嗜血神探浅谈鲁米诺(发光氨)在法医血痕检验技术中的

嗜血神探浅谈鲁米诺(发光氨)在法医血痕检验技术中的
嗜血神探浅谈鲁米诺(发光氨)在法医血痕检验技术中的

嗜血神探—浅谈鲁米诺(发光氨)在法医血痕检验技术中的应用

北京大学药学院 陶鹏宇

关键词:法医学,法医物证学,血痕检验技术,鲁米诺,荧光反应

题记:狱事莫重于大辟,大辟莫重于初情,初情莫重于检验。—世界法医学鼻祖:宋慈【南宋】

法医科学的发展历史是一个漫长,复杂而又令人神往的过程。它是一个成功的故事,是人类在弥补法网中的漏洞,防止犯罪分子逃脱惩罚这一永无止境的斗争中所取得的一个又一个的胜利—这些胜利有的非常重大,而有些则小到几乎无法察觉。但是在现代社会,随着大规模战争的消失,犯罪也成为社会不安定的首要因素。因此,谁也无法否认法医学对现代犯罪案件的侦破工作乃至于整个人类社会的安定与发展的不朽贡献。如果没有法医学,如今关在监狱中的无数恶棍就会逍遥法外。电子显微镜,光谱,气体彩色成像,DNA鉴定等高科技手段为法医学的发展描绘了无限光明的蓝图;而在法医学的众多分支学科,如法医病理学,法医物证学..,法医毒理学,法医毒物分析,临床法医学,法医精神病学等高科技手段也有着广泛的应用和渗透,而且高超的科技技术手段也使法医学各学科界限不再明显,学科的交叉和双赢更加繁荣。

提到法医学的重要分支法医物证学,就不得不提到证据。Evidence,means the facts,signs or the subjects that makes you believe something is true.而法医物证学作为法医学一个独立分支学科,则是运用医学,生物学,免疫学,遗传学和其他自然科学的知识和技术研究并解决涉及法律问题的物质证据的检验和鉴定的一门科学。法医物证检验的主要对象是人体的组织器官,分泌物或排泄物。常见的有血液(痕),精液(斑),唾液(斑),尿液(斑),毛发,骨骼,牙齿,呕吐物,粪便,汗液,泪斑等。与痕迹证据等其他物质证据一样,这种生物物证具有一般物证所共有的特征,即客观存在性和与案件的关联性。但这些重要的证据也同时具有另一个特点,即它们是极细小而分布范围不固定的物质和痕迹。有别于其他物证的是,法医物证属于生物性物证,具有生物物证的特殊属性。法医物证中多含蛋白质及核酸等有机大分子成分。保持活性时往往可以反映出一些生理规律,然而法医们常常要面临的问题是这些活性成分会受到各种物理,化学及生物因素的影响,这些不可避免的影响导致的直接结果就是使检验的时机和条件丢失。。正因为要面对工作中特殊复杂的环境和严峻的挑战,科学技术在法医物证学中才更显其神通广大。法医需要高超的技术层面上的支持,才能准确快速的完成取证检验。

在简要介绍了法医学及法医物证学的概论之后,我们要走近这位传说中的嗜血神探鲁米诺。顾名思义,鲁米诺用于取证检验中的血痕检验。首先先介绍一下化学药品鲁米诺。鲁米诺,

化学式C8H7N3O2。(图一为鲁米诺的结构简式)在常

温下是一种黄色晶体或米黄色粉末。是一种比较稳定

的化学试剂。熔点约280摄氏度。碱性条件下可以被

氧化剂氧化,发出蓝绿色荧光,最大波长可达425nm。

据实验测定,多种金属离子,阳离子,和有机物能增

强或抑制鲁米诺化学发光体系的发光。或直接氧化鲁

米诺而发光。这种性质在化学分析中被广泛应用于酸

碱滴定,氧化还原滴定和络合滴定中,鲁米诺已作为

化学发光指示剂,在颜色较深或浑浊的溶液体系中,

具有分辨率好的特点。在生物学中,这种性质已被用于30多种金属离子,氧,卤素,硫化物,氰化物的痕量分析。再有机和临床分析中,已广泛应用于氨基酸,氨基醇类,胆甾醇,有机磷化合物,葡萄糖,血红素,酶等的测定。。由

于价格低廉,性质稳定,鲁米诺,这个1853年已被人工合成的有机药品,已被广泛应用于各行各业。

而在法医学的血痕检验中,;鲁米诺则被应用于检验程序中预检验这一步骤中。所谓血痕,就是指血液在人体外干燥后所形成的斑迹,是最常见,最广泛的物证检材。但血液一旦离开人体,就面临着被降解,腐败和污染的危险。一旦血液已陈旧或被降解到含量极微的程度,就会给检验工作带来空前的困难。对于这类血痕的检验,应先用肉眼观察血痕的部位,颜色,形状和范围。随后进行预检验。我们在血痕检验中场用的鲁米诺试剂,是鲁米诺和过氧化氢的混合物。操作方法为鲁米诺0.1克,无水碳酸钠5克,30%过氧化氢15mL,蒸馏水100mL,混合溶解,将试剂装入玻璃喷雾瓶内,在暗室内对准检材喷射,如系血痕,则发出强荧光。

如此简单的操作,鲁米诺检验法却具有令人叹

为观止的检验精度。鲁米诺的灵敏度可以达到

一百万分之一,即一滴血混在999,999滴水中

也可以被检测出来。(图二为鲁米诺的荧光反

应)

谈到这,我们不禁对这位嗜血神探肃然起敬。

关于鲁米诺的发光机理,就不得不谈到它的作

用对象:人类血液。我们可以这样认为,血液

是个巨大的循环器官,它保障了全身细胞所需

养分(氧气,葡萄糖,激素,脂质,氨基酸,盐分,维生素)的良好供应,并把代谢产生的废物(尿素,尿酸)运离细胞。而具有生物学常识的人都知道,血液成分为血浆和血细胞,血细胞又分为红细胞(图三为人体红细胞),白细胞和血小板。而与鲁米诺发光有关的则正是红细胞中的血红蛋白。血红蛋白是人类体内的一种色素蛋白。是一个有两对不同珠蛋白链组成的四聚体α2β2.分子质量为64400Da。在每条珠蛋白链的特定位置,都有血红素分子通过亚铁原卟啉与珠蛋白相连。鲁米诺区别任何其他动物的血红蛋白的机制,是根据哺乳动物红细胞的特殊结构。由于血液中氧气和血红蛋

白的可逆结合,使得氧气在机体内随血液循

环实现运输成为可能。根据血液流变学的观

点,血红蛋白分子虽然使血液的携氧能力增

加,但却有碍于血液的流动性。在无脊椎动

物体内,携氧大分子直接溶于血浆,使得血

液极为粘滞;在冷血动物与鸟类的体内,携

氧大分子含在有核红细胞之内,虽然提高了

携氧能力,但高粘的悬浮液有损于血液的流

动性。而哺乳动物创造性的进化为无核而有

高度可变形的红细胞。使血液流动性的受损

程度降到最低。所以人类和其他动物的红细胞和血红蛋白有着截然不同的区别。而鲁米诺发出荧光的机理则是由于血红蛋白(图四为人体但血红蛋白结构示意图)中的血红素分子上的亚铁原卟啉,存在亚铁离子在和氧气(血红蛋白携带)结合后,被氧化成铁离子。氧气在被组织细胞利用后,铁离子则被还原成亚铁离子。而鲁米诺正是在亚铁离子和铁离子的催化下,被氧气氧化才发出了荧光。此外在赤血盐,三氯化铁,氯化亚铁的作用下,也可以发生类似的氨基苯二酰氧化反应。于是在上述机理的作用下,嗜血神探鲁米诺成就了他的威名。

