鲁米诺化学发光分析研究综述

合集下载

鲁米诺的制备实验报告

鲁米诺的制备实验报告

鲁米诺的制备实验报告实验报告:鲁米诺的制备实验一、实验目的本实验旨在通过化学反应制备鲁米诺,并观察其发光性质。

二、实验原理鲁米诺是一种发光化合物,通常用于化学发光实验。

鲁米诺分子结构中含有苯并噻吩和吡咯环,它们共同构成了鲁米诺分子的核心结构。

实验中,我们将使用一系列化学试剂和反应条件将苯并噻吩和吡咯反应,制备鲁米诺。

三、实验步骤1. 在实验室通风橱中,准备试剂与设备。

2. 将50 mL 的无水四乙酸铊溶液倒入200 mL的圆底烧瓶中,并加入约0.2 g 的苯并噻吩。

加适量的四氢呋喃溶剂使得苯并噻吩完全溶解。

3. 在实验室通风橱的适当位置,将2.5 g 的溴溶液(48%溴溶液)滴加到苯并噻吩溶液中。

4. 缓慢加入0.4 g的吡咯、6 mL的浓氢氧化钠溶液和30 mL 的无水乙醇。

此时,反应溶液呈暗红色,通入氮气。

继续搅拌30 min。

5. 使用橡皮塞封住烧瓶口,并将其浸入水浴中。

在85C下搅拌反应液60分钟。

6. 在适当的位置用水冷却,然后将反应液转移到500 mL锥形瓶中。

7. 加入适量的浓HCl ,产生大量气泡。

8. 使用酸性石炭酸钠溶液中和反应液。

9. 过滤过滤杂质,然后将过滤液放在冷柜中冷藏12小时。

10. 准备稻草酸钠溶液,用稻草酸钠溶液洗涤上锥形瓶中的粉末沉淀三次,每次30毫升。

11. 将纯净的鲁米诺粉末置于真空干燥器中,干燥12小时,最后将其称重,得到制备的鲁米诺产量。

四、实验结果通过上述实验步骤可以制备出一定量的鲁米诺产物。

经过称量,得到鲁米诺的产量为x克。

五、实验讨论与思考鲁米诺的制备实验是一个较为复杂的化学反应过程。

在实验中,苯并噻吩与吡咯在适当的反应条件下,经过一系列的反应步骤,得到了鲁米诺产物。

通过测定鲁米诺的产量,我们可以评估反应的效果。

由于实验中使用的试剂和反应条件较多,实验中需要注意操作方法的准确性和谨慎性,避免对人体产生伤害和化学品的浪费。

同时,鲁米诺在储存和使用过程中需要注意防潮、防晒和避免高温等因素,以保证其性质和效果的稳定性。

鲁米诺与化学发光

鲁米诺与化学发光

不断搅拌,5 min后,稍微冷并加入2.6 mL冰醋酸,冰水浴冷却至室温,
析出黄色晶体,过滤、洗涤后收集产品。
鲁米诺的化学Leabharlann 光在100 mL磨口锥形瓶中依次加入4 g KOH、20 mL DMSO和0.2 g未干 燥的鲁米诺,塞上瓶塞。剧烈摇荡使溶液与瓶内空气充分接触,此时,在暗 处就能观察到锥形瓶中发出微弱的蓝色荧光;继续摇振并不时打开塞子让新 鲜空气进入,瓶中荧光会越来越亮。 将不同荧光染色剂(1-5 mg)分别溶于2-3 mL水中,并加入到鲁米诺的 二甲亚砜溶液就可观察到不同颜色的荧光。 无染料:蓝白色; 曙红:橙红色; 罗丹明B:绿色; 荧光素:黄绿色。
鲁米诺与化学发光
陕西师范大学化学化工学院
实验目的
掌握鲁米诺制备所涉及的酰胺化、硝基还原 基本实验操作。 了解鲁米诺发光的原理。
实验原理
鲁米诺制备 鲁米诺化学发光
鲁米诺的制备
1.3 g 3-硝基邻苯二甲酸和2 mL 10% 水合肼加入装有温度计和回流冷 凝管的100 mL三口烧瓶中,三口烧瓶的另一支口通过安全瓶与水泵相连。 电热帽加热至固体溶解后,加入4 mL二缩三乙二醇。开启循环水泵并快 速加热三口瓶,使反应体系温度维持在210-220oC约2 min,打开安全瓶旋 塞使体系与大气相通,停止加热并关闭水泵。反应液冷却至100oC,加入 约20 mL热水,进一步冷却至室温,过滤,收集黄色晶体3-硝基-邻苯二甲 酰肼中间体。 将3-硝基-邻苯二甲酰肼中间体转移至100 mL烧杯,加入6.5 mL10% NaOH溶液,搅拌使固体溶解,加入4 g 水合连二硫酸钠,加热至沸腾并

鲁米诺—高碘酸钾化学发光法测定盐酸苯乙双胍

鲁米诺—高碘酸钾化学发光法测定盐酸苯乙双胍

该方法用于盐酸苯乙双胍 片剂 中盐酸苯 乙双胍 的定量分析 ,结果满意 。
关键词 :化学发光;盐酸苯乙双胍 ;流动注射 ;高碘酸钾 ;鲁米诺 中图分类号 :0 5 _ 6 73 文献标识码 :A D I1.9 9 .s. 7 — 0 5 0 2 50 8 O : 3 6 0i n1 4 8 8 . 1 . . 0 s 6 2 0 0
b o jcina ls a eeoe, ae ntateC tni f u n l O4ytms s nacd yf w i et n yiw s vlpdb sdo th Li e t o mio- l n o a s d h ns y L KI s hne s e wa e

h d o h o i ewa x 0 加 m o/ p e i o f h t o stse t h o tn t n lv l f . x1 一 mo / y r c rd s6 。 i 1 l L r c s n o t eme h d wa e t d a e c n e t a i e 4 0 i t r o e o 0 1 L
DETERM I NATI oN F o PHENFoRM I HYDR oCH LoRI N DE BY
CHEM I LUM I ESCENCE ETH oD S N M BA ED oN LUM I oL. N PoTASS UM I
PEI UoDATE YS S TEM
4 0x 0 - 0 1- l . 1  ̄ 2 x 0 mo L,检 出限为 6 1 0 l ,对 于浓 度为 4 × 0 5 / ×0 / mo L . 1 mo L的盐酸苯乙双对标准偏 差为 11 .%,以片剂为基体 , 用标准加入法检验方法 的回收率 , 测得结果在 9 . 105 96 0 . %~ %之间。

鲁米诺-过渡金属超常氧化态配合物化学发光体系测定氨基糖苷类抗生素

鲁米诺-过渡金属超常氧化态配合物化学发光体系测定氨基糖苷类抗生素

鲁米诺-过渡金属超常氧化态配合物化学发光体系测定氨基糖苷类抗生素陈复彬;杨春艳;章竹君【摘要】研究发现过渡金属超常氧化态配合物(二羟基二过碘酸根合铜(Ⅲ)配离子(DPC)、二羟基二过碘酸根合银(Ⅲ)配离子(DPA)和二羟基二过碘酸根合镍(Ⅳ)配离子(DPN))在碱性条件下可以氧化鲁米诺而产生化学发光,氨基糖苷类抗生素对该化学发光体系有增敏作用.以DPC为例研究了氨基糖苷类抗生素——托普霉素对该体系的增敏作用,建立了测定血清中托普霉素含量的新方法.考察了溶液酸碱度和化学发光试剂对化学发光强度的影响,在最佳实验条件下,托普霉素浓度在6.0×10-8~2.0×10-6 g/mL范围内与化学发光强度呈良好的线性关系,方法的检出限(3σ)为1.5×10-8 g/mL,对浓度为5.0×10-7 g/mL的托普霉素溶液连续测定7次,相对标准偏差为2.7%.该方法用于血清中托普霉素含量的测定,结果令人满意.【期刊名称】《分析测试学报》【年(卷),期】2014(033)003【总页数】4页(P354-357)【关键词】鲁米诺;过渡金属超常氧化态配合物;化学发光;氨基糖苷类抗生素;托普霉素【作者】陈复彬;杨春艳;章竹君【作者单位】西华师范大学化学化工学院化学合成与污染控制四川省重点实验室,四川南充637002;西华师范大学化学化工学院化学合成与污染控制四川省重点实验室,四川南充637002;陕西师范大学化学化工学院,陕西西安710062【正文语种】中文【中图分类】O657.3;O629.13化学发光法因灵敏度高、仪器设备简单、线性范围宽,并可结合流动注射技术,从而实现快速、自动化测定的优点,已经被广泛应用于制药、环境和生命科学等领域[1-2]。

鲁米诺化学发光体系是化学发光分析法中研究最多的体系之一,很多氧化剂可以氧化鲁米诺产生化学发光。

常用的鲁米诺化学发光体系的氧化剂包括过氧化氢、溶解氧、高锰酸钾、铁氰化钾、氧化铅以及各种氧自由基等。

鲁米诺实验报告

鲁米诺实验报告

一、实验目的1. 了解鲁米诺的化学性质和发光原理。

2. 掌握鲁米诺与过氧化氢反应产生化学发光的现象。

3. 学习利用鲁米诺检测血迹的方法。

二、实验原理鲁米诺(Luminol),化学名称为3-氨基苯二甲酰肼,是一种有机化合物。

在碱性条件下,鲁米诺与过氧化氢(H2O2)发生氧化还原反应,产生能量,通过光子形式释放出来,即化学发光。

具体反应如下:\[ \text{C}_8\text{H}_7\text{N}_3\text{O}_2 + 2\text{H}_2\text{O}_2 +2\text{OH}^- \rightarrow \text{C}_8\text{H}_5\text{N}_3\text{O}_4 +2\text{H}_2\text{O} + \text{光} \]血液中的血红蛋白含有铁元素,铁能催化过氧化氢的分解,使鲁米诺发光。

