定性荷载作用下的结 构振动分析。
§1-3 动力问题的基本特性
§2-5 广义单自由度体系:刚体集合
刚体的集合(弹性变形局限于局部弹性
元件中) 分布弹性(弹性变形在整个结构或某些 元件上连续形成) 只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
A
x
x p( x,t ) = p a ( t )
1
令:
5l FE (t ) q(t ) 8

y FE (t )
FE(t) 定义为体系的等效动荷载或等效干扰力。其通用表达式
P FE (t )
含义:等效动荷载直接作用在质量自由度上产生的动位移与
实际动荷载产生的位移相等!
已经知道柔度和刚度k 之间的关系为: k 表达式成为:
简支梁: 比较: 刚架: 基本质量弹簧体系:
大型桥梁结构 的有限元模型
§1-5 运动方程的建立
定义
在结构动力分析中,描述体系质量运动规律的数学 方程,称为体系的运动微分方程,简称运动方程。 运动方程的解揭示了体系在各自由度方向的位移 随时间变化的规律。 建立运动方程是求解结构振动问题的重要基础。 常用方法:直接平衡法、虚功法、变分法。
(2-3)
刚度法: 取每一运动质量为隔离体,通过分析所受 的全部外力,建立质量各自由度的瞬时力平衡方 程,得到体系的运动方程。

结构动力学

结构动力学

结构动力学第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。

确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。

根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。

根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。

2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。

广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。

有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。

①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。

②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。

5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。

高等结构动力学【教程】pdf格式

高等结构动力学【教程】pdf格式

θx ,θy ,θz λ
u 位移向量
Λ
µ
υ ζ, ζ s , ζ a ρ
σ x ,σ y ,σ z , σ
2 2 σ2 x , σ B ( E ), σ D ( E )
V , Vx , V y , Vz
&, w && w, w We , Wi
τ τ xy
φ
& ,Y && , Y Ym , Y m m
D EI f gB , gD G h H ( n)
i I
薄板的弯曲刚度 梁的弯曲刚度 频率 非共振峰因子,共振峰值因子 地震风险分析中的几何系数;Lame 常数 震源深度 接受率
−1 修正的 Mercalli 烈度;冲量 P(t )dt ; 重要度系数(地震设计) 刚度,刚度矩阵,广义坐标下的刚度
8.移动荷载
1
1.2 振动的物理特性
发生在特定的频率范围。运动的车辆可以按照在其静止的重量上增加一个 冲压作用,实践表明这种做法对于一般高速公路和铁路桥设计是可行的, 但是在超高速移动的荷载作用下不一定行得通。机器设备的振动、爆炸和 打桩引起的振动必须借助于动力分析和实验解决。
在很多设计规范中找到,其他类型的荷载不那么常见,有关数据需要查阅 相关的研究文献。本课程的其中一个目标是讨论最重要的几种荷载的动力 特性,为进行相关的动力学分析和研究打下基础。
2.单自由度系统的振动
2.1 引言 2.2 运动方程 2.3 自由振动 2.4 阻尼 2.5 周期激励下的结构响应 2.6 任意激励下的结构响应 2.7 Duhamel 积分 2.8 支座运动 2.9 运动方程的直接积分法
5.地震作用及分析
5.1 引言 5.2 地震的特性 5.3 地震危险性 5.4 反应谱 5.5 地震作用的计算分析

结构动力学(5)-第四章 结构动力学的求解

结构动力学(5)-第四章 结构动力学的求解

H ( ) Z 1 ( ) ( K 2 M )1 , r
def
u H ( ) f
其中 H ( ) 正是系统的位移频响函数矩阵,它的元素 H ij ( ) 具有柔度系数的量纲, 反映了在系统第j个自由度上施加单位正弦激励后第i个自由度的稳态位移响应幅值。
(2)频响函数矩阵的模态展开式 利用固有振型关于质量矩阵和刚度矩阵的加权正交性,对式动刚度矩阵左乘 和右乘
4.1 无阻尼自由振动
Mu(t ) Ku(t ) 0 u(0) u0 , u(0) u0
特性: 质量矩阵 1)反映系统的动能
T
1 T u Mu 0 2
1 T u Mu 0 2
2)正定 但也有例外:存在纯静态模态
u ,使
(针对两种情况:当采用集中质量矩阵时和当离散系统中设有无质量点的自由度时)
根据前面的分析,线性系统的响应可分为零初始状态下激励引起的响应及零 激励条件下初始条件引起的响应,即零状态响应及零输入响应。系统的响应可以 是其中某一种或两种之线性组合。研究下述微分方程的求解问题
Mu(t ) Ku(t ) f (t ) u(0) 0 u(0) 0,
Φ{diag [cos r t ]a diag [sin
1 r N
1 r N
r
t ]b}
其中
a [a1 aN ] ,
T def
b [b1 bN ]T
def
对于给定的初始条件
u0

u0
,可得到
u0 Φa ,
解出参数向量
u0 Φ diag[ r ]b
0 0
t
t
当考虑进系统初始状态对响应的贡献时,系统的响应为

结构动力学(PDF)