智者千虑,必有一失。对于鲁米诺在血痕检验中的应用,也并非无懈可击。首先在使用前,鲁米诺就存在在空气中被氧化而干扰检验结果的可能。所以在喷射前按0.05%的比例加入咪唑‐4‐碳酸,或按0.2%的比例加入尿酸,同时鲁米诺的使用量和反应时间的记录也在不同程度上影响着检验结果。请注意:鲁米诺的发光反应是由于被氧化造成的。这也就意味着很多氧化物及能起催化作用的金属也能使鲁米诺发光。这其中就包括我们日常生活中常见的漂白粉。如果犯罪分子非常狡猾,用漂白粉清洗过现场以逃脱法医的检验,就有可能干扰鲁米诺的作用效果。因为漂白粉的主要成分为氯化钙和次氯酸钙,其中有效成分为次氯酸钙。由于次氯酸及次氯酸盐均具有强氧化性,例如在空气中久置的漂白粉可以和空气中的二氧化碳和水反应,转变成次氯酸进而发挥强氧化性,在干扰鲁米诺检验方面,机理是相似的。但不同的氧化性物质显示的荧光颜色和显示的时间是不同的。如果是漂白剂,则发出的荧光快速闪现;如果是血痕,则荧光逐渐显现。有经验的法医科可以据此判断出来。但也存在检验不出来的可能性。对于此的办法是搁置现场一段时间,等待漂白粉和空气充分接触反应使漂白作用消失后再做检验。为了确保万无一失,则是在预检验之后运用血液中的遗传物质进行DNA 分析以确定最后结果。同时鲁米诺又是一种具有强酸性的物质,对眼睛,皮肤,呼吸道有一定的刺激作用。所以检验人员需要做好相应的防护措施。可见在整个血痕检验的程序中,鲁米诺相当于一个战时野战医院·的作用,只能祈祷初步检验和确定血痕的作用。而对于进一步检验还要依赖于其他技术手段。

血痕检验作为法医学最基本的检验手段之一,已有非常悠久的历史。南宋宋慈的《洗冤集录》是世界上最早的法医学著作。但在《洗冤集录》问世之前,我国劳动人民就发明了用糟醋,酒泼以显示有血入地的痕迹。发展至今日,血痕检验自预检验一步,就有联苯胺试验,氨基比林试验,四甲基联苯胺试验,孔雀绿试验,血卟啉试验等其他办法。一个好汉三个帮,鲁米诺也同样拥有如此众多的验血高手相助。在进入预检验后的确证试验程序后,还可以利用DNA分析,光谱分析,血红素原结晶试验,再经过种属鉴别,ABO型血型检验,MN型血型检验,Lewis型血型检验,Kell型血型检验,P型血型检验等直到DNA分析鉴别出是否血痕,是人血还是动物血,个人识别等检验目标,以及与案件相关的一系列问题。必要时对血痕的性别,年龄,出血部位,出血时间等都要做出进一步的说明和判断。

其实就整个血痕检验,整个法医物证学,乃至于整个法医学领域,鲁米诺血痕检验法都只是极其微小的一部分,甚至我们可以不必采用这种方法而采用其他方法完成检验。但我们仍要感谢这微不足道的小部分。正是这一位位的“神探”的不竭努力,贡献自己深邃的智慧和非凡的能力,才创造出一个又一个看似已不可能的奇迹。我们的社会才得以安定,我们的家

庭才得以幸福。真的希望多出现一些这样的法医学神探,让“天下无贼”不再只出现在我们

的梦境里。

结语:对于化学的喜爱和追求,对化学在社会中的广泛应用的关注,使我选择了化学与社

会这门课程。更是我结识了卞老师这样的良师益友。虽然第一次写论文有些片面,心里也有

些没底,但仍然要衷心感谢卞老师给了我一个自主研究和学习的机会。当我对论文内容不抱

太大希望时,卞老师对我的鼓励使我坚定的走了下去,才有了今天这篇不太成熟也可能有许

多错误的论文。从卞老师那里学到的知识,是我对化学有了更深层次的了解。也许我的论文

不够优秀,也许过了一段时间就会被人遗忘,但我对化学的痴爱情怀将会永远不变。感谢卞

老师!感谢魅力无穷的化学!

参考书目及文献: 1.【南宋】宋慈 《洗冤集录》 北京,群众出版社,2006年7月

2.曾溢滔 《人类血红蛋白》 北京,科学出版社,2002年1月

3.【美】科林·埃文斯 《证据—历史上最具争议的法医学案例》 北京,

新知文库,2007年8月

4.侯一平等 《法医物证学》第二版 北京,人民卫生出版社,2004年7

5.陈昆峰,曾昭书 《法医检验技术》 北京,海洋出版社,2007年9月

6.【联邦德国】H.施密德‐舍恩拜恩, G.格鲁瑙 ,H‐布罗伊尔 《图解血

液流变学》 北京,科学出版社,1989年3月

网络资料查询处: https://www.360docs.net/doc/5c725231.html,/view/442759.htm

插图查询处: 百度图片网

鲁米诺电化学发光用于生物分子分析的研究进展

鲁米诺电化学发光用于生物分子分析的研究进展 屠一锋 苏州大学化学化工学院分析化学研究所,215123 本课题组开展电化学发光分析研究工作的主要目标是应用于生物分子分析: 一、对鲁米诺电化学发光行为及机理的理解:文献报道鲁米诺的电化学发光原理类似于其化学发光原理,是基于鲁米诺的两步氧化反应,在第二步氧化开环时生成激发态而产生光辐射,是不可逆过程,我们的研究表明,鲁米诺的电化学发光可能更主要是涉及自由基的过程,其氧化还原过程中形成自由基并在相应的条件下可在未氧化开环的条件下辐射光信号,从而不需要氧化至第二步开环反应,因此鲁米诺分子可以提供可逆的电化学发光反应,从而为研制电化学发光传感器和检测器提供了重要的基础。多种纳米粒子可以促进鲁米诺在低电位下的可逆电化学发光反应。 二、中性介质中鲁米诺的电化学发光行为:绝大部分文献报道均强调鲁米诺的电化学发光必须在强碱性介质中实施,而我们的研究主要瞄准中性介质中鲁米诺的电化学发光,经过长期研究,我们发现完全可以在中性介质中实施其电化学发光分析,这对开展生物分子的分析是十分有利的。研究中采用的主要技术措施是多种增敏技术来提高中性介质中鲁米诺电化学发光的效率,如使用增敏剂和电极表面修饰等。实现中性介质中的电化学发光对生物分子的研究具有重要价值。 三、生物分子分析研究:已探讨了对多种类型生物分子进行分析测定的性能,其主要机理是基于自由基之间的能量转移及自由基湮灭作用等,表现在信号响应上为电化学发光的增强或猝灭,研究对象包括生物小分子如谷胱甘肽、黄酮、维生素、尿酸等,灵敏度高,检测下限可达皮摩尔以下,生物大分子如酶、DNA等,已研究了葡萄糖氧化酶、尿酸氧化酶、谷丙转氨酶等及其催化体系均有响应,对DNA的响应亦已实现,并可用于研究DNA与小分子之间的作用。 四、电化学发光检测与流动分析及分离技术的联用:生物样品大多组成复杂,电化学发光检测池的研制可实现电化学发光检测与分离技术的联用,我们目前已经构建了结构合理、性能优良的电化学发光检测池,与流动分析成功联用,目前正开展毛细管电泳、芯片电泳与电化学发光检测联用的研究。对与毛细管电泳联用的电化学发光检测,主要设计为柱端检测方式,与芯片电泳的联用,则主要设计为全通道检测模式,已完成检测所需的线阵CCD 微弱光检测器的研制。