因此,鲁米诺可以用于检测血迹。

三、实验材料与仪器1. 实验材料:鲁米诺、过氧化氢、氢氧化钠、蒸馏水、滴管、试管、烧杯、酒精灯、胶头滴管等。

2. 实验仪器:电子天平、磁力搅拌器、紫外-可见分光光度计等。

四、实验步骤1. 准备实验溶液:称取一定量的鲁米诺,加入少量蒸馏水溶解,转移至100 mL容量瓶中,用蒸馏水定容至刻度,配制成鲁米诺溶液。

2. 配制鲁米诺-过氧化氢溶液:取一定量的鲁米诺溶液,加入适量的过氧化氢和氢氧化钠,搅拌均匀。

3. 检测血迹:将鲁米诺-过氧化氢溶液滴加至待测样品中,观察是否出现蓝色荧光。

4. 比较实验结果:分别对含血迹样品和不含血迹样品进行检测,比较荧光强度。

五、实验结果与分析1. 实验现象:鲁米诺-过氧化氢溶液滴加至含血迹样品中,出现明显的蓝色荧光;不含血迹样品则无荧光现象。

2. 结果分析:由于血液中含有铁元素,铁能催化过氧化氢的分解,使鲁米诺发光。

因此,含血迹样品出现蓝色荧光,而不含血迹样品无荧光现象。

六、实验结论1. 鲁米诺与过氧化氢在碱性条件下发生氧化还原反应,产生化学发光现象。

血催化鲁米诺化学发光与荧光染料的能量转移实验_冯振南

血催化鲁米诺化学发光与荧光染料的能量转移实验_冯振南

本文介绍了血催化鲁米诺化学发光与荧光染料的能量转移实验,实验视觉刺激,趣味性强,试剂易得,重现性好。

化学反应大多以热的形式释放能量,也有一些化学反应是以光的形式释放能量。

鲁米诺在碱性条件下与氧化剂的作用就是一个化学发光的典型例子。

一般认为,鲁米诺在碱性溶液中转化为负离子,后者在适当的催化剂和氧化剂作用下可生成激发态的鲁米诺中间体。

当激发态返回至基态,就会产生耀眼的蓝光。

在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速,发光强度显著增强。

常用的氧化剂如过氧化氢、过硫酸钾和次氯酸钠等,常用的催化剂有金属离子、金属配合物、血红蛋白和辣根过氧化物酶等。

利用这一反应可以检测微量的金属离子、过氧化物、血痕和过氧化物酶等。

微量血痕也可使鲁米诺产生明亮的发光[1]。

早在1937年德国刑侦科学家就发现血液能使鲁米诺发光,此后逐步用于搜索血痕和显现潜血指纹[2]。

利用血痕的高效催化作用,还可观察到鲁米诺化学发光的能量转移作用。

激发态鲁米诺中间体也可将能量传递至激发能量较低的荧光染料分子,受激发的荧光染料分子再通过发出荧光释放能量恢复至基态。

不同荧光染料分子的激发态能量的差异使得其发出的不同颜色的荧光。

1 血痕催化鲁米诺发光实验(1)试剂的配制。

血样的制备:取3.8%枸橼酸钠溶液1份与9份动物血液(健康人血或鸡鸭等其他动物血均可)混合可制得新鲜血液。

再取1.0 mL新鲜血液用蒸馏水稀释至100mL即为实验用血样。

A液:取0.01 克鲁米诺溶于100mL1.0%碳酸钠溶液,另加0.01 克对碘酚作为稳定剂。

B液:取0.5 mL30%过氧化氢用蒸馏水稀释至100 mL,用5%H3PO4调pH至3.0。

(2)实验步骤与现象。

实验需在暗室或晚上进行。

在15 mL试管中加入A、B液各5 mL,混匀后沿管壁加入1.0 mL血样,即可观察到持续耀眼的蓝光。

影响血痕-鲁米诺化学发光的因素较多,碱过强(如氢氧化钠)、碱浓度过大和过氧化氢浓度过大,将使发光非常短暂[3]。

鲁米诺氧途径免疫测定方法的研究进展

鲁米诺氧途径免疫测定方法的研究进展

鲁米诺氧途径免疫测定方法的研究进展空军军医大学第一附属(西京)医院;1中医科暨全军中医内科中心;2核医学科西安710032近半个世纪以来,临床化学微量免疫分析技术从放射免疫分析,酶联免疫分析,到化学发光免疫分析,经历了检测方法的革新与技术的进步,为医学检验技术带来了数量和质量的迅速提高。

化学发光免疫分析法具有选择性好、灵敏度高、分析速度快、设备简单等特点,在环境、临床、食品、药物检测等领域得到了广泛应用。

20世纪90年代问世的鲁米诺氧途径免疫分析(Luminescent oxygen channeling immunoassay,LOCI)技术以其独特的检测方法,实现了均相,一步,免清洗和高通量检测,并以其高灵敏度和特异性等突出检测性能成为了化学发光免疫分析方法的研究热点。

本文就化学发光免疫分析的概述及其基本原理,化学发光免疫分析的建立流程,几种主要的化学发光免疫分析类型原理等方面进行综述。

1 化学发光免疫分析法的概述1.1 化学发光在分析化学中,发光是指当一个分子的电子从激发态跃迁到基态时所发出的光。

它包括荧光(Fluorescence)、磷光(Phosphorescence)和化学发光(Chemiluminescence)。

当基态分子吸收化学反应中释放的能量跃迁到激发态,处于激发态的分子以光辐射的形式返回基态时产生的光的现象称为化学发光(Chemiluminescence,CL)。

基于化学发光强度和被测物含量之间关系建立的分析方法叫化学发光分析法,它具有灵敏度高,线性范围宽,仪器简单,操作简便等特点,已广泛地应用于环境、临床、食品和工业分析中。

1.2 化学发光免疫分析法化学发光分析是根据化学反应产生的辐射光强度来确定物质含量的一种分析方法。

化学发光免疫分析(Chemiluminescence Immunoassay,CLIA)诞生于1977年,Halman M 等[1]根据放射免疫分析的基本原理,将化学发光系统与免疫反应相结合,用化学发光相关的物质标记抗体或抗原,与待测的抗原或抗体反应后,经过分离游离态的化学发光标记物,加入化学发光系统的其它相关物产生化学发光,进行抗原或抗体的定量或定性检测。

影响鲁米诺体系电致化学发光因素的研究

影响鲁米诺体系电致化学发光因素的研究

影响鲁米诺体系电致化学发光因素的研究鲁米诺体系是一类常用的电致化学发光(ECL)体系,其特点是由光致电子转移(PET)和共振能量转移(RET)机制引起的发光。

鲁米诺体系的发光强度和稳定性受到多种因素的影响,包括电极、电解液、鲁米诺配体、共振能量转移剂(CET)等等。

电极材料是影响鲁米诺体系发光效果的重要因素之一。

金属电极能够提供电子,从而引起化学反应并产生发光,而且金属电极的表面影响反应速率和发光效果。

晶体电极能够提供稳定的电场环境和高度制备表面,从而提高鲁米诺体系的发光效果。

在选择电极材料时,还需要考虑电极对电解液的通透性和电解液与电极表面的亲和性。

电解液的质量也是影响鲁米诺体系发光效果的重要因素。

电解液中的氧气、水等物质可以对鲁米诺体系的稳定性产生影响。

此外,添加一些离子或化合物可以加速或抑制反应速率,从而影响鲁米诺体系的发光。

电解液的pH值也会影响鲁米诺体系发光效果,一般情况下,pH值越高,发光强度越弱。

鲁米诺配体的结构和电子性质也是影响鲁米诺体系发光的关键因素。

目前常见的鲁米诺配体为8-羟基喹啉-3-羧酸(HL),它具有极好的光稳定性和荧光性质。

通过改变鲁米诺配体的结构,可以调节其发射光谱和激发波长,从而调节体系的发光效果。

共振能量转移剂(CET)也影响鲁米诺体系的发光效果。

CET是用来提高鲁米诺体系发光效率的一种化合物,它们能够吸收电荷并将其转移给鲁米诺配体,从而提高其发光效率。

目前常见的CET有二甲基苯乙烯(DPA)等。

总之,鲁米诺体系电致化学发光效率和稳定性受到多种因素的影响。

研究这些因素对体系发光效果的影响有助于优化电致化学发光技术并开发新的发光体系。

化学实验鲁米诺实验报告

化学实验鲁米诺实验报告

实验名称:鲁米诺的化学发光实验实验目的:1. 了解鲁米诺的化学发光原理;2. 观察并记录不同条件下鲁米诺的化学发光现象;3. 探究催化剂、酸度和温度对化学发光现象的影响。

实验原理:鲁米诺(Luminol)是一种化学发光剂,化学名称为3-氨基苯二甲酰肼。

在碱性条件下,鲁米诺可以与铁、铜、辣根过氧化物酶等催化剂发生氧化反应,产生能量并通过光子形式发散出来,即荧光。

鲁米诺的发光原理通常有两种:一是次氯酸钠氧化鲁米诺使其发光;二是过氧化氢与次氯酸钠反应生成氧气氧化鲁米诺使其发光。

实验材料:1. 鲁米诺粉末;2. 氢氧化钠溶液;3. 次氯酸钠溶液;4. 过氧化氢溶液;5. 铁氰化钾溶液;6. 水浴加热器;7. 移液管;8. 试管;9. 烧杯;10. 秒表;11. 比色计。

实验步骤:1. 准备好实验材料,分别称取适量鲁米诺粉末、氢氧化钠溶液、次氯酸钠溶液、过氧化氢溶液和铁氰化钾溶液;2. 在试管中加入一定量的氢氧化钠溶液,然后加入适量的鲁米诺粉末,搅拌均匀;3. 将试管放入水浴加热器中,加热至室温;4. 取一定量的次氯酸钠溶液,加入试管中,观察并记录化学发光现象;5. 取一定量的过氧化氢溶液,加入试管中,观察并记录化学发光现象;6. 取一定量的铁氰化钾溶液,加入试管中,观察并记录化学发光现象;7. 分别在室温、25℃、37℃、50℃、65℃的水浴加热器中,重复步骤4-6,观察并记录化学发光现象;8. 使用比色计测定化学发光强度,记录数据。

实验结果:1. 在次氯酸钠溶液的作用下,鲁米诺发生化学发光,产生蓝绿色荧光;2. 在过氧化氢溶液的作用下,鲁米诺发生化学发光,产生蓝绿色荧光;3. 在铁氰化钾溶液的作用下,鲁米诺发生化学发光,产生蓝绿色荧光;4. 随着温度的升高,化学发光强度逐渐增强;5. 在不同温度下,化学发光强度存在差异。

实验分析:1. 鲁米诺的化学发光原理是由于其在碱性条件下与氧化剂发生氧化反应,产生能量并通过光子形式发散出来;2. 催化剂可以加速鲁米诺的氧化反应,从而增强化学发光强度;3. 温度对化学发光现象有显著影响,随着温度的升高,化学发光强度逐渐增强;4. 在实验过程中,观察到的化学发光现象与理论相符。

鲁米诺循环化学发光的理论与检验

鲁米诺循环化学发光的理论与检验
剂( Y) ꎬ 能与 CL 耦合的反应物、 催化剂、 增敏剂或抑制剂( Z) 等ꎬ 包括一些可以借助化学衍生等技术
引至 CL 中物质( 也记入 Z 中) ꎮ 于是ꎬ CL 可以牵涉非常复杂的反应ꎬ 可抽象为:
±
∑ mX Xi ± ∑ pX Yj ± ∑ qY Zl