结构动力学(PDF)

机械振动系统,师汉民,华中科技大学出版社cos sin i t e t i t ωωω=+Ch1 单自由度线性系统自由振动1.3 无阻尼自由振动()()0mxt kx t += 解()()22002()cos sin cos cos n n n n nnv v x t x t t x t A t ωωωϕωϕωω=+=++=-振幅和相位由初始条件确定。

确定自然频率的方法: 1、 静变形法:kx mg =,n g xω=2、 能量法:无阻尼弹性振动能量守恒,因此取动能Tmax=势能Vmax 。

1.4 有阻尼自由振动22()()()020n n mx t cx t kx t s s ξωω++=⇒++= ,通解wt Ae通常自然频率可以很容易的通过实验测定,但阻尼比ξ的计算或辨识则比较困难,需要利用自由振动衰减曲线计算。

在间隔1个振动周期T 的自由振动减幅振动曲线上,取两个峰值A1和A2,A1/A2=EXP(ξωn T)Ch2 单自由度线性系统的受迫振动 2.1 谐波激励()()()cos cos mxt cx t kx t F t kA t ωω++= →22()2()()cos n n n x t x t x t A t ξωωωω++= ,设通解cos()X t ωϕ-,ϕ表响应对激励的滞后通解X1为:()20020002cos n t n n d dd v x v x xe t ξωξωξωωωω-+⎛⎫++- ⎪⎝⎭,瞬态响应,逐步衰减。

特解X2为:()()i t H Ae ωϕω-,稳态响应,实际上的激励和响应仅取实部,响应的频率是激励的频率!222222222222cos arctan cos arctan 112112n n n n n n n n AA t t i ωωξξωωωωωωωωωωξξωωωωωω⎛⎫⎛⎫⎪⎪ ⎪ ⎪-=- ⎪⎪⎛⎫⎛⎫--+- ⎪ ⎪-+ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭幅频特性221()12n n X H Ai ωωωξωω==-+,相频特性222()arctan1n nωξωϕωωω=-若激励表示为i t Ae ω,响应表示为i t Xe ω,可表述()()()x t H f t ω=,则()()()i t x t H Ae ωϕω-=共振频率212r n ωωξ=-,有阻尼自然频率21d n ωωξ=-,因此,对共振的研究应考虑阻尼比ξ=0.707的特殊点。

结构动力学方程常用数值解法

结构动力学方程常用数值解法

结构动力学方程常用数值解法对于一个实际结构,由有限元法离散化处理后,动力学方程可写为:...++=()M x C x Kx F t从数学角度看,这是一个常系数的二阶线性常微分方程组,计算数学领域,常微分数值算法常用的有两大类:-、针对一阶微分方程数值积分法发展的欧拉法,中点法,Rugge-kutta(龙格—库塔)方法。

二、直接基于二阶动力学方程发展的方法。

对结构动力学问题的数值求解,常用的有两大类:一是坐标变换法,它是对结构动力方程式,在求解之前,进行模态坐标变换,实际上就是一种Rize变换,即把原物理空间的动力方程变换到模态空间中去求解。

现在,普遍使用的方法是模态(振型)迭加法。

二是直接积分法,它是对结构动力方程式在求解之前不进行坐标变换,直接进行数值积分计算。

这种方法的特点是对时域进行离散,然后将该时刻的加速度和速度用相邻时刻的各位移线性组合而成。

通常又称为逐步积分法。

模态迭加方法,比较常用,但如下情况通常使用直接积分方法(即求解之前不进行模态分析)一、非比例阻尼,非线性情况。

二、有冲击作用,激起高频模态,力作用持续时间较短,模态迭加计算量太大。

一振型迭加法与Duhamel积分数值解按照有限单元法的一般规则, 经过边界条件的约束处理, 结构在强迫振动时多自由度体系的运动平衡方程可以表示为:++= (1)MU CU KU R其中, M是体系的质量矩阵, C 是体系的阻尼矩阵, 而K 则是刚度矩阵. R 为外荷载向量. U、U和U则分别是体系单元节点的位移、速度和加速度向量. 上述动力平衡方程实质上是与加速度有关的惯性力MU和与速度有关的阻尼力CU及与位移有关的弹性力KU在时刻t与荷载的静力平衡。

振型叠加法是把多自由度体系的结构的整体振动分解为与振型次数相对应的单自由度体系, 求得各个单自由度体系的动力响应后, 再进行叠加得出结构整体响应. 振型叠加法原理是利用结构无阻尼自由振动的振型矩阵作为变换矩阵, 将结构动力方程式(1)式变换成一组非耦合的微分方程. 逐个地求解这些方程后, 将解叠加即可得到动力方程的解。