化学发光试剂鲁米诺的一种特殊合成方法

鲁米诺的一种特殊合成方法 鲁米诺又叫发光氨,CSA号为521-31-3。化学名称为3-氨基-苯二甲酰肼。在常温状态下呈现出黄色粉末,是一种很稳定,研发生产多年人工合成的有机化合物。同时它也是刑侦的一种检测工具,可以在犯罪现场检测血迹,可以让肉眼没办法观察到的血液使其发光,呈现出血迹痕迹,方便于记录与侦查。 目前已公开的制备鲁米诺与异鲁米诺的工艺有多种,但是多种制备方法中要么存在废料污染,不符合绿色环保要求,要么就是工艺繁琐,设备要求高,要么原料成本高,要么存在不必要的人工成本,多多少少存在些问题,不能做到尽善尽美。为适应鲁米诺类试剂的广阔市场需求,一种工艺简洁、成本低、绿色环保的工业化生产方式十分重要。介绍一种最新报道的鲁米诺或异鲁米诺的合成方法。

这种利用一锅法合成鲁米诺或异鲁米诺的方法,具体步骤如下: 步骤一:以3-硝基邻苯二甲酸或4-硝基邻苯二甲酸为起始原料,与尿素在有机溶剂中回流3-10小时,3-硝基邻苯二甲酸或4-硝基邻苯二甲酸与尿素的摩尔比为1:1-3,得到含3-硝基邻苯二甲酰亚胺或4-硝基邻苯二甲酰亚胺的混合产物A; 步骤二:向混合产物A中加入水合肼水溶液,起始原料3-硝基邻苯二甲酸或4-硝基邻苯二甲酸与水合肼的摩尔比为1:1-3,加热回流1-5小时,得到含3-硝基邻苯二甲酰肼或4-硝基邻苯二甲酰肼的混合产物B; 步骤三:向混合产物B中加入催化剂和还原剂,起始原料3-硝基邻苯二甲酸或4-硝基邻苯二甲酸与还原剂的摩尔比为1:1.5-4,在温度为30-50℃下还原反应3-8小时,得到含鲁米诺或异鲁米诺的混合产物C,混合产物C经精制后,得到鲁米诺或异鲁米诺。 这种制备方法将三步反应在同一锅内完成,且中间产物无需进行任何纯化处理,直接得到产物,不仅具有操作方便、工艺简洁的优点,而且得到的鲁米诺以及异鲁米诺的收率和纯度高,能充分满足产品工业化生产的需求以及市场的需求。另外,这种合成方法所需的试剂均为常规试剂,制备过程中使用的设备也都是常规设备,原料成本和设备成本都较低,适合工业化化大生产。

化学发光免疫分析技术原理简介

化学发光免疫分析技术原理简介 20 世纪60 年代即有人利用化学发光法测定水样中细菌含量和菌尿症患者尿液检查。1977 年Halman 等将化学发光系统与抗原抗体反应系统相结合,创建了化学发光免疫分析法,保留了化学发光的高度灵敏性,又克服了它特异性不足的缺陷。近年来对技术与仪器的不断改进,使此技术已成为一种特异,灵敏,准确的自动化的免疫学检测方法。1996 年推出的电化学发光免疫技术,在反应原理上又具有一些新的特点。这两种技术目前已在国内一些大型医院实验室用于常规免疫学检验。 一、化学发光免疫分析法 化学发光免疫分析法( chemiluminescence immunoassay , CLlA) 是把免疫反应与发光反应结合起来的一种定量分析技术,既具有发光检测的高度灵敏性,又具有免疫分析法的高度特异性。在CLIA中,主要有两个部分,即免疫反应系统和化学发光系统。免疫反应系统与放射免疫测定中的抗原抗体反应系统相同化学发光系统则是利用某些化合物如鲁米诺( luminol) 、异鲁米诺(isolu-minol) 、金刚烷( AMPPD) 及吖啶酯( AE) 等经氧化剂氧化或催化剂催化后成为激发态产物,当其回到基态时就会将剩余能量转变为光子,随后利用发光信号测量仪器测量光量子的产额。将发光物质直接标记于抗原(称为化学发光免疫分析)或抗体上(称为免疫化学发光分析) ,经氧化剂或催化剂的激发后,即可快速稳定的发光,其产生的光量子的强度与所测抗原的浓度可成比例。亦可将氧化剂(如碱性磷酸酶等)或催化剂标记于抗原或 抗体上,当抗原抗体反应结束后分离多余的标记物,再与发光底物反应,其产生的光量子的强度也与待测抗原的浓度成比例。发光免疫分析的灵敏度高于包括RIA 在内的传统检测方法,检测范围宽,测试时间短,仅需30 - 60min 即可。试

荧光和化学发光免疫分析方法

荧光和化学发光免疫分析方法 免疫分析是利用抗原抗体反应进行的检测方法,即利用抗原与抗体的特异性反应, 应用制备好的抗原或抗体作为试剂,以检测标本中的相应抗体或抗原。由于免疫的特异性结合,免疫分析方法具有很好的选择性,荧光免疫分析和化学发光免疫分析是其中典型的两种。本文将对这两种免疫分析方法进行详细的介绍。 一、免疫 免疫是指机体免疫系统识别自身与异己物质,并通过免疫应答排除抗原性异物,以维持机体生理平衡的功能。免疫是人体的一种生理功能,人体依靠这种功能识别“自己”和“非己”成分,从而破坏和排斥进入人体的抗原物质,或人体本身所产生的损伤细胞和肿瘤细胞等,以维持人体的健康。 特异性免疫系统,是一个专一性的免疫机制,针对一种抗原所生成的免疫淋巴细胞(浆细胞)分泌的抗体,只能对同一种抗原发挥免疫功能。而对变异或其他抗原毫无作用。 1、抗原 1.1抗原的定义 抗原:是一类能刺激机体免疫系统使之产生特异性免疫应答(免疫原性) ,并能与相应抗体在体内或体外发生特异性结合的物质(免疫反应性)。 抗原一般为大分子物质,其分子量在10kD以上。 1.2抗原的分类

完全抗原:同时具有免疫原性和免疫反应性的抗原,如细菌、病毒、异种动物血清等。 半抗原:仅具有与相应抗原或致敏淋巴细胞结合的免疫反应性,而无免疫原性的物质。如大多数的多糖、类脂及一些简单的化学物质,它们本身不具免疫原性,但当与蛋白质大分子结合后形成复合物,便获得了免疫原性, 1.3抗原的性质 决定簇是指抗原分子表面的基团,它直接决定免疫学反映的特异性。 抗原通过抗原决定簇与相应淋巴细胞表面抗原受体结合,从而激活淋巴细胞,引起免疫应答,抗原也藉此与相应抗体或致敏淋巴细胞发生特异性结合。 因此,抗原决定簇是被免疫细胞识别的靶结构,也是免疫反应具有特异性的物质基础。 2、抗体 2.1抗体的定义 抗体:是机体受抗原刺激后,由淋巴细胞合成的一类能与相应抗原发生特异性结合的球蛋白。 2.2抗体的结构 抗体是机体受抗原刺激后,由淋巴细胞特别是浆细胞合成的一类能与相应抗原发生特异性结合的球蛋白,因其具有免疫活性故又称作免疫球蛋白。 人免疫球蛋白有五类,分别为IgG、IgA、IgM、IgD和IgE。 3、抗原抗体的结合