= 0
(3)
式中正负号分别对应于反应物和产物ꎬ m、 p、 q 为反应系数ꎮ 恒容反应时的速率可表示为:
反应的瞬时发光强度与反应时间 t 存在指数衰减关系( 但这不是 CCL 的关系) ꎮ 对于特定反应体系ꎬ 给
定时刻 t 的光强 I( t) ( 如 I max ) 与 c A0 呈线性关系ꎬ 可做定量测定ꎮ 同理ꎬ 若给定 c X0 ꎬ 可测定 k c 或发光量
子产率 φꎮ 积分式(8) 得:
900
第 40 卷 第 6 期
分析测试学报
Vol 40 No 6
2021 年 6 月
FENXI CESHI XUEBAO( Journal of Instrumental Analysis)
898 ~ 906
doi: 10 3969 / j issn 1004 - 4957 2021 06 015
还推导出了若干与文献推测不甚相同但也能与一些实验数据相吻合的公式ꎮ 根据所得公式ꎬ 还能推演出循环
化学发光的一些新测试方法ꎬ 这将有助于该方法的深入研究和推广应用ꎮ
关键词: 循环化学发光ꎻ 理论ꎻ 发光峰强度变化ꎻ 反应动力学常数测定ꎻ 实验检验
中图分类号: O657 3 文献标识码: A 文章编号: 1004 - 4957(2021)06 - 0898 - 09
量子效率ꎬ 对于给定的反应体系为定值ꎮ 一般地ꎬ CL 只是多种平行反应中的一种ꎬ 故 φ 也可由发光反

化学发光分析法研究综述

化学发光分析法研究综述

第49卷第11期2021年6月广州化工Guangzhou Chemical IndustryVol.49No.11Jun.2021化学发光分析法研究综述李霞1,王仕宝2°(1汉中职业技术学院农林技术与生物工程学院,陕西汉中723000;2汉中职业技术学院秦巴山区药(食)用植物研究所,陕西汉中723000;3汉中职业技术学院药学院,陕西汉中723000)摘要:化学发光分析法是利用被测样品与体系所产生的发光强度,在一定范围内的线性定量关系,对所测样品进行含量测定的一种痕量分析方法。

通过反应物、反应中所加的催化剂、增敏剂和抑制剂等,采用标记方式应用于物质含量测定,从而扩大化学发光分析使用范围。

化学发光分析法已经广泛应用于药物分析、环境监测、临床检验及食品分析等多个领域。

本文对化学发光原理、特点进行了概括,同时结合文献,汇总了多种化学发光体系的应用。

关键词:化学发光;分析法;流动注射;研究;综述中图分类号:A150.2520文献标志码:A文章编号:1001-9677(2021)011-0018-03 Research Review of Chemiluminescence Analysis*U Xia1,WANG Shi-bad1-'3(1School of Agricultural and Forestry Technology and Bioengineering,Hanzhong Vocation and Technology College, Shaanxi Hanzhong723000;2Institute of Pharmaceutical(Edible)Botanty,Qinba Mountains Hanzhong Vocation and Technology College,Shaanxi Hanzhong723000;3School of Pharmacy,Hanzhong Vocation and Technology College,Shaanxi Hanzhong723000,China)Abstract:Chemiluminescence(CL)analysis is a trace analysis method for the determination on the content of the measured sampleby using the linear quantitative relationship within a certain range.Through the reactants,catalysts, sensitizers and inhibitors added in the reaction,the labeling method is applied to the determination of material content,so as to expand the scope of application of chemiluminescence analysis.Chemiluminescence analysis has been widely used in drug analysis,environmental monitoring,clinical testing and food analysis.The principleand characteristics of CL were summarized,and the applications of various chemiluminescence systems were summarized.The principle and characteristics of chemiluminescence were summarized,and Various CL systems were summarizedcombining reference.Key words:chemiluminescence;analysis;flow-injection;research;review化学发光(chemiluminescence,CL)是物质在化学反应过程中产生的一种光辐射现象化学发光分析法是利用不同浓度所测样品与体系所产生的发光强度,在一定范围内呈现线性定量关系,通过对检测该体系中化学反应的发光强度后,确定出所测样品含量的一种痕量分析方法⑵。

鲁米诺-二过碘酸合铜(Ⅲ)体系化学发光法测定盐酸林可霉素

鲁米诺-二过碘酸合铜(Ⅲ)体系化学发光法测定盐酸林可霉素
Re f e r e nc e s
1 陈新谦,金有豫, 新编药物学 ( 第1 4片 戾 J , 北京:人 民卫生出版杜 2 0 0 0 : 8 3
2 国家药典委员会.中华人民共和 国药典. 2 0 0 5年版二部 北京:化学工 。 ’ ; 版社, 2 0 0 5 :5 3 1
3 S h e t t i , N Ho s a ma m R R Na n d i b e wo o r St O p e nCa t a 1 . , 2 0 0 9 , 2 : 1 3 0  ̄ 1 3 9 .
4 J o eT s P , T u w a r S M J o u r n a l o f Mo l e c u l a r S t r u c t u r e . 2 0 1 1 7 , 8 2 7 ( 1 I 3 ) : 1 3 7 - 1 4 4
本 文系 博士后基 金( No 2 0 0 8 0 4 4 0 7 8 9 )资 助
( p H= 9 ) ,载流 D P C溶液浓度 5 ×l 0 mo l / L 。
图 1 流动注 射一 化学 发光 系统示 意 图
P : 蠕动泵; V : 注样阀; M: 混合点; F : 流通池; P MT : 光电 倍增管; 废液; P C: 联机 电脑; a : 鲁米诺溶液| b : 样
mL / m m 的速度输送所有溶液 , 盐酸林可霉素通过八通注样 阀注入到载流 D P C 中,先与 D P C溶液混合,再与鲁米诺 溶液混合 产生化学 发光 。化 学发 光信 号用 计算机控 制 的 B P C L 微弱发光分析检测仪检测和记录 。实验数据 的采集 和处理均在 W. m d O W S 9 8 系统下的 B P C L软件下完成。 最佳实验条件:发光试剂鲁米诺 的浓度 l × l 旷 m o l / L

鲁米诺和化学发光技术在生物分子检测中的应用研究

鲁米诺和化学发光技术在生物分子检测中的应用研究

鲁米诺和化学发光技术在生物分子检测中的应用研究随着生命科学的不断发展,越来越多的研究工作需要对生物分子进行高灵敏度、高特异性的检测。

这其中,鲁米诺和化学发光技术因其无标记、高灵敏度、高特异性、易操作等诸多优点,已经成为生物分子检测领域的研究热点。

一、鲁米诺技术在生物分子检测中的应用1. 鲁米诺技术的原理鲁米诺技术(Luminol assay)是一种利用鲁米诺在存在过氧化氢的情况下发出的强烈化学发光信号,来检测生物分子的技术。

其原理是当氧化剂(如过氧化氢)存在时,鲁米诺可以通过氧化反应被激活,释放出能量,产生强烈的化学发光信号。

因此,鲁米诺技术被广泛应用于细胞和分子水平的生物反应动力学、信号转导、免疫现象、DNA损伤等方面的研究。

2. 鲁米诺技术在生物分子检测中的应用鲁米诺技术通过其高特异性、高灵敏度、无标记等特点,在生物分子检测领域也被广泛应用。

例如,鲁米诺技术可以被用于检测生物分子(如蛋白质、核酸等)的浓度和活性,了解生物分子生化反应的动力学过程。

同时,鲁米诺技术还可以被用于检测细胞内氧化应激和DNA损伤等生物过程。

二、化学发光技术在生物分子检测中的应用1. 化学发光技术的原理化学发光技术是一种利用化学反应产生的光效应来检测生物分子的技术。

各种生物分子(如蛋白质、核酸)都可以被化学发光技术检测,其原理是利用光生化学反应,通过反应产生的激发态分子再次释放出能量,最终产生化学发光信号。

与传统荧光和放射性检测技术相比,化学发光技术具有无标记、高灵敏度、高特异性、易操作等特点。

2. 化学发光技术在生物分子检测中的应用化学发光技术的应用也是非常广泛的。

例如,在蛋白质研究领域,化学发光技术可以被用于检测蛋白质与其他蛋白质或小分子的相互作用,同时还可以被用于检测酶的活性等;在核酸领域,化学发光技术可以被用于检测RNA的表达和数量,同时也可以被用于检测DNA的特定序列。

三、鲁米诺和化学发光技术的优缺点1. 鲁米诺技术的优缺点鲁米诺技术具有高特异性、高灵敏度、无标记等优点,同时也具有较为显著的缺陷,如:灵敏度受自然光等干扰;定量控制能力较差;容易受样品中杂质的影响等。

荧光鲁米诺实验报告

荧光鲁米诺实验报告

根据新思界产业研究中心发布的《2023-2028年中国3-氨基苯二甲酰肼(鲁米诺)行业应用市场需求及开拓机会研究报告》显示,鲁米诺作为一种重要的化学发光剂,其应用范围十分广泛。

以下是对鲁米诺应用领域和市场需求的分析:一、应用领域1. 血迹勘察:鲁米诺与血液中的血红素产生反应后,显出蓝色光亮,这种检验方法高度灵敏,即使血迹时间很久,经历了擦洗,也能识别到血细胞中成分的存在。

因此,鲁米诺被广泛应用于血迹勘察、血液检测、刑事侦察中。

2. 环境分析:鲁米诺可用于检测过氧化物、重金属、过氧化物酶的含量,在环境分析、生物工程、化学示踪、医学研究等领域也有较高应用价值。

3. 化学示踪:鲁米诺在化学示踪领域具有重要作用,可用于追踪化学反应的进程。

4. 医学研究:鲁米诺在医学研究中的应用,如检测肿瘤标志物、病原体等。

二、市场需求1. 法律法规:随着国家对刑侦工作的重视,血迹勘察等领域对鲁米诺的需求将持续增长。

2. 环境保护:随着人们对环境保护意识的提高,鲁米诺在环境分析领域的需求也将不断增加。

3. 生物工程:生物工程领域的快速发展,对鲁米诺的需求也将持续增长。

4. 医学研究:医学研究的深入,对鲁米诺的需求也将不断增加。

综上所述,鲁米诺作为一种重要的化学发光剂,在多个领域具有广泛的应用前景。

随着相关行业的发展,鲁米诺的市场需求有望持续增长。

以下是关于鲁米诺的几个问题及解答:问题1:鲁米诺是什么?解答:鲁米诺,又名发光氨,化学名称为3-氨基苯二甲酰肼,是一种人工合成的有机化合物。

问题2:鲁米诺的发光原理是什么?解答:鲁米诺在碱性条件下可与铁、铜、辣根过氧化物酶等催化剂发生氧化反应,同时产生能量,通过光子形式发散出来,即荧光。

问题3:鲁米诺在哪些领域有应用?解答:鲁米诺在血迹勘察、环境分析、生物工程、化学示踪、医学研究等领域有广泛应用。

问题4:鲁米诺有哪些优势?解答:鲁米诺具有敏感度高、人体危害小、配置方法简单、易操作等优势。

中性介质鲁米诺电化学发光体系测定生物活性物质的研究

中性介质鲁米诺电化学发光体系测定生物活性物质的研究

苏州大学硕士学位论文中性介质鲁米诺电化学发光体系测定生物活性物质的研究姓名:***申请学位级别:硕士专业:应用化学指导教师:***20030401中性介质鲁米诺电化学发光体系测定生物活性物质的研究寥565281摘要摘要研究了中性体系中过氧化氢对鲁米诺的电化学发光的影响,发现过氧化氢对鲁米诺的电化学发光有增强作用。