结构动力学

结构动力学

(14-22)
(14-23)

A 1
2
式中
1 2
2
F11 yst
(14-24)
yst F11 代表将振动荷载的最大值F作为静力荷载作用于结构上
时所引起的静力位移,而

1 1Байду номын сангаас
2
2

A yst
(14-25)
为最大的动力位移与静力位移之比,称为位移动力系数。 2. 考虑阻尼的纯受迫振动 取式(14-21)的第三项,整理后有
y
2 0

2 y0
2
(14-4)
y0 tan y0
则有
(14-5)
y a sin(t )
(14-7) y a cos(t )
(14-6)
(4)自振频率的计算
k11 1 g g m m11 mg11 st
自振周期:T=2π/ω。 其中:
本章基本要求: 掌握动力自由度的判别方法。 掌握单自由度、多自由度体系运动方程的建立方法。 熟练掌握单自由度体系、两个自由度体系动力特性的计算。 熟练掌握单自由度体系、两个自由度体系在简谐荷载作用下 动内力、动位移的计算。 掌握阻尼对振动的影响。 了解自振频率的近似计算方法。
§14-1 概 述
1. 结构动力计算的特点 (1) 荷载、约束力、内力、位移等随时间变化,都是时间的函数。 (2) 建立平衡方程时要考虑质量的惯性力。
(14-8)
柔度系数 11 表示在质点上沿振动方向加单位荷载时,使质点 沿振动方向所产生的位移。 刚度系数 k11 表示使质点沿振动方向发生单位位移时,须在 质点上沿振动方向施加的力。 Δst=W 11 表示在质点上沿振动方向加数值为W=mg的力时质点 沿振动方向所产生的位移。

结构动力学有限元法

结构动力学有限元法

100%
动力响应分析
研究车辆、风、地震等外部激励 下桥梁的动力响应,评估其安全 性能。
80%
稳定性分析
分析桥梁在极端载荷下的稳定性 ,确保其正常工作。
建筑结构的抗震分析
地震作用下的结构响应
通过有限元法模拟地震对建筑 结构的作用,计算结构的位移 、加速度等响应。
结构抗震性能评估
根据计算结果评估建筑结构的 抗震性能,优化设计以提高其 抗震能力。
局限性
由于结构动力学有限元法需要进行大量的数值计算和存储,因此 对于大规模复杂结构的分析可能会面临计算效率和精度方面的问 题。此外,对于一些特殊结构和复杂工况,可能需要采用特殊的 建模和分析方法。
04
结构动力学有限元法的应用实例
桥梁结构的动力学分析
80%
桥梁结构的模态分析
通过有限元法计算桥梁的固有频 率和振型,了解其自振特性。
结构减震设计
利用有限元法进行减震设计, 如设置隔震支座、阻尼器等, 降低地震对结构的影响。
机械设备的动态特性分析
01
设备模态分析
02
设备振动分析
03
设备优化设计
通过有限元法分析机械设备的固 有频率和振型,了解其动态特性。
研究机械设备在工作过程中的振 动情况,分析其振动原因和影响。
根据动态特性分析结果,优化机 械设备的设计,降低振动和噪声。
用于分析电磁场的分布和变化规律,如电机、变 压器、天线等。
流体动力学
用于模拟流体在各种条件下的流动特性,如航空 、航海、管道流动等。
热传导分析
用于分析温度场的变化和热量传递规律,如热力 管道、电子设备等。
有限元法的研究意义
提高工程设计的可靠性和安全性

(同济大学)结构动力学教程 第六章 结构动力学中常用的数值方法

(同济大学)结构动力学教程 第六章 结构动力学中常用的数值方法

(2) 求解位移向量: [K ]{x}t+θ∆t = {R}t+∆t
{x}t+∆t = a4 ({x}t+θ∆t − {x}t ) + a5{x}t + a6{
(3) 求解加速度、速度、位移向量:{x}t+∆t = {x}t + a7 ({x}t+∆t + {x}t ) {x}t+∆t = {x}t + ∆t{x}t + a8 ({x}t+∆t + 2{x}
({Q}t+θ∆t = {Q}t +θ ({Q}t+∆t −{Q}t )) 以位移 {x}t+θ∆t 为未知量建立求解方程,即:
[K ]{x}t+θ∆t = {R}t+θ∆t
式中,
[K ] = [K ] + 1 [M ] + 3 [C]
(θ∆t ) 2
θ∆t
{R }t +θ∆t
= {Q}t
+ θ ({Q}t+∆t
x
xt+∆
t + ∆t
用同样方法处理位移
泰勒展开:{x}t+∆t
= {x}t
+ {x}t ∆t +
1 {~x}∆t 2 2
类似地设 t → t + ∆t 时间间隔内:{x} = {x}t + 2δ ({x}t+∆t − {x}t )
(0 ≤ δ ≤ 0.5)
{x}t+∆t = {x}t + {x}t ∆t + (0.5 − δ ){x}t ∆t 2 + δ {x}t+∆t ∆t 2
与原矩阵a相关联的矩阵设矩阵a的特征值为对应的特征向量为的特征值为对应的特征向量为的特征值为对应的特征向量为的特征值为对应的特征向量仍为非奇异则的逆矩阵存在为其特征值相似即有可逆矩阵存在使的特征值也为特征向量为特征值的和与积设矩阵的特征值为则有供校核用特征向量规范化设矩阵的特征向量为的特征向量