化学发光技术综述

化学发光技术综述 化学发光免疫测定(CLIA)是将抗原与抗体特异性反应与敏感性的化学发光反应相结合而建立的一种免疫检测技术。 (一)原理 化学发光免疫测定(CLIA)属于标记抗体技术的一种,它以化学发光剂、催化发光酶或产物间接参与发光反应的物质等标记抗体或抗原,当标记抗体或标记抗原与相应抗原或抗体结合后,发光底物受发光剂、催化酶或参与产物作用,发生氧化还原反应,反应中释放可见光或者该反应激发荧光物质发光,最后用发光光度计进行检测。 (二)特点 特异性高、敏感性高、分离简便、快速、试剂无毒、安全稳定、可自动化。 (三)分类 1、从反应原理上,化学发光免疫技术主要分为直接化学发光和酶促反应化学发光。 直接化学发光

化学发光剂在发光免疫分析过程中不需酶的催化作用,直接参与发光反应,它们在化学结构上有产生发光的特有基团,可直接标记抗原或抗体。直接化学发光速度快、试剂稳定性好,但灵敏度略低于酶促发光。 代表性的发光剂有:吖啶酯、三联吡啶钌。 吖啶酯 在碱性条件下被H2O2氧化时,发出波长为470nm的光,具有很高的发光效率,其激发态产物N-甲基吖啶酮是该发光反应体系的发光体。 这类化合物的发光为闪光型,加入发光启动试剂后0. 4s 左右发射光强度达到最大,半衰期为左右。 特点: ①发光反应中在形成电子激发态中间体之前,联结于吖啶环上的不发光的取代基部分从吖啶环上脱离开来,即未发光部分与发光部分分离,因而其发光效率基本不受取代基结构的影响。 ②吖啶酯或吖啶磺酰胺类化合物化学发光不需要催化剂,在有H2O2 的稀碱性溶液中即能发光。因此应用于化学发光检测具有许多优越性。 优点主要有: ①背景发光低,信噪比高; ②发光反应干扰因素少;

嗜血神探浅谈鲁米诺(发光氨)在法医血痕检验技术中的

嗜血神探—浅谈鲁米诺(发光氨)在法医血痕检验技术中的应用 北京大学药学院 陶鹏宇 关键词:法医学,法医物证学,血痕检验技术,鲁米诺,荧光反应 题记:狱事莫重于大辟,大辟莫重于初情,初情莫重于检验。—世界法医学鼻祖:宋慈【南宋】 法医科学的发展历史是一个漫长,复杂而又令人神往的过程。它是一个成功的故事,是人类在弥补法网中的漏洞,防止犯罪分子逃脱惩罚这一永无止境的斗争中所取得的一个又一个的胜利—这些胜利有的非常重大,而有些则小到几乎无法察觉。但是在现代社会,随着大规模战争的消失,犯罪也成为社会不安定的首要因素。因此,谁也无法否认法医学对现代犯罪案件的侦破工作乃至于整个人类社会的安定与发展的不朽贡献。如果没有法医学,如今关在监狱中的无数恶棍就会逍遥法外。电子显微镜,光谱,气体彩色成像,DNA鉴定等高科技手段为法医学的发展描绘了无限光明的蓝图;而在法医学的众多分支学科,如法医病理学,法医物证学..,法医毒理学,法医毒物分析,临床法医学,法医精神病学等高科技手段也有着广泛的应用和渗透,而且高超的科技技术手段也使法医学各学科界限不再明显,学科的交叉和双赢更加繁荣。 提到法医学的重要分支法医物证学,就不得不提到证据。Evidence,means the facts,signs or the subjects that makes you believe something is true.而法医物证学作为法医学一个独立分支学科,则是运用医学,生物学,免疫学,遗传学和其他自然科学的知识和技术研究并解决涉及法律问题的物质证据的检验和鉴定的一门科学。法医物证检验的主要对象是人体的组织器官,分泌物或排泄物。常见的有血液(痕),精液(斑),唾液(斑),尿液(斑),毛发,骨骼,牙齿,呕吐物,粪便,汗液,泪斑等。与痕迹证据等其他物质证据一样,这种生物物证具有一般物证所共有的特征,即客观存在性和与案件的关联性。但这些重要的证据也同时具有另一个特点,即它们是极细小而分布范围不固定的物质和痕迹。有别于其他物证的是,法医物证属于生物性物证,具有生物物证的特殊属性。法医物证中多含蛋白质及核酸等有机大分子成分。保持活性时往往可以反映出一些生理规律,然而法医们常常要面临的问题是这些活性成分会受到各种物理,化学及生物因素的影响,这些不可避免的影响导致的直接结果就是使检验的时机和条件丢失。。正因为要面对工作中特殊复杂的环境和严峻的挑战,科学技术在法医物证学中才更显其神通广大。法医需要高超的技术层面上的支持,才能准确快速的完成取证检验。 在简要介绍了法医学及法医物证学的概论之后,我们要走近这位传说中的嗜血神探鲁米诺。顾名思义,鲁米诺用于取证检验中的血痕检验。首先先介绍一下化学药品鲁米诺。鲁米诺, 化学式C8H7N3O2。(图一为鲁米诺的结构简式)在常 温下是一种黄色晶体或米黄色粉末。是一种比较稳定 的化学试剂。熔点约280摄氏度。碱性条件下可以被 氧化剂氧化,发出蓝绿色荧光,最大波长可达425nm。 据实验测定,多种金属离子,阳离子,和有机物能增 强或抑制鲁米诺化学发光体系的发光。或直接氧化鲁 米诺而发光。这种性质在化学分析中被广泛应用于酸 碱滴定,氧化还原滴定和络合滴定中,鲁米诺已作为 化学发光指示剂,在颜色较深或浑浊的溶液体系中, 具有分辨率好的特点。在生物学中,这种性质已被用于30多种金属离子,氧,卤素,硫化物,氰化物的痕量分析。再有机和临床分析中,已广泛应用于氨基酸,氨基醇类,胆甾醇,有机磷化合物,葡萄糖,血红素,酶等的测定。。由