在通氮气仔细除氧的硼酸缓冲溶液(pH=6.70)中,于经预处理的Pt电极上施加O一+O.75V(vs.Ag)的正矩形脉冲,可获得最佳发光信号。

发光强度与鲁米诺的浓度在5.4x101mol/L~2.2×lO。

mol/L内呈线性关系。

检测限为7.9X1矿mol/L。

从而为在中性体系应用鲁米诺的电化学发光进行某些生化物质的定量测定等提供一定的基础。

对中性介质中鲁米诺一I一体系的电化学发光行为进行了研究,在选定的条件下,可以灵敏地对碘进行检测,在3.8X10%oI/L~2.2XlO,mol/L浓度范围内,电化学发光强度与碘离子浓度有良好的线性关系,检测下限达到4.OX101mol/L,讨论了有关反应的机理。

并以该电化学发光体系为基础,研究了黄酮化合物芦丁和保健品蜂胶对该体系电化学发光的影响,发现芦丁对该体系的电化学发光有明显的淬灭作用,由此建立了一种电化学发光测定芦丁的方法,用该方法测定芦丁的线性范围为3.74XlO-Smol/L~3.56X101mol/L。

以芦丁为标准,测定了蜂胶胶囊中黄酮的总效价,在蜂胶含量为33.3Hg/ml~104.6p,g/ml范围内。

电化学发光强度随蜂胶含量增加而线性衰减,因此可以进行定量测定,用该方法测得以芦丁表示的蜂胶胶囊中黄酮的总效价为4.16%。

关键词:鲁米诺:电化学发光;中性介质:过氧化氢;碘离子;芦丁;蜂胶作者:徐杨指导教师:屠~锋AbstractThecatalyticeffectofhydro—peroxide(H202)ontheelectrochemiluminescence(ECL)ofluminolinneutralmediumwasstudiedinthiSpaper.Bytheper-treatmentforplatinumelectrodeandgettingridofoxygeninthesolution,thequalityECLsignalofluminolwasobtainedintheboric—acidbuffer(Na2B和r—H3803,pIl=6.70)thatwasexcitedbythepositiverectangularpulsewiththeamplitudeof0.75V(vs.Ag).TheECLintensityresponselinearlyregressedtotheconcentrationofH202withintherangefrom5.4X10。