第五章 结构动力学中常用的数值解法1

第五章 结构动力学中常用的数值解法1

第五章结构动力学中常用的数值解法§5.1概述数值分析技术为结构的动态分析提供了有力的保障,为工程结构在各种复杂的动力学环境下的模拟和仿真提供了有效工具。

工程结构的动态分析主要包括两个方面:结构的动态特性分析和结构动态响应分析标准特征值问题和广义特征值问题1 雅可比方法(Jacobi)、2.Rayleigh-Ritz3.子空间迭代法4. 行列式搜索法行列式搜索法是求解大型特征值问题的另一种方法。

它的特点是综合运用多项式加速割线迭代,移轴向量逆迭代,Sturm序列的性质以及Gram-Schmidt正交化过程,直接计算所需要的任意特征对,通常是计算最小的部分特征值及相应的特征向量。

因此,它是一种计算部分特征对的特殊求解方法。

此方法具有计算速度快,精度高,灵活等优点。

nczos法Lanczos方法目前被认为是求解大型矩阵特征值问题的最有效方法,与子空间迭代法相比,其计算量要少得多。

响应数值分析:1.中心差分法2.Wilson -θ法3.Newmark 法响应求解方法的选择取决的因素有:载荷、结构、精度要求、非线性影响程度、方法的稳定性等。

综合各方面的因素,比较、权衡,才能判定所应采取的方法;有时为了互相验证,也可以同时采取两种以上的方法来处理动响应分析对于载荷,一般分为波传导载荷与惯性载荷。

对结构过于复杂的情况,宜采用直接积分法,结构较简单的情况可采用模态迭加法。

对精度要求较低的初步设计阶段,可采用取少数模态的模态迭加法。

对精度要求较高的最后设计阶段,宜采用直接积分法§ 5.2 求解系统固有频率主振型的近似解法1.邓柯利法:是邓柯利首先通过实验方法建立起来的一个计算公式,后来才得到完整的数学证明。

[]M []δ设质量矩阵,柔度矩阵为则有{}[][]{}0x M x δ+=1894年邓柯利:提出一种近似计算多圆盘轴横向振动基频的实用方法(偏小)设系统作j 阶主振动,则有:2()2{}{}sin {}j j j j x A t x ωωω=-=-代入得特征方程:21([][][]){}0jM I x δω-=有111112*********2222222112221101n njn njn n n n nn nn jm m m m m m m m m δδδωδδδωδδδω--=-假设质量矩阵为对角阵,展开得:1111222222(1)11()nn nn n n jjm m m δδδωω--++++=根据多项式的根与系数之间的关系21jω211ω22211nωω的n 个根,之和为1111222222212111nn nnnm m m δδδωωω+++=+++由于二阶频率往往比基频高得多22221111n ωωω111122222111nnn nn ii ii i m m m m δδδδω==+++=∑22211n ωω得忽略111nii iii mωδ==∑ii ii m ω表示仅有质量单独存在时(原多自由度系统变成单自由度系统)的固有频率1ii ii ii ii iik m m ωδ==设2222111221111nnωωωω=+++如例题1m 2m 3m 3331122339169768768768l l l EI EI EI δδδ===22113331117689EI m l m ωωδ===⨯222322176816EI m l m ωδ==⨯333211921634768768768l m l m l mEI EI EIω⨯=+=134.752EImlω=134.933EImlω=精确解2.雅可比(Jacobi )法求特征方程[]A 设为对称阵,[]{}{}A x x λ=12[][][][](,,)Tn S A S D diag d d d ==即可断定[D]的n 个对角元素就是[A]的n 个特征值,而[S]的第i 列就是[D]中第i 个对角元素所对应的特征向量,[S]为坐标变换矩阵。