鲁米诺化学发光体系的应用

鲁米诺化学发光体系的应用 鲁米诺(5-氨基-2,3-二氢-1,4-二杂氮萘二酮,也称3-氨基邻苯二甲酰肼)俗名发光氨luminol,因其结构简单、易合成、水溶性好,以及发光量子效率高等特点,常温下是一种黄色晶体或者米黄色粉末,是一种比较稳定的化学试剂,化学式C8H7N3O2 。鲁米诺是最常用的液相化学发光试剂之一。自从1928年albrecht首次报道了鲁米诺与氧化剂在碱性溶液中的化学发光反应以来,人们对该化学发光体系的研究就一直十分活跃,使得该化学发光体系被应用于许多领域之中。通常用于酶促化学发光实验以及刑侦上的微量血迹检测。由于其结构简单、易合成、发光量子效率高的特点,现也被用于蛋白质印迹试验western blot 中。 鲁米诺化学发光体系的分析应用主要基于以下几个方面。 一、鲁米诺-过氧化氢化学发光体系应用最为广泛。许多过渡金属离子对鲁米诺-过氧化氢化学发光反应具有很好的催化作用。李正平等发现铁蛋白催化,产生很强的化学发光信号,建立简便灵敏的检测铁蛋白的化学发光方法。方法的线性范围为0.5~10μg/l,检出限为0.36μg/l,为铁蛋白作为纳米粒子标记物及直接检测提供一种新的途径。戴路等报道了一种新的测定雌性激素的流动注射化学发光方法。在碱性条件下,金银复合纳米粒子能显著地增强鲁米诺-过氧化氢化学发光,而雌性激素能明显地抑制该体系的化学发光强度,建立了测定天然雌激素(雌酮、雌二醇和雌三醇)的化学发光方法。该方法已用于孕妇尿样中雌激素总量的测定。刘振波等基于人的血清白蛋白对鲁米诺-过氧化氢-叶绿素铜钠化学发光体系的抑制作用,采用流动注射技术建立了一种简单、快速、可连续测定人的血清白蛋白的新方法。 二、

化学发光免疫分析技术题库1-1-8

化学发光免疫分析技术题库1-1-8

问题: [单选,A2型题,A1A2型题]下列不会影响标记的因素是() A.被标记蛋白质的性质 B.原料比 C.温度 D.湿度 E.标记率 影响标记的因素包括:①发光剂的选择。②被标记蛋白质的性质。抗原作为被标志物时,应具有较高的纯度和免疫学稳定性;抗体作为被标志物时,则要求具有较高的效价,应用提纯的IgG来代替全血清。③标记方法的选择应正确选择与发光剂和被标志物结构相适应的耦联方式。④原料比。在制备发光剂-IgG抗体结合物时,IgG:发光剂:交联剂的克分子比mol:mol:mol会影响结合物的发光效率。⑤标记率。是指结合物中IgG与发光剂之间的克分子比。由于每一种发光剂对应于被标志物都有特定的最佳标记率,标志物选择不好,会出现不易保存等现象。⑥温度。控制标记时的反应温度极为重要,对于较稳定的小分子被标志物,温度可稍放宽些;而当被标志物是抗原或抗体蛋白质时,由于蛋白质对热的不稳定性,应在保证标记反应进行的前提下,尽量选择较低的温度,以避免蛋白质在标记过程中活性的丧失。⑦纯化与保存。多数经耦联反应制备的结合物,使用前都需进行纯化,除去未结合的发光剂和交联剂。结合物一般可分装保存在-70℃条件下,最好冷冻干燥保存。

问题: [单选,A2型题,A1A2型题]不需酶催化反应即可发光的发光底物是() A.吖啶酯 B.三联吡啶钌 C.鲁米诺或其衍生物 D.4-MUP E.AMPPD 吖啶酯化学发光特点:①推动发光的氧化反应简单快速,不需要催化剂,只要在碱性环境中即可进行;②反应体系中加入H2O2和NaOH溶液后,发光迅速,背景噪声低,保证了测定的敏感性;③吖啶酯可直接标记抗原或抗体,结合稳定,不影响标志物的生物学活性和理化特性;④吖啶酯发光为瞬间发光,持续时间短,因此对信号检测仪的灵敏度要求比较高。

化学发光剂鲁米诺的合成

化学发光剂─鲁米诺的合成 一、实验目的 学习芳烃硝化反应的基本理论和硝化方法,加深对芳烃亲电取代反应的理解,进一步掌握重结晶操作技术; 了解鲁米诺化学发光原理。 二、实验原理 米诺的原料,经脱水后得到的3-硝基-邻苯二甲酸酐可用于有机合成和醇 类测定。邻苯二甲酸酐经直接硝化,既可获得3-硝基-邻苯二甲酸,同时 也会得到4-硝基-邻苯二甲酸。在3-硝基-邻苯二甲酸分子中,硝基对邻 位羧基影响很大,它和羧酸会形成分子内氢键,加上相邻二羧基之间存在 的分子内氢键,对整个羧酸分子的离解产生显著的抑制作用,从而导致其 水溶性下降。在4-硝基-邻苯二甲酸中,硝基与羧酸之间难形成分子内氢 键,因而,它在水中的离解度相对要大一些,水溶性也好一些。邻苯二甲 酸酐硝化后产生的异构体的分离正是利用它们在水溶性上的差异加以解 决的。 反应式:

许多化学反应都是以热的形式释放能量,也有一些化学反应主要是以光的形式释放能量,鲁米诺(Luminol)在碱性条件下与氧分子的作用就是一个典型的化学发光例子。一般认为,鲁米诺在碱性溶液中转变为二价负离子,后者与氧分子反应生成一种过氧化物,过氧化物不稳定而发生分解,导致形成一种具有发光性能的电子激发态中间体。其过程如下: 现已证实,发光体是3-氨基-邻苯二甲酸盐二价负离子的激发单线态。当激发单线态返回至基态,就会产生荧光。激发态中间体也可将能量传递至激发态能量较低的受体分子,受激发的受体分子再通过发出荧光释放能量恢复到基态。不同受体分子的激发态能量的差异使其发出的荧光各不相同,这些现象在本实验中可观察得到。 三、药品 邻苯二甲酸酐、二缩三乙二醇、10%水合肼、二水合连二亚硫酸钠、二甲亚砜、浓硫酸、发烟硝酸、冰醋酸、10%氢氧化钠、氢氧化钾 四、实验操作 1、3-硝基-邻苯二甲酸的合成 在100mL三口烧瓶上,配置磁力搅拌器、温度计、冷凝管和滴液漏斗,分别加入12ml 浓硫酸和12g邻苯二甲酸酐。加热并开动搅拌器,当反应混合物温度升至80℃停止加热。将10mL发烟硝酸自滴液漏斗慢慢滴入烧瓶中,滴加速度以维持反应混合物温度在100~110℃[1]。 加完硝酸后,继续加热并搅拌1h,温度控制在100℃。然后,让反应液冷却。在通风橱

总甲状腺素(TT4)测定试剂盒(电化学发光免疫分析法)产品技术要求lztk

总甲状腺素(TT4)测定试剂盒(电化学发光免疫分析法) 适用范围:本试剂盒用于体外定量测定人体血清样本中总甲状腺素(TT4)的含量。 1.1产品型号/规格:100人份/盒、200人份/盒。 1.2主要组成 试剂盒由磁分离试剂(M)、试剂a(Ra)、试剂b(Rb)和定标品(TT4-Cal)(选配)组成。组成及含量如下: 2.1 外观 2.1.1 试剂盒各组分应齐全、完整、液体无渗漏; 2.1.2 磁分离试剂摇匀后应为棕色含固体微粒的均匀悬浊液,无明显凝集、无絮状物; 2.1.3 其它液体组分应澄清,无异物,沉淀物或絮状物; 2.1.4 包装标签应清晰、无磨损、易识别。 2.2 空白限 应不大于0.420μg/dL 。 2.3 准确度 用T4国家标准品(150551)进行检测,实测值与理论值之比应在0.850-1.150之间。 2.4 线性 在[1.0,24.86]μg/dL范围内,线性相关系数的绝对值(|r|)应不小于0.9900。 2.5 精密度 2.5.1 分析内精密度