鲁米诺化学发光分析法研究进展

鲁米诺化学发光分析法研究进展

第21卷第1期化 学 研 究中国科技核心期刊2010年1月CH EMICAL RESEARCH hxyj@鲁米诺化学发光分析法研究进展邵晓东13,李 瑛2(1.中国石油天然气集团公司管材研究所,陕西西安710065; 2.西安热工研究院有限公司,陕西西安710032)摘 要:从化学发光反应机理和应用进展两个方面对鲁米诺2过氧化氢、鲁米诺2铁氰化钾、鲁米诺2碘化物、鲁米诺2高锰酸钾和鲁米诺2溶解氧等化学发光体系进行了综述;指出鲁米诺化学发光体系是应用最为广泛的一类化学发光体系,同时对鲁米诺化学发光分析法的发展方向进行了展望.关键词:鲁米诺;化学发光;化学发光分析法;研究进展;综述中图分类号:O65文献标识码:A文章编号:1008-1011(2010)01-0102-11R esearch Progress and Application of LuminolChemiluminescent AnalysisSHAO Xiao2dong13,L I Y ing2(1.T ubular Goods Research Center,China Pet roleum and N at ural Gas Grou p Corporation,X i’an710065,S haanx i,Chi na; 2.X i’an T hermal Power Research I nstit ute Co.L t d.,X i’an710032,S haanx i,China)Abstract:A review is provided for t he research p rogress and application of luminol chemilumi2nescent(CL)system and analysis met hod as well,where t he chemiluminescent reaction mecha2nisms and application of luminol2peroxide hydrogen,luminol2potassium ferricyanide,luminol2i2odide,luminol2potassium permanganate,luminol2dissolved oxygen,luminol2potassium dichro2mate,luminol2potassium peroxysulp hate and luminol2myoglobin CL system are highlighted.Itis pointed out t hat luminol CL system is t he most important and widely used CL system.At t hesame time,t he directions and develop ment t rends of luminol CL analysis are suggested.K eyw ords:luminol;chemiluminescence;chemiluminescent analysis;research progress;review 化学发光是指在一些特殊的化学反应中发出可见光的现象.其发光机理是反应体系中的某些物质吸收了反应释放的能量而由基态跃迁至激发态,从激发态返回基态时将能量以光辐射的形式释放出来,产生发光现象.化学发光分析法则是依据某一时刻化学发光强度或化学发光总量来确定反应中相应组分含量的一种微量及痕量分析法,具有高灵敏度、线性范围宽、设备简单、操作简便、易于实现自动化和分析快速等特点.近年来,与流动注射、微流控系统、电化学、高效液相色谱和毛细管电泳等方法的联用,使得化学发光分析法已广泛应用于药物分析、临床分析、环境分析和材料分析等领域[1].在众多的化学发光试剂当中,鲁米诺(32氨基邻苯二甲酰肼)因其具有较高的发光量子产率和较好的水溶性,可与多种氧化剂发生化学发光反应,已成为应用最广泛的化学发光试剂.鲁米诺化学发光分析法也成为研究最深入、应用最广泛的一类化学发光反应体系.本文主要从化学发光反应机理和应用进展两个方面对鲁米诺2过氧化氢、鲁米诺2铁氰化钾、鲁米诺2碘化物、鲁米诺2高锰酸钾和鲁米诺2溶解氧等化学发光体系的研究进展进行综述.1 鲁米诺2过氧化氢发光体系鲁米诺2过氧化氢化学发光反应是应用最为广泛的鲁米诺发光体系.Cu2+、Cr3+、Ni2+、Co2+和Fe2+等过渡金属离子对鲁米诺2过氧化氢化学发光反应有很好的催化作用,这一特点使得该化学发光反应获得了广收稿日期:2009-09-06.作者简介:陕西省教育厅专项科研计划资助项目(07J K395).作者简介:邵晓东(1984-),男,工程师,硕士,主要从事分子光谱研究工作.E2mail:shaoxd@.第1期邵晓东等:鲁米诺化学发光分析法研究进展103 泛的应用.如海水中微量铁的分析测定,可采用82羟基喹啉交换树脂对海水中微量铁进行在线富集浓缩后直接利用鲁米诺2过氧化氢流动注射体系分析,检出限为0.05nmol ・L -1.Timot hy 等人早在1975年就提出了金属离子与鲁米诺2过氧化氢化学发光反应的机理[2].如图1所示,M n +先与HO -2配位,生成的配合物再与鲁米诺发生氧化反应,M n +失去一个电子变成M (n +1)+,鲁米诺则被氧化成鲁米诺游离基,随后,鲁米诺游离基进一步被过氧化氢氧化成氨基邻苯二甲酸根离子并产生化学发光.过渡金属与其它物质形成配合物或者盐之后,催化的特性会发生很大的变化,其中Cu 2+与蛋白质结合形成配合物后极大地提高了催化能力,可以用于蛋白质的测定.近年来有文献报道,在碱性条件下,金银复合纳米粒子也能强烈地增强鲁米诺2过氧化氢化学发光;并建立了检测雌酮、雌二醇和雌三醇这三种雌性激素的化学发光分析法,检出限分别为4.3nmol ・L -1,39nmol ・L -1和6.5nmol ・L -1;该方法用来分析实际样品中雌三醇的含量获得了满意的结果,此法拓展了纳米催化液相化学发光的研究[3].表1总结了鲁米诺2过氧化氢体系其它的应用进展.图1 鲁米诺2过氧化氢2M n +化学发光反应机理Fig.1 The mechanism of luminol 2H 2O 22M n +CL reaction表1 鲁米诺2过氧化氢发光体系的应用Table 1 Applications of luminol 2H 2O 2CL reaction systemAnalyteCL reaction system Sample Detection limit Reference葡萄糖luminol 2H 2O 2血清 2.0×10-6mol ・L -14没食子酸luminol 2H 2O 22HRP橄榄油 1.5×10-7mol ・L -15半胱氨酸luminol 2H 2O 22Ag colloid --6促甲状腺激素luminol 2H 2O 22HRP 人血清-7S 2-luminol 2H 2O 2自来水、污水0.003mg ・L -18烷基苯酚聚氧乙基醇类luminol 2H 2O 2河水10ppb9过氧化氢luminol 2H 2O 22K 5[Cu (HIO 6)2]香烟气0.041nmol ・L -110葡萄糖、过氧化氢luminol 2H 2O 22HRP 试剂-11凝血酶luminol 2H 2O 2试剂-12乙型肝炎表面抗原乙型肝炎表面抗体luminol 2H 2O 2人血清0.4pmol ・L -11mI U ・mL -113α2胎球蛋白luminol 2H 2O 2人血清0.85ng ・mL -114血红蛋白luminol 2H 2O 2红细胞 1.0×10-9mol ・L -115过氧化氢luminol 2H 2O 2雨水9μg ・L -116诺氟沙星环丙沙星洛美沙星氟罗沙星氧氟沙星左氧氟沙星luminol 2H 2O 22gold nanoparticles 尿样 3.2ng ・mL -19.5ng ・mL -17.0ng ・mL -19.0ng ・mL -18.0ng ・mL -18.0ng ・mL -117104 化 学 研 究2010年续表1Analyte CL reaction system Sample Detection limit Reference 芬太尼luminol2H2O22HRP血浆-18 Co2+Fe2+ Mn2+luminol2H2O2饲料添加剂0.24mol・L-10.50mol・L-1375mol・L-119Cr3+luminol2H2O2水样-20维生素C、谷胱甘肽、尿酸luminol2H2O22Co2+/ED TA真实样品1×10-8mol・L-121苏丹I luminol2H2O2辣椒酱3pg・mL-122 Cr3+luminol2H2O22Cr3+矿泉水、自来水、河水 1.6×10-16mol・L-123血红素luminol2H2O2单个红血细胞0.17g・mL-124腐胺尸胺luminol2H2O22Co2+鱼肉0.03mol・L-10.06mol・L-125雌激素酮雌二醇雌三醇luminol2H2O2药片、孕妇尿样3.2nmol・L-17.7nmol・L-149nmol・L-126Hg2+luminol2H2O2海水、河水0.8μg・L-127丹宁酸luminol2H2O2中药五倍子、蛇麻草8×10-10mol・L-128甲胺膦luminol2H2O2蔬菜0.047g・mL-129Co2+ Cu2+luminol2H2O2水样0.08ng・mL-16ng・mL-130多菌灵luminol2H2O2自来水7.24×10-9g・mL-131α2胎球蛋白luminol2H2O2血样 2.7ng・mL-132Co2+、Cr3+luminol2H2O22Co2+/Cr3+水样-33利培酮luminol2H2O2尿样4pg・mL-1342 鲁米诺2铁氰化钾发光体系以铁氰化钾为氧化剂的鲁米诺化学发光反应被广泛研究并报道.常见的鲁米诺2铁氰化钾体系化学发光机理解释如图2所示[35].周艳梅等人[36]研究发现在碱性条件下,盐酸强力霉素对鲁米诺2铁氰化钾体系图2 鲁米诺2铁氰化钾化学发光反应机理Fig.2 The mechanism of luminol2K3Fe(CN)6CL reaction化学发光反应具有明显的增敏作用,据此建立了定量分析盐酸强力霉素的新方法.方法以甲基丙烯酸为功能单体、乙二醇二甲基丙烯酸酯为交联剂合成了盐酸强力霉素的分子印迹聚合物.以此分子印迹聚合物为分子识别物质,利用盐酸强力霉素2鲁米诺2铁氰化钾化学发光体系,结合流动注射化学发光分析技术,建立了测定盐酸强力霉素高选择性的分子印迹2流动注射化学发光分析方法.方法的线性范围为9.0×10-7~第1期邵晓东等:鲁米诺化学发光分析法研究进展105 6.0×10-5g・mL-1,检出限为3.2×10-7g・mL-1.刘丽珍等人[37]研究发现,碱性介质中吲哚乙酸对鲁米诺2铁氰化钾体系的化学发光强度有显著的增强作用,并且增强程度和吲哚乙酸浓度在一定范围内呈线性关系,据此建立了检测吲哚乙酸的新方法.在优化的实验条件下,测定吲哚乙酸的线性范围和检出限分别为1.2×10-9~3.0×10-7mol・L-1和5.76×10-10mol・L-1.将该法直接用于土壤样品中吲哚乙酸含量的分析测定,回收率在96.0%~104.3%之间.近年来发表的涉及鲁米诺2铁氰化钾体系的其它应用报道列于表2中,从表2可以看出,该体系较多地应用于实际样品的分析.表2 鲁米诺2铁氰化钾发光体系的应用Table2 Applications of luminol2K3Fe(CN)6CL reaction systemAnalyte CL reaction system Sample Detection limit Reference 生物需氧量luminol2K3Fe(CN)6河水 5.5mg O2・L-138青霉素头孢拉定头孢羟氨苄头孢氨苄luminol2K3Fe(CN)6牛奶0.50μg・mL-10.04μg・mL-10.08μg・mL-10.10μg・mL-139去甲肾上腺素肾上腺素luminol2K3Fe(CN)6药物针剂0.08μmol・L-10.06μmol・L-140L2多巴luminol2K3Fe(CN)6药品、人血浆 2.0×10-8mol・L-141醋酸地塞米松luminol2K3Fe(CN)6药物制剂0.01μg・mL-142Co2+ Cu2+luminol2K3Fe(CN)6电镀废水7.5×10-11mol・L-17.5×10-9mol・L-143亚硝酸盐luminol2K3Fe(CN)6食品4μg・L-144苯酚luminol2K3Fe(CN)6水样0.66ng・L-145盐酸苯海拉明马来酸氯苯那敏luminol2K3Fe(CN)6药物制剂0.3g・mL-10.02g・mL-146盐酸氯丙嗪luminol2K3Fe(CN)6尿样、饮用水3×10-9g・mL-147脱氧肾上腺素luminol2K3Fe(CN)6天然植物、柑桔类水果、生物体液 1.6ng・mL-148头孢美他唑luminol2K3Fe(CN)6药物制剂0.06ng・mL-1493 鲁米诺2碘化物发光体系鲁米诺2碘化物化学发光反应主要包括鲁米诺2碘和鲁米诺2高碘酸钾这两大化学发光体系.在鲁米诺2碘化学发光体系中,碘是典型的双电子氧化剂.20世纪70年代,Seitz和Hercules通过对反应动力学的研图3 鲁米诺2碘化学发光反应机理Fig.3 The mechanism of luminol2I2CL reaction106 化 学 研 究2010年究指出鲁米诺2碘体系化学发光反应的机理,如图3所示[50].孟磊等人[51]以碘与鲁米诺为化学发光体系采用静态注射法测定水体中的含氧量,与滴定方法测定的结果有很好的一致性,该法适用于环保部门的水质监测.石文兵等人[52]发现在碱性介质中,青霉素钠和苄青霉素对鲁米诺2高碘酸钾化学发光体系都有强烈的增强作用.在最佳的实验条件下,青霉素钠浓度与增强的发光强度成正比,线性范围为0.01~20μg・mL-1,检出限为3.0ng・mL-1,该方法已用于粉针剂、合成样品及尿样中青霉素钠的测定.而测定苄青霉素的线性范围和检出限分别为0.01~15.0mg・L-1和1.0μg・L-1,并在3件针剂样品的基础上加入了3种不同浓度的苄青霉素标准溶液,对方法的回收率做了试验,所得结果在97.2%~102.0%之间.表3列出近年来国内外学者应用该体系所做的研究工作.表3 鲁米诺2碘化物发光体系的应用Table3 Applications of luminol2iodide CL reaction systemAnalyte CL reaction system Sample Detection limit Reference 儿茶酚luminol2NaIO42gold nanoparticles自来水 1.0×10-10g・mL-153氢化可的松可的松甲基强的松龙地塞米松丙炎松luminol2[Cu(HIO6)2]5-猪肝0.50ng・g-11.00ng・g-10.60ng・g-10.08ng・g-10.10ng・g-154异烟肼luminol2KIO4尿样7×10-10g・L-155碘luminol2I2药物制剂0.5mg・L-156苏丹I luminol2KIO4辣椒酱0.03pg・mL-157去甲肾上腺素肾上腺素多巴胺L2多巴luminol2I2药物制剂0.34μg・L-10.15μg・L-10.18μg・L-10.18μg・L-158甲基萘醌亚硫酸氢钠luminol2KIO42甲基萘醌亚硫酸氢钠药物制剂-59左氧氟沙星luminol2KIO4药物制剂、人血清2ng・mL-160维生素C luminol2KIO4药片、尿样0.03ng・mL-161多巴胺luminol2KIO4药物制剂0.3ng・mL-162肾上腺素异丙肾上腺素去甲肾上腺素luminol2KIO4药物制剂0.01ng・mL-10.1ng・mL-12.0ng・mL-1634 鲁米诺2高锰酸钾发光体系高锰酸钾是化学发光反应中常用的强氧化剂.但其化学发光机理目前还没有一个明确的说法,一般认为高锰酸钾与还原性物质发生氧化还原反应,产生激发态的中间体,激发态返回基态时发出光.高锰酸钾氧化鲁米诺化学发光的报道比较少,而且对其研究主要集中在国内,杜建修等人发现碱土金属离子Mg2+、Ca2+、Sr2+和Ba2+对鲁米诺与高锰酸钾的较弱化学发光反应具有催化作用.马明阳等人[64]应用鲁米诺2高锰酸钾发光体系结合流动注射技术,建立了测定盐酸利多卡因的化学发光新方法,并将该法用于注射液中盐酸利多卡因的测定.石文兵[65]基于苯唑西林钠对碱性介质中鲁米诺2高锰酸钾体系化学发光的增强作用,建立了流动注射化学发光法测定苯唑西林钠的新方法.在最佳的实验条件下,测定的线性范围为0.01~20μg ・mL-1,检出限为1.0ng・mL-1.其它应用鲁米诺2高锰酸钾发光体系的报道列于表4中.5 鲁米诺2溶解氧发光体系鲁米诺2溶解氧发光体系的机理可以简要解释为鲁米诺在碱性溶液(p H=10~11)中,首先形成单价阴离子,与溶液中的溶解氧发生氧化还原反应,生成激发态的二价阴离子氨基邻苯二甲酸盐(A PD),A PD经非辐射型跃迁回到基态时,放出光子而产生发光现象.李菁菁等人[71]采用溶胶2凝胶法制得平均粒径约10nm 的SnO2粒子.将该纳米粒子加入碱性鲁米诺2溶解氧化学发光体系,体系的化学发光强度明显增强,这种增敏作用与纳米SnO2的加入量以及体系中溶解氧的浓度有关,基于此得出了纳米SnO2存在下溶解氧浓度与第1期邵晓东等:鲁米诺化学发光分析法研究进展107鲁米诺化学发光强度之间的线性关系,可用于溶解氧测定,检出限为0.3mg・L-1,文中还应用紫外2可见光谱和荧光光谱研究了这种增敏作用的机理,并应用该体系考察了水果的抗氧化能力.鲁米诺2溶解氧体系的应用进展总结于表5中,从表中的检出限可以发现,该体系的灵敏度非常高.表4 鲁米诺2高锰酸钾发光体系的应用Table4 Applications of luminol2KMnO4CL reaction systemAnalyte CL reaction system Sample Detection limit Reference 化学需氧量luminol2KMnO4地表水0.3mg・L-1(COD Mn)66没食子酸luminol2KMnO4橄榄 2.2×10-10g・mL-167奋乃静luminol2KMnO4尿样3×10-5g・L-168盐酸氯丙嗪盐酸羟哌氯丙嗪盐酸羟哌氟丙嗪盐酸硫醚嗪luminol2KMnO4盐酸氯丙嗪药剂、精神病人尿样0.4ng・mL-10.7ng・mL-12.0ng・mL-10.7ng・mL-169Al3+luminol2KMnO4水样2μg・L-170表5鲁米诺2溶解氧发光体系的应用Table5Applications of luminol2dissolved oxygen CL reaction system Analyte CL reaction system Sample Detection limit Reference 诺氟沙星luminol2dissolved oxygen胶囊、滴眼液、人血清、尿样0.1ng・mL-172绿原酸luminol2dissolved oxygen金银花、人血清、尿样0.3ng・mL-173棒曲霉素luminol2dissolved oxygen苹果汁0.01ng・mL-174卟啉铁luminol2dissolved oxygen2FePy海水0.11nmol・L-175化学需氧量luminol2dissolved oxygen河水、湖水0.08mg・L-176异烟肼luminol2dissolved oxygen药片0.67ng・mL-177卡托普利luminol2dissolved oxygen2Co2+药片、尿样2pg・mL-1786 鲁米诺其他发光体系鲁米诺化学发光体系除了上述五种常见体系以外,还包括鲁米诺2金属离子、鲁米诺2重铬酸盐、鲁米诺2过硫酸钾、鲁米诺2肌红蛋白等化学发光体系.孙光举等人[79]发现磷酸根和钼酸铵生成的杂多酸与鲁米诺产生化学发光反应,且发光强度与磷浓度在一定范围内成线性响应,据此建立了测定痕量磷的顺序注射化学发光的新方法.对影响发光强度的进样顺序、试剂浓度、流速和试剂体积进行了优化,采用掩蔽剂和阳离子交换树脂消除了干扰组分.方法的检出限为0.09μg・L-1,所建立的方法用于地表水和饮用水中溶解的痕量磷的测定,回收率为90%~105%.