结构动力学方程常用数值解法教学文案

结构动力学方程常用数值解法教学文案

结构动力学方程常用数值解法结构动力学方程常用数值解法对于一个实际结构,由有限元法离散化处理后,动力学方程可写为:...M x C x Kx F t++=()从数学角度看,这是一个常系数的二阶线性常微分方程组,计算数学领域,常微分数值算法常用的有两大类:-、针对一阶微分方程数值积分法发展的欧拉法,中点法,Rugge-kutta(龙格—库塔)方法。

二、直接基于二阶动力学方程发展的方法。

对结构动力学问题的数值求解,常用的有两大类:一是坐标变换法,它是对结构动力方程式,在求解之前,进行模态坐标变换,实际上就是一种Rize变换,即把原物理空间的动力方程变换到模态空间中去求解。

现在,普遍使用的方法是模态(振型)迭加法。

二是直接积分法,它是对结构动力方程式在求解之前不进行坐标变换,直接进行数值积分计算。

这种方法的特点是对时域进行离散,然后将该时刻的加速度和速度用相邻时刻的各位移线性组合而成。

通常又称为逐步积分法。

模态迭加方法,比较常用,但如下情况通常使用直接积分方法(即求解之前不进行模态分析)一、非比例阻尼,非线性情况。

二、有冲击作用,激起高频模态,力作用持续时间较短,模态迭加计算量太大。

一振型迭加法与Duhamel积分数值解按照有限单元法的一般规则, 经过边界条件的约束处理, 结构在强迫振动时多自由度体系的运动平衡方程可以表示为:&&& (1)++=MU CU KU R其中, M 是体系的质量矩阵, C 是体系的阻尼矩阵, 而K 则是刚度矩阵. R 为外荷载向量. U 、U &和U &&则分别是体系单元节点的位移、速度和加速度向量. 上述动力平衡方程实质上是与加速度有关的惯性力MU &&和与速度有关的阻尼力CU &及与位移有关的弹性力KU 在时刻t 与荷载的静力平衡。

振型叠加法是把多自由度体系的结构的整体振动分解为与振型次数相对应的单自由度体系, 求得各个单自由度体系的动力响应后, 再进行叠加得出结构整体响应. 振型叠加法原理是利用结构无阻尼自由振动的振型矩阵作为变换矩阵, 将结构动力方程式(1)式变换成一组非耦合的微分方程. 逐个地求解这些方程后, 将解叠加即可得到动力方程的解。

结构动力学中的常用数值方法

结构动力学中的常用数值方法

第五章 结构动力学中的常用数值方法5.1.结构动力响应的数值算法....0()(0)(0)M x c x kx F t x a x v ⎧++=⎪⎪=⎨⎪=⎪⎩当c 为比例阻尼、线性问题→模态叠加最常用。

但当C 无法解耦,有非线性存在,有冲击作用(激起高阶模态,此时模态叠加法中的高阶模态不可以忽略)。

此时就要借助数值积分方法,在结构动力学问题中,有一类方法称为直接积分方法最为常用。

所识直接是为模态叠加法相对照来说,模态叠加法在求解之前,需要对原方程进行解耦处理,而本节的方法不用作解耦的处理,直接求解。

(由以力学,工程中的力学问题为主要研究对象的学者发展出来的)中心差分法的解题步骤1. 初始值计算(1) 形成刚度矩阵K ,质量矩阵M 和阻尼矩阵C 。

(2) 定初始值0x ,.0x ,..0x 。

(3) 选择时间步长t ∆,使它满足cr t t ∆<∆,并计算 021()a t =∆,112a t=∆,202a a =(4) 计算...0011122t x x x x a a -∆=-+(5) 形成等效质量阵01M a M a C -=+ (6) 对M -阵进行三角分解T M LDL -= 2.对每一时间步长(1) 计算时刻t 的等效载荷21()()t t t tt Q Q K a M x a Ma C x --∆=---- (2) 求解t t +∆时刻的位移 ()Tt t t L D L x Q -+∆=(3) 如需要计算时刻t 的速度和加速度值,则.1()t t t t t x a x x +∆-∆=-..0(2)t t t t t t x a x x x +∆-∆=-+若系统的质量矩阵和阻尼矩阵为对角阵时,则计算可进一步简化。

纽马克法的解题步骤1.初始值计算(1)形成系统刚度矩阵K ,质量矩阵M 和阻尼矩阵C(2)定初始值0x ,.0x ,..0x 。

(3)选择时间步长t ∆,参数γ、σ。

结构动力学-第五章 数值分析方法 (Part 2)

结构动力学-第五章 数值分析方法 (Part 2)