在试剂盒的线性范围内,浓度为(5.0±1.0μg/dL)和(20.0±4.0μg/dL)的样品检测结果的变异系数(CV)应不大于8%。 2.5.2 批间精密度 在试剂盒的线性范围内,用3个批号试剂盒分别检测浓度为(5.0±1.0μg/dL)和(20.0±4.0μg/dL)的样品,检测结果的变异系数(CV)应不大于15%。 2.6 特异性 2.6.1与三碘甲状腺原氨酸(T3) 测定浓度不低于500ng/mL的T3样品,其测定结果应不高于1.5μg/dL; 2.6.2 与反三碘甲状腺原氨酸(rT3) 测定浓度不低于50ng/mL的rT3样品,其测定结果应不高于1.5μg/dL。 2.7 效期末稳定性 本产品效期为15个月,试剂盒在2~8℃下保存至有效期末进行检测,检测结果应符合2.1、2.2、2.3、2.4、2.5.1的要求。 2.8 溯源性 依据GB/T21415-2008《体外诊断医疗器械生物样品中量的测量校准品和控制物质赋值的计量学溯源性》的要求,校准品溯源至国家标准品(编号150551)。

化学发光剂鲁米诺的合成

化学发光剂鲁米诺的合成 化学发光剂?鲁米诺的合成 一、实验目的 学习芳烃硝化反应的基本理论和硝化方法,加深对芳烃亲电取代反应的理解,进一步掌 握重结晶操作技术; 了解鲁米诺化学发光原理。 二、实验原理 3-硝基-邻苯二甲酸(3-Nitrophthalic Acid)是制备化学发光剂鲁米诺的原料,经脱水后得到的3-硝基-邻苯二甲酸酐可用于有机合成和醇类测定。邻苯二甲酸酐经直接硝化,既可获得3-硝基-邻苯二甲酸,同时也会得到4-硝基-邻苯二甲酸。在3-硝基-邻苯二甲酸分子中,硝基对邻位羧基影响很大,它和羧酸会形成分子内氢键,加上相邻二羧基之间存在的分子内氢键,对整个羧酸分子的离解产生显著的抑制作用,从而导致其水溶性下降。在4-硝基-邻苯二甲酸中,硝基与羧酸之间难形成分子内氢键,因而,它在水中的离解度相对要大一些,水溶性也好一些。邻苯二甲酸酐硝化后产生的异构体的分离正是利用它们在水溶性上的差异加以解决的。

反应式: 许多化学反应都是以热的形式释放能量,也有一些化学反应主要是以光的形式释放能量,鲁米诺(Luminol)在碱性条件下与氧分子的作用就是一个典型的化学发光例子。一般认为,鲁米诺在碱性溶液中转变为二价负离子,后者与氧分子反应生成一种过氧化物,过氧化物不稳定而发生分解,导致形成一种具有发光性能的电子激发态中间体。其过程如下: 现已证实,发光体是3-氨基-邻苯二甲酸盐二价负离子的激发单线态。当激发单线态返回至基态,就会产生荧光。激发态中间体也可将能量传递至激发态能量较低的受体分子,受激发的受体分子再通过发出荧光释放能量恢复到基态。不同受体分子的激发态能量的差异使其发出的荧光各不相同,这些现象在本实验中可观察得到。 三、药品

常见化学发光免疫分析技术比较

常见化学发光免疫分析技术比较 1、化学发光免疫分析 化学发光免疫分析(chemiluminescence immunoassay,CLIA),英音:[,kemi,lju:mi'nes?ns] [,imju:n?u?'sei] 是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。 CLIA是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。 1.1、化学发光免疫分析原理 化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hv) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。 1.2、化学发光免疫分析类型

化学发光免疫分析法以标记方法的不同而分为两种: (1)化学发光标记免疫分析法; (2)酶标记、以化学发光底物作信号试剂的化学发光酶免疫分析法 1.2.1化学发光标记免疫分析 化学发光标记免疫分析又称化学发光免疫分析(CL IA ) , 是用化学发光剂直接标记抗原或抗体的免疫分析方法。常用于标记的化学发光物质有吖啶酯类化合物-acridiniumester (AE) , 是有效的发光标记物,其通过起动发光试剂(NaOH-H2O2) 作用而发光, 强烈的直接发光在一秒钟内完成, 为快速的闪烁发光。吖啶酯作为标记物用于免疫分析, 其化学反应简单、快速、无须催化剂; 检测小分子抗原采用竞争法, 大分子抗原则采用夹心法, 非特异性结合少, 本底低; 与大分子的结合不会减小所产生的光量, 从而增加灵敏度。 1.2.2化学发光酶免疫分析 从标记免疫分析角度, 化学发光酶免疫分析(chemiluminescent enzyme immunoassay,CLEIA ) , 应属酶免疫分析, 只是酶反应的底物是发光剂, 操作步骤与酶免分析完全相同: 以酶标记生物活性物质(如酶标记的抗原或抗体) 进行免疫反应, 免疫反应复合物上的酶再作用于发光底物, 在信号试剂作用下发光, 用发光信号测定仪进行发光测定。目前常用的标记酶为辣根过氧化物酶(HRP) 和碱性磷酸酶(AL P) , 它们有各自的发光底物。 12.2.1HRP 标记的CLEIA

化学发光技术综述

化学发光技术综述 化学发光免疫测定()是将抗原与抗体特异性反应与敏感性的化学发光反应相结合而建立的一种免疫检测技术。 (一)原理 化学发光免疫测定()属于标记抗体技术的一种,它以化学发光剂、催化发光酶或产物间接参与发光反应的物质等标记抗体或抗原,当标记抗体或标记抗原与相应抗原或抗体结合后,发光底物受发光剂、催化酶或参与产物作用,发生氧化还原反应,反应中释放可见光或者该反应激发荧光物质发光,最后用发光光度计进行检测。 (二)特点 特异性高、敏感性高、分离简便、快速、试剂无毒、安全稳定、可自动化。 (三)分类 1、从反应原理上,化学发光免疫技术主要分为直接化学发光和酶促反应化学发光。 1.1直接化学发光

化学发光剂在发光免疫分析过程中不需酶的催化作用,直接参与发光反应,它们在化学结构上有产生发光的特有基团,可直接标记抗原或抗体。直接化学发光速度快、试剂稳定性好,但灵敏度略低于酶促发光。 代表性的发光剂有:吖啶酯、三联吡啶钌。 1.1.1 吖啶酯 在碱性条件下被H2O2氧化时,发出波长为470的光,具有很高的发光效率,其激发态产物甲基吖啶酮是该发光反应体系的发光体。 这类化合物的发光为闪光型,加入发光启动试剂后0. 4s 左右发射光强度达到最大,半衰期为0.9s左右。 特点: ①发光反应中在形成电子激发态中间体之前,联结于吖啶环上的不发光的取代基部分从吖啶环上脱离开来,即未发光部分与发光部分分离,因而其发光效率基本不受取代基结构的影响。 ②吖啶酯或吖啶磺酰胺类化合物化学发光不需要催化剂,在有H2O2 的稀碱性溶液中即能发光。因此应用于化学发光检测具有许多优越性。