石文兵[80]应用鲁米诺2AuCl-4化学发光体系分别建立了测定雷尼替丁和阿莫西林钠的流动注射化学发光新方法,并分析了片剂、针剂、人尿及血浆中雷尼替丁的含量,测得结果与药典方法的结果相符,并成功应用于针剂及血清中阿莫西林钠的测定.鲁米诺其它化学发光体系的分析应用进展归纳于表6中.7 结束语通过前文对鲁米诺各发光体系研究进展的评述不难发现,鲁米诺化学发光分析法已经广泛应用于药物分析、临床分析和环境分析等领域中的有机物和无机物的微量及痕量分析,它已经成为研究最为深入、发展最为成熟、应用最为广泛的一类化学发光分析方法,并对化学发光分析法发展成为一种重要的仪器分析手段起到了重要作用.化学发光分析法因其仪器简单、操作方便,加上与高效液相色谱和毛细管电泳等其它分离方法的联用,必将提高化学发光分析法的选择性,使得其应用范围还会不断扩大,尤其在环境监测、生物医学及食品安全等领域将会有更为广泛的应用前景.目前,设计自动化程度更高、便于携带、能够实现实时实地检测的化学发光分析仪器将成为主要研究方向;此外,开发出实际应用的化学发光免疫传感器也将是其发展趋势;今后还应该进一步总结现有鲁米诺各发光体系的发光反应机理,为其在各分析领域的应用提供理论依据,使之再次成为分析化学较为活跃的研究领域.同时,像分子印迹技术和纳米技术等新型联用技术的发展108 化 学 研 究2010年和技术创新也将为鲁米诺化学发光分析法的进一步应用开拓更为广阔的天地.表6鲁米诺其它体系的应用Table6Applications of other luminol CL reaction systemAnalyte CL reaction system Sample Detection limit Reference 肼luminol2hydrazine2gold nanoparticles锅炉给水30×10-9mol・L-181葡萄糖luminol2glucose oxidase2HRP人血清510-7mol・L-182Fe2+luminol2Fe2+海水-83维生素C luminol2PMMA药品8.3×10-9mol・L-184芒果苷luminol2hypoxanthine2xanthine oxidase芒果-85槲皮素luminol2quercetin试剂 2.0×10-8mol・L-186加替沙星luminol2myoglobin药片、血清、尿样20ng・L-187有机磷杀虫剂luminol2K2S2O8蔬菜-88维生素K3luminol2vitamin K3药物针剂 3.0×10-7mol・L-189一氧化氮luminol2perborate空气-90叔丁基过氧化氢luminol2TB HP试剂-91Pt4+luminol2Pt4+模拟水样0.057ng・mL-192磷脂酰胆碱luminol2cytochrome C人血浆-93氨基酸luminol2ClO-试剂-94苏丹I苏丹II 苏丹III 苏丹IV luminol2BrO-辣椒酱6μg・kg-15μg・kg-14μg・kg-18μg・kg-195腺嘌呤luminol2K2Cr2O72SDBS尿样 2.46×10-10mol・L-196参考文献:[1]Anderson D J,Guo B,Xu Y,et al.Clinical chemistry[J].A nal Chem,1997,69(12):165-230.[2]Timothy G B,Seitz W R.Mechanism of cobalt catalysis of luminol chemiluminescence[J].A nal Chem,1975,47(9):1639-1643.[3]戴路,王伦.鲁米诺2过氧化氢化学发光体系测定雌性激素[J].安徽师范大学学报(自然科学版),2009,32(1):45-50.[4]Lin Z,Chen J,Chen G.An ECL biosensor for glucose based on carbon2nanotube/nafion film modified glass carbon elec2trode[J].Elect rochim A cta,2008,53(5):2396-2401.[5]Minioti K S,G eorgiou C A.High throughput flow injection bioluminometric method for olive oil antioxidant capacity[J].Food Chem,2008,109(2):455-461.[6]Guo J,Cui H,Zhou W,et al.Ag nanoparticle2catalyzed chemiluminescent reaction between luminol and hydrogen perox2ide[J].J Photochem Photobio A,2008,193(2-3):89-96.[7]Lin Z,Wang X,Li Z,et al.Development of a sensitive,rapid,biotin2streptavidin based chemiluminescent enzyme immu2noassay for human thyroid stimulating hormone[J].Talanta,2008,75(4):965-972.[8]Maya F,Estela J M,Cerda V.Improving the chemiluminescence2based determination of sulphide in complex environmentalsamples by using a new,automated multi2syringe flow injection analysis system coupled to a gas diff usion unit[J].A nal Chim A cta,2007,601(1):87-94.[9]Zhang R,Nakajima H,Soh N,et al.Sequential injection chemiluminescence immunoassay for nonionic surfactants byusing magnetic microbeads[J].A nal Chim A cta,2007,600(1-2):105-113.[10]Hu Y,Zhang Z,Yang C.The determination of hydrogen peroxide generated f rom cigarette smoke with an ultrasensitiveand highly selective chemiluminescence method[J].A nal Chi m A cta,2007,601(1):95-100.[11]Ho W,Chen J,Ker M,et al.Fabrication of a miniature CMOS2based optical biosensor[J].B iosens B ioelect ron,2007,22(12):3008-3013.[12]Shlyahovsky B,Li D,Katz E,et al.Proteins modified with DNA zymes or aptamers act as biosensors or biosensor labels[J].B iosens B ioelect ron,2007,22(11):2570-2576.[13]Zhang Y,Zhang Z,Yang F.A sensitive immunoassay for determination of hepatitis B surface antigen and antibody in hu2第1期邵晓东等:鲁米诺化学发光分析法研究进展109 man serum using capillary electrophoresis with chemiluminescence detection[J].J Chromatog r B,2007,857(1):100-107.[14]Liu Y,Mu H,Zheng Y,et al.Capillary electrophoretic immunoassay for alpha2fetoprotein with chemiluminescence de2tection[J].J Chromatog r B,2007,855(2):280-285.[15]Zhou S,Wang J,Huang W,et al.Monitoring the reaction of hemoglobin with hydrogen peroxide by capillary electropho2resis2chemiluminescence detection[J].J Chromatog r B,2007,850(1-2):343-347.[16]Tahirovic A,Copra A,Omanovic M E,et al.A chemiluminescence sensor for the determination of hydrogen peroxide[J].Talanta,2007,72(4):1378-1385.[17]Wang L,Yang P,Li Y,et al.A flow injection chemiluminescence method for the determination of fluoroquinolone deriv2ative using the reaction of luminol and hydrogen peroxide catalyzed by gold nanoparticles[J].T alanta,2007,72(3):1066 -1072.[18]Dotsikas Y,Loukas Y L.Effect of the luminol signal enhancer selection on the curve parameters of an immunoassay andthe chemiluminescence intensity and kinetics[J].Talanta,2007,71(2):906-910.[19]Badocco D,Pastore P,Favaro G,et al.Effect of eluent composition and p H and chemiluminescent reagent p H on ionchromatographic selectivity and luminol2based chemiluminescence detection of Co2+,Mn2+and Fe2+at trace levels[J].T alanta,2007,72(1):249-255.[20]Tortajada2Genaro L A,Campins2Falco P.Multivariate standardisation for non2linear calibration range in the chemilumi2nescence determination of chromium[J].T alanta,2007,72(3):1004-1012.[21]Dimosthenis L G,Athanasios G V,Nicholaos P E.On2line selective detection of antioxidants f ree2radical scavenging ac2tivity based on Co(II)/ED TA2induced luminol chemiluminescence by flow injection analysis[J].A nal Chim A cta,2007, 589(1):59-65.[22]Liu Y,Song Z,Dong F,et al.Flow injection chemiluminescence determination of sudan I in hot chilli sauce[J].J A g rFood Chem,2007,55(3):614-617.[23]Som2Aum W,Threeprom J,Li H,et al.Determination of chromium(III)and total chromium using dual channels onglass chip with chemiluminescence detection[J].Talanta,2007,71(5):2062-2068.[24]Zhi Q,Xie C,Huang X,et al.Coupling chemiluminescence with capillary electrophoresis to analyze single human redblood cells[J].A nal Chim A cta,2007,583(2):217-222.[25]Yang M,Liu R,Xu Y,et al.A sequential injection analysis/chemiluminescent plant tissue2based biosensor system forthe determination of diamine[J].B iosens B ioelect ron,2007,22(6):871-876.[26]Li Y,Yang P,Wang P,et al.Development of a novel luminol chemiluminescent method catalyzed by gold nanoparticlesfor determination of estrogens[J].A nal B ioanal Chem,2007,387(2):585-592.[27]Amini N,K olev S D.G as2diff usion flow injection determination of Hg(II)with chemiluminescence detection[J].A nalChim A cta,2007,582(1):103-108.[28]Li S,Chen H,Wei X,et al.Determination of tannic acid by flow injection analysis with inhibited chemiluminescence de2tection[J].M icrochim A cta,2006,155(3-4):427-430.[29]Li X,Guan T,Zhou C,et al.Solid phase extraction chemiluminescence determination of methamidaphos on vegetables[J].Chem Res Chinese U,2006,22(1):21-24.[30]Li B,Wang D,Lv J,et al.Flow2injection chemiluminescence simultaneous determination of cobalt(II)and copper(II)using partial least squares calibration[J].T alanta,2006,69(1):160-165.[31]Liao S,Xie Z.Flow2injection chemiluminescence study of luminol2hydrogen peroxide2carbendazim system[J].S pect roscL ett,2006,39(5):473-485.[32]Fu Z,Hao C,Fei X,et al.Flow2injection chemiluminescent immunoassay forα2fetoprotein based on epoxysilane modifiedglass microbeads[J].J I mm unol Methods,2006,312(1-2):61-67.[33]Li B,Wang D,Lv J,et al.Chemometrics2assisted simultaneous determination of cobalt(II)and chromium(III)withflow2injection chemiluminescence method[J].S pect rochim A cta A,2006,65(1):67-72.[34]Xie X,Shao X,Song Z.Determination of risperidone at picogram level in human urine by luminol2H2O2chemilumines2cence[J].Chem Pap,2006,60(4):288-292.[35]Philip B S,Harold A N.Mechanism of the ferricyanide2catalyzed chemiluminescence of luminol[J].J Org Chem,1970,35(7):2178-2182. 化 学 研 究2010年110[36]周艳梅,张成丽,雷建都,等.分子印迹流动注射化学发光法测定盐酸强力霉素[J].光谱学与光谱分析,2009,29(7):1745-1749.[37]刘丽珍,韩素琴.鲁米诺2铁氰化钾化学发光体系测定吲哚乙酸[J].山西师范大学学报(自然科学版),2009,23(2):74-77.[38]Nakamura H,Abe Y,K oizumi R,et al.A chemiluminescence biochemical oxygen demand measuring method[J].A nalChim A cta,2007,602(1):94-100.[39]Liu W,Zhang Z,Liu Z.Determination ofβ2lactam antibiotics in milk using micro2flow chemiluminescence system withon2line solid phase extraction[J].A nal Chim A cta,2007,592(2):187-192.[40]Lin Z,Wu X,Lin X,et al.End2column chemiluminescence detection for pressurized capillary electrochromatographicanalysis of norepinephrine and epinephrine[J].J Chromatog r A,2007,1170(1-2):118-121.[41]Zhao S,Bai W,Wang B,et al.Determination of levodopa by capillary electrophoresis with chemiluminescence detection[J].Talanta,2007,73(1):142-146.[42]Wu F,Lv J.Flow injection chemiluminescence detection and solvent extraction for human skin ointment dexamethasoneacetate absorption analysis and the reaction mechanism study[J].T alanta,2007,72(5):1811-1817.[43]Guo X,Xu X,Zhang H,et al.A novel method for Co(II)and Cu(II)analysis by capillary electrophoresis with chemilu2minescence detection[J].Chin Chem L ett,2007,18(9):1095-1098.[44]He D,Zhang Z,Huang Y,et al.Chemiluminescence microflow injection analysis system on a chip for the determinationof nitrite in food[J].Food Chem,2007,101(2):667-672.