§5.5 Wilson-θ 法
ti +1 时刻的解
}i +1 = {u }i +1 {u 6 θ 3 Δt 2
({u}
i +θ
{u}i +1
Δt }i + ({u }i +1 + {u }i ) = {u 2 Δt 2 }i + }i +1 + 2 {u }i ) = {u}i + Δt {u {u ( 6
结构动力学
第五章 动力反应数值分析方法
11 of 23
华南理工大学
土木与交通学院
土木工程系
§5.5 Wilson-θ 法
不同数值积分法计算精度的比较
(0) = 0 考虑无阻尼自由振动问题: mu + ku = 0 u (0) = 1, u
步长: Δt = 0.1 × Tn
结构动力学 第五章 动力反应数值分析方法 12 of 23 华南理工大学 土木与交通学院 土木工程系
i +θ i
i +1
− {P}i ) +
⎡ 6 ⎤ 6 }i + 2 {u }i ⎥ + u + {u [M ] ⎢ 2 { }i θ Δt ⎢ ⎥ ⎣ (θ Δt ) ⎦ ⎛ 3 ⎞ θ Δt }i + }i ⎟ {u [C ] ⎜ {u}i + 2 {u 2 ⎝ θ Δt ⎠
结构动力学 第五章 动力反应数值分析方法 9 of 23 华南理工大学 土木与交通学院 土木工程系
4 of 23
华南理工大学
土木与交通学院
土木工程系
§5.5 Wilson-θ 法
加速度变化规律
( ti ) + ατ a ( ti + τ ) = u (0 ≤ τ ≤ θ Δt )

结构动力学计算-PPT精品文档

结构动力学计算-PPT精品文档
P=1
图乘法
EI
m EI m
O
y
l
m y
2l 3 11 3 EI
3 EI m y ( t) 3 y ( t)0 2 l
EI
ky
F 0
y
柔度法(Flexibility method)
柔度的定义和物理意义?与刚度的关系? 1 单位荷载引起的结构的变形 k O y
柔度法步骤: 1.在质量上沿位移正向加惯性力; 2.求外力和惯性力引起的位移; 3.令该位移等于体系位移。
例4.求图示体系的自振频率和周期。 解:自由度数判断:1个

m 1 k m
m/2
EI EI
m
EI
l
l
2 l3 11 3 EI
l
l
=1

1 3 2l3 m 2 3EI

EI 3 ml
例2. 用柔度法建立体系的运动方程 m
l EI EI l
y m y
m y
1
O
2l 3 11 3 EI
3 EI m y ( t) 3 y ( t)0 2 l
P=1

y 0
?
y
y
m y
图乘法
l
例3:用柔度法列运动方程
m y (t )
l
y (t )
y
F=1
受力分析,求外力作 用下体系的位移
k
y f ( m y ) I
m yk y0
m y
k
从柔度的概念出发,分析结构的变形,建立运动方程 不同方法得到相同的表达式
柔度法列运动方程的步骤
在质量上沿位移方向施加惯性力;

结构动力学 ppt课件

结构动力学  ppt课件

7
§1.3 结构动力分析中的自由度
一. 自由度的定义
确定体系中所有质量位置所需的独立坐标数,称作体 系的动力自由度数。
单自由度体系、有限自由度体系、无限自由度体系 二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难, 而且从工程角度也没必要。常用简化方法有: 集中质量法 广义坐标法 有限单元法
EI
P(t )
(t ) m y y(t )
1
k11
l
k11
12EI / l 3 12EI / l 3
k11 24 EI / l 3
(t ) m y
(t ) k11 y(t ) P(t ) m y
24 EI y (t ) P(t ) 3 l
PPT课件 18
例4.
P(t )
1P
P(t)
P(t )
l Pl/4
l/2
2l 3 11 3EI
Pl 3 1P 16 EI
2l 3 l3 (t )] 1P (t )] y(t ) 11[m y [m y P(t ) 3EI 16 EI
PPT课件 17
例3.
P(t )
l
EI
m
EI1
第三类问题:荷载识别。
PPT课件
5
第四类问题:控制问题
输入 (动力荷载) 结构 (系统) 控制系统 (装置、能量) 输出 (动力反应)
本课程主要介绍结构的反应分析 任务 讨论结构在动力荷载作用下反应的分析的方法。寻找 结构固有动力特性、动力荷载和结构反应三者间的相互关 系,即结构在动力荷载作用下的反应规律,为结构的动力 可靠性(安全、舒适)设计提供依据。
要了解和掌握结构动力反应的规律,必须首先建立描述 结构运动的(微分)方程。建立运动方程的方法很多,常用的 有虚功法、变分法等。下面介绍建立在达朗伯原理基础上的 “动静法”。 m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1/87结构动力学教师:刘晶波助教:宝鑫清华大学土木工程系2016年秋2/87结构动力学第5章动力反应数值分析方法3/87主要内容:❑数值算法中的基本问题❑分段解析法❑中心差分法❑一般时域逐步积分法的构造❑Newmark —β法❑Wilson —θ法❑时域逐步积分算法的新发展❑结构非线性反应分析4/875.1数值算法中的基本问题5/875.1数值算法中的基本问题前面介绍了二种结构动力反应分析方法:时域分析方法—Duhamel 积分法,频域分析方法—Fourier 变换法。