全自动化学发光免疫分析仪课件

全自动化学发光免疫分析仪 技术审查指导原则 (第一次征求意见稿) 一、前言 本指导原则旨在指导注册申请人对全自动化学发光免疫分析仪注册申报资料的准备及撰写,同时也为技术审评部门对注册申报资料的技术审评提供参考。 本指导原则是对全自动化学发光免疫分析仪的一般要求,申请人应依据产品的具体特性确定其中内容是否适用,若不适用,需具体阐述理由及相应的科学依据,并依据产品的具体特性对注册申报资料的内容进行充实和细化。 本指导原则是对申请人和审查人员的指导性文件,但不包括注册审批所涉及的行政事项,亦不作为法规强制执行,如果有能够满足相关法规要求的其他方法,也可以采用,但需要提供详细的研究资料和验证资料,相关人员应在遵循相关法规的前提下使用本指导原则。 本指导原则是在现行法规和标准体系以及当前认知水平下制定的,随着法规和标准的不断完善,以及科学技术的不断发展,本指导原则相关内容也将适时进行调整。

二、适用范围 化学发光免疫分析根据化学发光物质的类型和发光特点,可分为电化学发光免疫分析和化学发光免疫分析,其中化学发光免疫分析根据发光剂的不同,可分为直接化学发光免疫分析、酶促化学发光免疫分析和鲁米诺氧途径免疫分析。目前,各类型化学发光免疫分析的常见发光剂包括:电化学发光剂为三联吡啶钌[RU(bpy)3]2+,直接化学发光剂为吖啶酯(AE),酶促化学发光剂为辣根过氧化物酶(HRP)催化鲁米诺(3-氨基苯二甲酰肼,luminol)及其衍生物或者碱性磷酸酶催化3-(2′-螺旋金刚烷)-4-甲氧基-4-(3″-磷酰氧基)苯-1,2-二氧杂环丁烷(AMPPD),鲁米诺氧途径发光剂为酞箐、二甲基噻吩衍生物及Eu螯合物。 化学发光免疫技术根据反应过程中标记物是否需要分离可分为均相反应和非均相反应。均相反应主要应用于鲁米诺氧途径免疫分析中,而非均相反应则应用于其他类型化学发光免疫分析中,通过采用固相分离、过滤分离、珠式分离、顺磁性颗粒分离等方式实现游离标记物和免疫复合物标记物的分离,其中顺磁性颗粒分离较其他分离方式更为常用。目前,基于鲁米诺氧途径免疫分析原理的产品还比较少,临床常用的全自动化学发光免疫分析仪更多地采用非均相反应模式。

电化学发光分析研究进展

电化学发光分析研究进展 电化学发光是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射。电化学发光与化学发光相同之处是二者的发光均由进行能量电子转移反应的组分所产生;而不同之处是电化学发光由电极上施加的电压所引发和控制,化学发光是由试剂的混合所引发和控制。根据电化学发光的发光强度进行分析的方法称为电化学发光分析法。该法不仅具有化学发光分析的灵敏度高、线性范围宽和仪器简单等优点,而且具有电化学分析控制性强、选择性好等优点。近年来,在新电化学发光试剂的合成和应用研究方面取得了比较大的发展,特别是电化学发光在免疫分析中的应用引起人们极大的研究兴趣。 福州大学,长春应用化学研究所,华东师范大学,陕西师范大学等单位在电化学发光分析新体系和新技术研究方面取得一系列的成果,受到国内外同行的关注。国内外对电化学发光分析法的研究均有评述。 本文拟侧重介绍ECL体系及其在临床分析研究中的应用,同时,对我们近年来在电化学发光分析方面的研究工作也作以简要介绍。 1电化学发光体系及其应用 ECL体系按发光试剂的种类可以分为以下两类:(1)金属配合物电化学发光体系; (2)有机化合物的电化学发光体系。 1.1无机化合物的电化学发光体系 无机化合物电化学发光体系中,最典型的电化学发光试剂是钌联吡啶配合物Ru(bpy)32+,该试剂在水溶液和有机溶剂中发光效率高,溶解度好;可进行可逆单电子转移反应,在电化学发光基础理论和分析应用研究中占有重要地位。已报道ECL金属配合物有Ru, Os, Cr, Cd, Pd, Pt, Re, Ir, Mo,Tb, Eu, Cu, Al等的金属配合物[1],其中Ru, Os,Re的金属配合物具有良好的ECL性质。合成高发光效率可标记的ECL金属配合物是电化学发光免疫分析和核酸分析中一个重要的研究方向。Blackburn[12]等合成了可标记的Ru(bpy)32+类物质,建立了地高辛和促甲状腺激素(TSH)等物质的电化学发光免疫分析方法。研究金属配合物与共反应物的ECL反应,不仅可以提高检测金属配合物的灵敏度,而且可以建立测定共反应物的ECL方法,拓宽电化学发光分析的应用范围。董绍俊等人利用金属EDTA螯合物与Ru(bpy)32+产生ECL,建立了测定金属离子的电化学发光分析法[13]。Richter 利用冠醚对金属离子的识别以及与(2, 2′-bipyridine)2Ru-4-(N-aza-18-crown-6-methyl-2,2′-bipyridine)-TPA的电化学发光反应,建立了测定Pb2+, Hg2+, Cu2+和K+的电化学发光分析法[14]。Bard等人利用Na+冠醚对钌联吡啶电化学发光的增强作用,建立了检测Na+离子的电化学发光分析法[15]。Martin等人利用钌联吡啶与辅酶NADH以及酶反应的产物的电化学发光建立了测定葡萄糖、乙醇、二氧化碳、胆固醇和葡萄糖-6-磷酸脱氢酶的电化学发光分析法[16]。我们基于罗丹明B对亚硫酸根在铂电极上弱电化学发光的增敏作用,建立了测定亚硫酸氢钠的能量转移电化学发光新方法,并用于药物VK3和白糖中亚硫酸氢钠的测定[17]。电化学发光分析法已用于测定罂粟,含氨基的生物碱,海洛因,利格鲁卡因,蔗糖,果糖,甘露糖,甘油,柠檬酸,酒石酸,三甲胺,氨基酸,脯氨酸,4-羟基脯氨酸等物质。