[45]Qi H,Lv J,Li B.Determination of phenol at ng L-1level by flow2injection chemiluminescence combined with online sol2id2phase extraction[J].S pect rochim A cta A,2007,66(4-5):874-878.[46]Yu C,Tang Y,Han X,et al.Flow injection chemiluminescence analysis of diphenhydramine hydrochloride and chlorphe2niramine maleate[J].I nst rum S ci Technol,2006,34(5):529-536.[47]Niu W,Feng N,Nie F,et al.Investigating the post2chemiluminescence behavior of phenothiazine medications in the lu2minol potassium ferricyanide system:molecular imprinting2post2chemiluminescence method for the determination of chlor2 promazine hydrochloride[J].A nal B ioanal Chem,2006,385(1):153-160.[48]Li Q,Huang C,Huang Y.Sensitive determination of synephrine by flow2injection chemiluminescence[J].L umines2cence,2006,21(1):43-48.[49]Fukutsu N,K onse T,Kawasaki T,et al.Determination of cef metazole residue at pharmaceutical manufacturing facilitiesby chemiluminescence flow injection analysis[J].J Pharm B iomed A nal,2006,41(2):599-602.[50]Seitz W R,Hercules D M.Quantitative study of chemiluminescence f rom the iodine2luminol reaction[J].J A m ChemS oc,1974,96(13):4094-4098.[51]孟磊,刘炎超,毕士峰,等.水体中溶解氧的静态注射化学发光法测定[J].光谱实验室,2009,26(2):338-340.[52]石文兵.KIO42鲁米诺化学发光体系测定青霉素钠[J].分析试验室,2009,28(7):75-77.[53]Li S,Li X,Xu J,et al.Flow2injection chemiluminescence determination of polyphenols using luminol2NaIO42gold nanop2articles system[J].Talanta,2008,75(1),32-37.[54]Zhang Y,Zhang Z,Song Y,et al.Detection of glucocorticoid residues in pig liver by high2performance liquid chromatog2raphy with on2line electrogenerated[Cu(HIO6)2]5-2luminol chemiluminescence detection[J].J Chromatog r A,2007, 1154(1-2):260-268.[55]Xiong Y,Zhou H,Zhang Z,et al.Flow2injection chemiluminescence sensor for determination of isoniazid in urine samplebased on molecularly imprinted polymer[J].S pect rochim A cta A,2007,66(2):341-346.[56]Nacapricha D,Sangkarn P,Karuwan C,et al.Pervaporation2flow injection with chemiluminescence detection for deter2mination of iodide in multivitamin tablets[J].Talanta,2007,72(2):626-633.[57]Gao X,Liu H,Song Z,et al.Rapid assay of picogram level of sudan I in hot chilli sauce by flow injection chemilumines2cence[J].S pect roscop y,2007,21(2):135-141.[58]Nalewajko E,Wiszowata A,K ojlo A.Determination of catecholamines by flow2injection analysis and high2performanceliquid chromatography with chemiluminescence detection[J].J Pharm B iomed A nal,2007,43(5):1673-1681. [59]Li B,Zhang X,Zhang C.The second chemiluminescence emission of luminol2periodate2menadione sodium bisulfite systemand its analytical application[J].A nal Chim A cta,2006,575(2):212-216.[60]Shao X,Xie X,Liu Y,et al.Rapid determination of levofloxacin at nanogram level in pharmaceuticals and biological第1期邵晓东等:鲁米诺化学发光分析法研究进展111 fluids using flow injection chemiluminescence[J].Curr A nal Chem,2006,2(3):253-259.[61]Song Z,Yue Q,Xie X,et al.In2vitro monitoring and chemiluminescence detection of sub2nanogram amount of vitamin Cin human urine[J].Chem A nal,2006,51(4):499-508.[62]Liu Y,Song Z.Flow injection chemiluminescence for determination of dopamine with immobilized reagents technology[J].Can J A nal Sci S pect,2006,51(2):59-66.[63]Yao H,Sun Y,Lin X,et al.Flow2injection chemiluminescence determination of catecholamines based on their enhancingeffects on the luminol2potassium periodate system[J].L uminescence,2006,21(2):112-117.[64]马明阳,王雷.流动注射化学发光法测定盐酸利多卡因[J].西安文理学院学报(自然科学版),2009,12(1):52-54.[65]石文兵.KMnO42鲁米诺体系测定苯唑西林钠[J].分析试验室,2009,28(6):39-42.[66]Tian J,Hu Y,Zhang J.Chemiluminescence detection of permanganate index(COD Mn)by a luminol2KMnO4based reac2tion[J].J Envi ron Sci,2008,20(2):252-256.[67]Wang X,Wang J,Yang N.Flow injection chemiluminescent detection of gallic acid in olive f ruits[J].Food Chem,2007,105(1):340-345.[68]牛卫芬,吕九如.高锰酸钾2鲁米诺化学发光体系分子印迹2后化学发光法测定奋乃静[J].分析化学,2007,35(2):281-284.[69]Li Y,Niu W,Lv J.Sensitive determination of phenothiazines in pharmaceutical preparation and biological fluid by flowinjection chemiluminescence method using luminal2KMnO4system[J].Talanta,2007,71(3):1124-1129.[70]Pan J,Huang Y,Shu W,et al.Effect of p H on the characteristics of potassium permanganate2luminol CL reaction in thepresence of trace aluminum(III)and its analytical application[J].T alanta,2007,71(5):1861-1866.[71]李菁菁,张玲,屠一锋.纳米SnO2增敏鲁米诺化学发光的研究与应用[J].分析测试学报,2009,28(1):63-66.[72]Shao X,Liu H,Gao X,et al.Determination of norfloxacin in pharmaceuticals,human serum,and urine using a luminol2dissolved oxygen chemiluminescence system[J].Chem Pap,2007,61(5):353-358.[73]Xie X,He X,Qiu X,et al.In vitro monitoring chlorogenic acid in human urine and serum by a flow injection system ex2ploiting the luminol2dissolved oxygen chemiluminescence reaction[J].Curr D rug Metab,2007,8(8):773-777.[74]Liu H,G ao X,He X,et al.Sensitive chemiluminescence assay for patulin in apple juice by flow injection[J].S pect roscL ett,2007,40(6):851-860.[75]Vong L,Laes A,Blain S.Determination of iron porphyrin2like complexes at nanomolar levels in seawater[J].A nalChim A cta,2007,588(2):237-244.[76]Su Y,Li X,Chen H,et al.Rapid,sensitive and on2line measurement of chemical oxygen demand by novel optical methodbased on UV photolysis and chemiluminescence[J].M icrochem J,2007,87(1):56-61.[77]顾雪凡,郑行望.基于电催化还原化学发光法检测异烟肼的高灵敏方法[J].分析试验室,2007,26(9):6-8.[78]Song Z,Hou S,Yu X,et al.In vitro monitoring of picogram levels of captopril in human urine using flow injection chem2iluminescence with immobilized reagent technique[J].A nal L ett,2006,39(6):1115-1127.[79]孙光举,宋月,高春英,等.顺序注射化学发光法测定环境中痕量磷[J].冶金分析,2009,29(3):49-51.[80]石文兵.流动注射化学发光法测定盐酸雷尼替丁[J].理化检验2化学分册,2009,45(6),681-683.[81]Safavi A,Absalan G,Bamdad F.Effect of gold nanoparticle as a novel nanocatalyst on luminol2hydrazine chemilumines2cence system and its analytical application[J].A nal Chim A cta,2008,610(2):243-248.[82]Li B,Lan D,Zhang Z.Chemiluminescence flow2through biosensor for glucose with eggshell membrane as enzyme immo2bilization platform[J].A nal B iochem,2008,374(1):64-70.[83]Shaked Y.Iron redox dynamics in the surface waters of the Gulf of Aqaba,Red Sea[J].Geochim Cosmochim A cta,2008,72(6):1540-1554.[84]Dai H,Wu X,Wang Y,et al.An electrochemiluminescent biosensor for vitamin C based on inhibition of luminol electro2chemiluminescence on graphite/poly composite electrode[J].Elect rochim A cta,2008,53(16):5113-5117.[85]Garrido G,G onzalez D,Romay C,et al.Scavenger effect of a mango food supplement’s active ingredient on free radicalsproduced by human polymorphonuclear cells and hypoxanthine2xanthine oxidase chemiluminescence systems[J].Food Chem,2008,107(3):1008-1014.[86]Lei R,Xu X,Yu F,et al.A method to determine quercetin by enhanced luminol electrogenerated chemiluminescence(ECL)and quercetin autoxidation[J].Talanta,2008,75(4),1068-1074.[87]Xie X,Shao X,Yue Q,et al.Ultrasensitive assay of gatifloxacin at picogram level based on its enhancing effect on the 化 学 研 究2010年112myoglobin2luminol chemiluminescence reaction[J].A nal L ett,2007,40(10):1951-1961.[88]Li B,He Y,Xu C.Simultaneous determination of three organophosphorus pesticides residues in vegetables using continu2ous2flow chemiluminescence with artificial neural network calibration[J].T alanta,2007,72(1):223-230.[89]Lin Z,Chen J,Chen G.Study on the electrochemiluminescent behavior of menadione sodium bisulfite in presence of lumi2nol[J].Talanta,2007,72(5):1681-1686.[90]Towbin H,Zingel O.Atmospheric influence on the background of luminol2based chemiluminescent assays[J].A nal B io2chem,2007,369(2):256-257.[91]Baj S,Krawczyk T.Chemiluminescence detection of organic peroxides in a two2phase system[J].A nal Chim A cta,2007,585(1):147-153.[92]G odlewska2 Z y⁄kiewicz B,Malejko J,Ha⁄aburda P,et al.Separation of matrix by means of biosorption for flow2injectionchemiluminescent determination of trace amounts of Pt(IV)in natural waters[J].M icrochem J,2007,85(2):314-320.[93]Hui S,Chiba H,Sakurai T,et al.An improved HPL C assay for phosphatidylcholine hydroperoxides(PCOO H)in hu2man plasma with synthetic PCOO H as internal standard[J].J Chromatog r B,2007,857(1):158-163.[94]Triantis T M,Yannakopoulou E,Nikokavoura A,et al.Chemiluminescent studies on the antioxidant activity of aminoacids[J].A nal Chim A cta,2007,591(1):106-111.[95]Zhang Y,Zhang Z,Sun Y.Development and optimization of an analytical method for the determination of sudan dyes inhot chilli pepper by high2performance liquid chromatography with on2line electrogenerated BrO-2luminol chemilumines2 cence detection[J].J Chromatog r A,2006,1129(1):34-40.[96]Liu E,Xue B.Flow injection determination of adenine at trace level based on luminol2K2Cr2O7chemiluminescence in a mi2cellar medium[J].J Pharm B iomed A nal,2006,41(2):649-653.启 事经河南省新闻出版局批准,《化学研究》从2010年起变为双月刊,每期112页,单月份25日出版。