●这两种方法适用于处理线弹性结构的动力反应问题。

当外荷载为解析函数时,采用这两种方法一般可以得到体系动力反应的解析解,当荷载变化复杂时无法得到解析解, 通过数值计算可以得到动力反应的数值解。

●这两种分析方法的特点是均基于叠加原理,要求结构体系是线弹性的,当外荷载较大时,结构反应可能进入物理非线性(弹塑性),或结构位移较大时,结构可能进入几何非线性,这时叠加原理将不再适用。

此时可以采用时域逐步积分法求解运动微分方程。

6/875.1 数值算法中的基本问题时域逐步积分法——Step-by-step methods 结构动力反应分析的时域直接数值计算方法:(1)分段解析法;(2)中心差分法;(3)平均加速度法;(4)线性加速度法;(5)Newmark -β法;(6)Wilson -θ法;(7)Houbolt 法;(8)广义α法;•••••••••时域逐步积分法是结构动力分析问题中一个得到广泛研究的课题,也是得到广泛应用的计算方法。

7/875.1 数值算法中的基本问题采用叠加原理的时域和频域分析方法(Duhamel 积分,Fourier 变换),假设结构在全部反应过程中都是线性的,而时域逐步积分法,只假设在一个时间步距内是线性的,相当于用分段直线来逼近实际的曲线。

时域逐步积分法研究的是离散时间点上的值,例如位移和速度为:而这种离散化正符合计算机存贮的特点。

与运动变量的离散化相对应,体系的运动微分方程也不一定要求在全部时间上都满足,而仅要求在离散时间点上满足,这相当于放松了对运动变量的约束。

(),(),1,2,i i i i u u t uu t i === 8/875.1 数值算法中的基本问题采用等时间步长离散时,t i =i ∆t ,i =1, 2, 3,…。

体系的运动微分方程仅要求在离散时间点上满足。

∆t ——离散时间步长离散的定义?9/875.1 数值算法中的基本问题一种逐步积分法的优劣,主要由以下四个方面判断:收敛性:当Δt →0时,数值解是否收敛于精确解; 计算精度:截断误差与时间步长Δt 的关系,若误差ε∝O(Δt n ),则称方法具有n 阶精度; 稳定性:随时间步数i 的增大,数值解是否变得无穷大(远离精确解);计算效率:数值计算中所花费的计算时间的多少。

一个好的方法首先必须是收敛的、有足够的精度(例如2阶精度,满足工程要求)、良好的稳定性、较高的计算效率。

在发展逐步积分法中,也的确发展了一些高精度但很费时的方法,在实际中得不到应用和推广。

10/875.1 数值算法中的基本问题根据是否需要联立求解耦联方程组,逐步积分法可分为两大类:隐式方法:逐步积分计算公式是耦联的方程组,需联立求解,计算工作量大,通常增加的工作量与自由度的平方成正比,例如Newmark -β法、Wilson -θ法。

显式方法:逐步积分计算公式是解耦的方程组,无需联立求解,计算工作量小,增加的工作量与自由度成线性关系,如中心差分方法(无阻尼时)。

下面先介绍分段解析算法,然后重点介绍两种常用的时域逐步积分法—中心差分法和Newmark -β法,同时也介绍Wilson -θ法,最后介绍非线性问题分析方法。

11/875.2分段解析法(Piecewise Exact Method)12/875.2分段解析法分段解析算法假设在t i ≤t ≤t i+1时段内分段解析法对外荷载的离散1()()/i i i i i ip p p p t τατα+=+=-∆ptp ip i +1△t iτ插值荷载:p (τ)实际荷载t i t i +1如果荷载p (t )采用计算机采样,即离散数值采样,则以上定义可认为是“精确”的。

13/875.2 分段解析法在t i ≤t ≤t i+1时段内体系的运动方程:初值条件:运动方程的特解:运动方程的通解:ταττττi i p p ku u c um +==++)()()()( 0(),()i i u u uuττττ==== ckp k u i i i p 2)(1)(ατατ-+=)sin cos ()(τωτωττζωD D c B A eu n +=-pt14/875.2 分段解析法将全解代入边界(初始)条件确定系数A 、B ,最后得:其中,τωτωτττζωτζωD D n n e A e A A A u sin cos )(3210--+++=012032121,,,[]i i i i i n n D p A A A u A A u A A k k kζααζωωω=-==-=+- τωζωωτωζωωττζωτζωD n D D n D n n e A A e A A A usin )(cos )()(32231--+--+= ()()()p c u u u τττ=+15/875.2 分段解析法当τ=∆t i 时,得到其中系数A —D '是结构刚度k ,自振频率ωn ,阻尼比ζ和时间步长∆t 的函数。