纳米材料在鲁米诺体系化学发光分析应用中的研究进展-

文章编号:1001-9731(2015)18-18009-07 纳米材料在鲁米诺体系化学发光分析应用中的研究进展? 徐开恩1,姚曼文1,方湘怡2 (1.同济大学材料科学与工程学院,上海201804;2.西安交通大学理学院,西安710049) 摘一要:一化学发光理论日趋成熟,但化学发光技术推广应用仍然受到发光效率低二选择性差二条件苛刻等缺陷的限制.纳米材料的量子尺寸效应二大比表面积二高表面能等特点,使得纳米材料具有很好的化学活性和生物相容性.纳米材料在作为催化剂二纳米反应平台二离子标记物二能量受体等方面在化学发光分析中都有大量应用.主要阐述了一些基于纳米材料参与的鲁米诺化学发光体系并结合一些现代分离技术和免疫分析技术的研究报道. 关键词:一纳米材料;化学发光;鲁米诺 中图分类号:一O65;TB34文献标识码:A DOI:10.3969/j.issn.1001-9731.2015.18.002 1一引一言 化学发光分析方法具有灵敏度高二测定线性范围宽二仪器设备简单二分析速度快二无放射性污染等优点.它作为一种高灵敏的微量及痕量分析新方法,发展迅猛,具有广泛的应用前景. 鲁米诺作为一种人工合成的最常见的有机化学发光试剂,它的结构简单,性质稳定,且易于合成,水溶性好.鲁米诺化学发光体系是目前研究和应用最广泛的化学发光体系.尽管如此,鲁米诺化学发光的反应速率比较慢,发光效率较低,其量子产量仅有约0.01~0.05.虽然人们常向体系中加入一些无机催化剂或酶来提高反应速率,增强鲁米诺的发光效率,但是其中许多催化剂或增强剂,比如一些蛋白酶,催化条件苛刻,不稳定,容易失活,使得用化学发光技术来检测的应用范围受到很大制约. 近年来,随着纳米技术以及生物分析技术等现代技术的迅猛发展,纳米材料在化学发光分析中得到广泛应用,也使得化学发光分析技术应用范围得到进一步扩大.纳米材料在生物标记免疫分析中的应用取得了突飞猛进的进展.本文就纳米材料的特点以及不同纳米材料应用于鲁米诺化学发光体系中的不同作用,讨论并总结了近年来相关研究成果. 2一纳米材料的特点 当物质被加工到纳米尺寸时,材料就会出现表面效应二小尺寸效应二量子尺寸效应和宏观量子隧道效应.纳米材料在生物学二医学二光学二电子学等领域得到广泛应用就是得益于它的这些特殊的物理化学性质.以零维纳米颗粒为例,微粒随着粒径的下降,其比表面积二表面活性原子数二表面能二表面张力都急剧增加.这使得纳米微粒对周围环境十分敏感,很容易与外界环境发生一些相互作用. 3一纳米材料在化学发光免疫分析中的运用化学发光免疫分析(CLIA)是化学发光法和免疫分析法结合的产物,而随着纳米技术的飞速发展,纳米材料的无机有机自组装复合的研究日趋成熟[1].以纳米材料作为一种新型免疫标记物,结合高效液相色谱分析法二毛细管电泳分析法二分子印迹法等现代分离技术和免疫分析方法,形成了新型高灵敏度二高特异性的纳米材料化学发光免疫分析法.这种免疫分析方法可以用于检测药物二蛋白质二DNA二疾病病原体以及其它有机化合物.纳米标记探针的出现使得人们能够更好地在纳米尺度上对生命体系内的痕量物质进行有效的分析和检测,这对生命活动机理的阐述和疾病的早期诊断具有非常重要的意义. 基于纳米材料参与鲁米诺体系化学发光免疫反应中的作用不同,本文将这些纳米材料按作用具体分为催化增敏型二负载平台型二标记溶出型以及能量受体型等. 3.1一催化增敏型 一些原本不活泼的贵金属例如金二银二铂金等在纳米尺寸下也具有了很好的化学活性,在化学发光体系中表现出很好的催化性能,在免疫反应中也具有很好的生物相容性.早在2005年[2],已经有人报道了纳米金鲁米诺过氧化氢体系中的催化作用.纳米金促进电子的转移和自由基的产生是催化机理的关键所在.此后二纳米银[3,13-15]二纳米金银合金[21]以及纳米铂[23]都对化学发光有一定的催化效果,因为纳米银的氧化还原电位比金二铂低,所以相比纳米金二纳米铂,纳米银具有更好的催化活性[3].纳米颗粒的集聚[18-19]也对化学发光有一定影响. 除了一些贵金属纳米材料外,一些纳米金属氧化 90081 徐开恩等:纳米材料在鲁米诺体系化学发光分析应用中的研究进展 ?基金项目:国家自然科学基金资助项目(81371642) 收到初稿日期:2014-10-13收到修改稿日期:2015-04-10通讯作者:姚曼文,E-mail:y aomw@ton gj i.edu.cn 作者简介:徐开恩一(1990-),男,江苏江阴人,硕士,师承姚曼文老师,从事化学发光研究.

鲁米诺

鲁米诺(luminol),又名发光氨,英文名5-Amino-2,3-dihydro-1,4-phthalazinedione。它常温下是一种黄色晶体或者米黄色粉末,是一种比较稳定的化学试剂。它的化学式是C8H7N3O2 结构式在下面的图图里面有。同时,鲁米诺又是一种强酸,对眼睛、皮肤、呼吸道有一定刺激作用。 法医学上,鲁米诺反应又叫氨基苯二酰一胼反应,可以鉴别经过擦洗,时间很久以前的血痕。生物学上则使用鲁米诺来检测细胞中的铜、铁及氰化物的存在。 3-硝基邻苯二甲酸可作为鲁米诺的合成原料。3-硝基邻苯二甲酸与肼在高沸点溶剂(如二甘醇)中发生缩合反应,失去一分子水,生成3-硝基邻苯二甲酰肼。然后以保险粉还原3-硝基邻苯二甲酰肼中的硝基,得到3-氨基邻苯二甲酰肼,即是鲁米诺。 鲁米诺只有用氧化剂处理过才会发光。通常使用双氧水和一种氢氧化物碱的混合水溶液作为激发剂。在铁化合物催化下,双氧水分解为氧气和水: 2 H2O2 → O2 + 2 H2O 实验室中常以铁氰化钾作为催化剂铁的来源,而法医学上的催化剂则恰好是血红蛋白中的铁。很多生物系统中的酶也可催化过氧化氢的分解反应。 鲁米诺与氢氧化物反应时生成了一个双负离子(Dianion),它可被过氧化氢分解出的氧气氧化,产物为一个有机过氧化物。该过氧化物很不稳定,立即分解出氮气,生成激发态的3-氨基邻苯二甲酸。激

发态至基态转化中,释放的能量以光子的形式存在,波长位于可见光的蓝光部分。在检验血痕时,鲁米诺与血红素(hemoglobin,血红蛋白中负责运输氧的一种蛋白质)发生反应,显出蓝绿色的荧光。鲁米诺的灵敏度可以达到一百万分之一。即1滴血混在999,999滴水中时也可以被检验出来。不过它与其他具有氧化性的物质也发生反应,但是显示的颜色和显色的时间长短都是不同的。 即使犯罪现场的血迹已经被擦过或清除过,调查者依旧可以使用鲁米诺找到它们的位置。实际上,调查者在要调查的区域内喷洒鲁米诺和激发剂溶液,血中的铁立即催化鲁米诺的发光反应,使其产生蓝色光芒。该反应需用的催化剂量非常少,因此鲁米诺可以检测痕量的血迹。发光大约持续30秒钟,可通过长曝光的照片观察出,其周围环境不可以太亮。 鲁米诺有一些缺点限制了它的应用: 1、鲁米诺在铜、含铜合金、辣根或某些漂白剂的存在下发出荧光。因此如果犯罪现场被漂白剂彻底处理过,则鲁米诺发出的荧光会强烈掩盖任何血迹的存在。 2、鲁米诺可以检测出动物血及尿中的少量血,因此如果待测房间中含有尿或动物血,检测结果会有偏差。 3、鲁米诺与排泄物反应,发出的光与和血反应发出的是相同的。气相色谱法的基本原理:

化学发光原理及应用

化学发光及生物发光的原理及其应用 第一部分概述 化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。化学发光体系用化学式表示为: 依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称ECL) 等。 根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、气相、掖相 CL 。分析法;

5 )酵联免疫 CL 分析法等。 化学发光的系统一般可以表示为: 在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。 第二部分、化学发光常用的化学试剂及其原理 化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ),第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。 化学发光反应的发光效率是指发光剂在反应中的发光分子数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。 1. 鲁米诺及其衍生物

相关文档
最新文档