上式给出了分段解析法根据i 时刻运动及外力计算i +1时刻运动的递推计算公式。

✦如果结构是线性的,并采用等时间步长,则A —D '均为常数,其计算效率非常高,在p (t )为离散采样的定义下是精确解。

✦如果是非线性问题,则A —D '均为变量,计算效率会大为降低。

1111++++'+'+'+'=+++=i i i i i i i i i i p D p C u B u A uDp Cp uB Au u pt16/875.2 分段解析法分段解析法计算公式中的系数⎪⎪⎭⎫⎝⎛∆+∆-=∆-t t e A D D t ωωζζζωcos sin 12⎪⎪⎭⎫ ⎝⎛∆=∆-t e B D D t ωωζωsin 1⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡∆⎪⎪⎭⎫ ⎝⎛∆+-∆⎪⎪⎭⎫ ⎝⎛--∆-+∆=∆-t t t t e t k C D n D D t n ωωζωζζωζωζζωcos 21sin 1212122 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∆∆+∆∆-+∆-=∆-t t t t e t k D D n D D t n ωωζωωζωζζωcos 2sin 122112 ⎪⎪⎭⎫⎝⎛∆--='∆-t e A D nt ωζωζωsin 12⎪⎪⎭⎫ ⎝⎛∆--∆='∆-t t e B D D t ωζζωζωsin 1cos 2⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡∆∆+∆⎪⎪⎭⎫⎝⎛-∆+-+∆-='∆-t tt t e tk C D D n t ωωζζζωζωcos 1sin 111122⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∆+∆--∆='∆-t t e t k D D D t ωωζζζωcos sin 11121111i i i i i i i i i i u Au BuCp Dp uA uB uC pD p ++++=+++''=+''++17/875.2 分段解析法分段解析法的误差仅来自对外荷载的假设,而在连续时间轴上严格满足运动微分方程。

一般的时域逐步积分法将进一步放松要求,仅要求在离散的时间点上满足运动方程,即放松了对运动的约束。

18/875.3中心差分法(Central Difference Method)19/875.3中心差分法中心差分方法用有限差分代替位移对时间的求导(即速度和加速度)。

如果采用等步长,∆t i =∆t ,则i 时刻速度和加速度的中心差分近似为:tu u ui i i ∆-=-+211 2112t u u u ui i i i ∆+-=-+ ii i i i i i p ku tu u ctu u u m=+∆-+∆+--+-+2211211)()()()(i i i i t p t ku t u c t u m =++ )()()()(i i i i i i i i t p p t u u t u u t u u ==== 11222222i i ii m c m mc u p k u u t t t tt +-⎫⎫⎫⎛⎛⎛+=---- ⎪ ⎪ ⎪∆∆∆∆∆⎝⎝⎝⎭⎭⎭20/875.3 中心差分法多自由度体系的中心差分法逐步计算公式为:11222222i i ii m c m mc u p k u u t t t t t +-⎫⎫⎫⎛⎛⎛+=---- ⎪ ⎪ ⎪∆∆∆∆∆⎝⎝⎝⎭⎭⎭{}{}{}{}{}{}{}{}()()()()i ii i i i i iu u t u u t u u t p p t ==== {}{}{}(){}{}{}{}()112111212i i i i i i i u u u tuu u u t+-+-=-∆=-+∆ [][]{}{}[][]{}[][]{}212211122112i i i i M C u t t p K M u M C u t t t +-⎫⎛+ ⎪∆∆⎝⎭⎫⎫⎛⎛=---- ⎪ ⎪∆∆∆⎝⎝⎭⎭21/875.3 中心差分法单步法和多步法的概念单步法:采用时域逐步积分法计算某一时刻的运动时,仅需已知前一时刻的运动。

多步法:需要前两个或两个以上时刻的运动。

中心差分法在计算t i+1时刻的运动u i +1时,需要已知t i 和t i -1两个时刻的运动u i 和u i -1,因此,中心差分法属于两步法;而分段解析法仅需要已知t i 时刻的运动,因此为单步法。

11222222i i i i m c m mc u p k u u t t t t t +-⎫⎫⎫⎛⎛⎛+=---- ⎪ ⎪ ⎪∆∆∆∆∆⎝⎝⎝⎭⎭⎭1111++++'+'+'+'=+++=i i i i i i i i i i p D p C u B u A uDp Cp uB Au u 22/875.3 中心差分法时域逐步积分法计算中起步的概念用两步法进行计算时存在起步问题,因为仅根据已知的初始位移和速度,并不能自动进行运算,而必需给出两个相邻时刻的位移值,方可开始逐步计算。

在初始时刻需要建立两个起步时刻(即i =0, -1)的位移值,这即是逐步积分的起步问题。

相关文档
最新文档