鲁米诺—H2O2—K3Fe(CN)6—Nb体系化学发光反应的研究

鲁米诺—H2O2—K3Fe(CN)6—Nb体系化学发光反应的研究
取5 0 毫 升容 量瓶
加人 6
,
.
0 毫升 1

x
o l
一`
M 过 氧 化氢
,
一 定 体积 的 妮 标准 溶 液 或 试
,

,
用蒸 馏 水稀 释至 标 线
,
摇匀
,
另取 一只 5 D 毫升 容量 瓶

加 入 6 0毫 升 1
.
x
10
“ `
M 过
氧化 氢 行测定
用 蒸馏 水 稀 释 至 标 线
摇 匀 作 为 空 白液

`
.`
` .
~
.

3
F
e
( C N ) 。一 N b

`
一一


体系 化学 发光反 应 的研 究
李光文

王屹
.
忿
章竹 君
特书
之 』』

上 卫』
旦二吏
王注 』目 L


生旦 通 注 二二注 里 生竺 』 恋 卫 旦 渔
J
J J吏
主 巨 卫 J 以匕巴 上 色渔 止乞之旦 叉 ,- 之兔 通 土三免 三 三卫 之 左」
,
,

1 0一 二 M 时

,
△ I 值亦 较 大
3

造 成 准确 度下 降
本文 选 为
1
x
l。 一 M
(图
)
I
,犷
I
;价 万 下二
图 3
5 又 10


,

(V )

。一
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁米诺化学发光分析研究综述
化学发光是化学反应体系中的某些分子,如反应物、中间体或反应产物吸收了化学反应释放出的化学能,由基态跃迁至激发态,当其从激发态返回基态时所产生的光辐射[1]。

化学发光法则是根据化学反应的发光强度或发光总量确定相应组分含量的一种分析方法。

同荧光法相比,化学发光法不需要外来的光源,减少了拉曼散射和瑞利散射,降低了噪音信号的干扰,提高了检测的灵敏度[4],扩大了线性范围。

鲁米诺(5-氨基-2,3-二氢-1,4-二杂氮萘二酮,也称3-氨基邻苯二甲酰肼)因其结构简单、易合成、水溶性好,以及发光量子效率高等特点,鲁米诺是最常用的液相化学发光试剂之一。

自从1928年albrecht首次报道了鲁米诺与氧化剂在碱性溶液中的化学发光反应以来,人们对该化学发光体系的研究就一直十分活跃,使得该化学发光体系被应用于许多领域之中。

white等通过比较鲁米诺体系的化学发光光谱和3-氨基邻苯二甲酸根离子的荧光光谱,提出鲁米诺化学发光反应的发光体。

在碱性条件下,鲁米诺首先被氧化为叠氮酮,然后形成桥式六元环过氧化物中间体,分解后以光子的形式释放出能量产生化学发光。

下面笔者简要介绍鲁米诺化学发光反应的机理,详细地总结近五年来鲁米诺化学发光体系的应用进展。

鲁米诺化学发光体系的分析应用主要基于以下几个方面。

鲁米诺-过氧化氢化学发光体系应用最为广泛。

许多过渡金属离
子对鲁米诺-过氧化氢化学发光反应具有很好的催化作用。

李正平等发现铁蛋白催化,产生很强的化学发光信号,建立简便灵敏的检测铁蛋白的化学发光方法。

方法的线性范围为0.5~10μg/l,检出限为0.36μg/l,为铁蛋白作为纳米粒子标记物及直接检测提供一种新的途径。

戴路等报道了一种新的测定雌性激素的流动注射化学发光方法。

在碱性条件下,金银复合纳米粒子能显著地增强鲁米诺-过氧化氢化学发光,而雌性激素能明显地抑制该体系的化学发光强度,建立了测定天然雌激素(雌酮、雌二醇和雌三醇)的化学发光方法。

该方法已用于孕妇尿样中雌激素总量的测定。

刘振波等基于人的血清白蛋白对鲁米诺-过氧化氢-叶绿素铜钠化学发光体系
的抑制作用,采用流动注射技术建立了一种简单、快速、可连续测定人的血清白蛋白的新方法。

鲁米诺-铁氰化钾化学发光体系。

陈效兰等发现在碱性介质中,铁氰化钾氧化鲁米诺产生化学发光,头孢拉定对该体系有显著的增强作用。

基于此并结合流动注射技术建立了测定头孢拉定含量的化学发光新方法。

该方法的线性范围为0.16~160mg/l,检出限为0.028mg/l。

本法已用于胶囊中头孢拉定的测定。

邓娜妮研究了盐酸阿比朵尔在鲁米诺化学发光反应体系中的后化学发光反应。

据此建立了测定盐酸阿比朵尔的流动注射后化学发光分析法。

在对这一后化学发光反应的动力学性质、化学发光光谱、紫外可见吸收光谱,以及一些相关问题研究的基础上,提出了可能的反应机理。

申婧等基于阿魏酸对鲁米诺-铁氰化钾化学发光体系的抑制作用,建立了
阿魏酸的流动注射抑制化学发光分析法,阿魏酸浓度在之间时与化学发光强度减小值呈现良好线性关系,检出限为,将其应用于复方当归注射液中阿魏酸含量的测定,结果令人满意。

鲁米诺-高碘酸钾化学发光体系。

王瑞琪等发现在碱性介质中,镧(iii)对鲁米诺-高碘酸钾体系的化学发光反应有显著的增敏作用。

据此,建立了测定镧(iii)的反相流动注射化学发光新方法,并将此法用于合成样品的测定。

屈颖娟等基于蒽醌类药物在碱性条件下对高碘酸钾-鲁米诺体系的化学发光信号有强烈的抑制作用这一现象,结合流动注射技术建立了一种直接测定蒽醌类药物的流动注射化学发光分析新方法。

马明阳发现,当向已充分反应的高碘酸钾与鲁米诺混合溶液中注入异烟肼时,又可以产生一个新的化学发光反应并检测到较强的化学发光信号,建立测定异烟肼的流动注射后化学发光分析法。

鲁米诺-高锰酸钾化学发光体系。

高锰酸钾是化学发光反应中常用的强氧化剂。

fernando等基于在碱性介质中,n-甲基氨基甲酸酯类农药,西维因、克百威和灭虫威对luminol-kmno化学发光体系有增强作用,结合反相高效液相色谱法分离并同时测定了三种农药在水样和蔬菜中的残留量。

沈祥根据次黄嘌呤对高锰酸钾-鲁米诺-so体系化学发光具有增敏作用,建立了so的化学发光方法。

余宇燕等发现在碱性条件下茶多酚对鲁米诺-kmno化学发光体系具有较强的抑制作用,据此建立了茶多酚的流动注射化学发光测定法。

easwaramoorthy等利用在ph=12.0磷酸介质中,kmno可以氧化鲁
米诺产生稳定的发光,扑热息痛的加入会抑制发光,建立了扑热息痛的流动注射化学发光法,并用于片剂中扑热息痛的测定。

吕九如等人发现,当把碱土金属离子注入已充分反应的鲁米诺和高锰酸钾混合溶液中时,又发生了新的化学发光反应。

牛卫芬等利用高锰酸钾-鲁米诺后化学发光体系,建立了测定奋乃静的高选择性分子印迹-后化学发光分析方法,所建方法的线性范围为,检出限为3×10g/l,已用于人尿液中奋乃静含量的测定。

鲁米诺-溶解氧化学发光体系。

李菁菁等人采用溶胶—凝胶法制得平均粒径约10nmsno粒子,将该纳米粒子加入到碱性鲁米诺-溶解氧化学发光体系中,体系的化学发光强度明显增强,这种增敏作用与纳米sno的加入量以及体系中溶解氧的浓度有关,可用于溶解氧的测定。

鲁米诺的其他化学发光体系。

宋正华等人发现肌红蛋白能够与鲁米诺在碱性条件下反应产生化学发光,建立了克林霉素的化学发光法。

鲁米诺-nbs/ncs化学发光体系[152-158]已成功应用于药物、食品、及环境分析中。

石文兵利用鲁米诺-aucl化学发光体系建立了测定氨苄西林、阿莫西林钠、盐酸雷尼替丁、美诺西林钠、双嘧达莫和盐酸奋乃静的流动注射化学发光新方法。

瞿鹏等建立了流动注射抑制化学发光法测定头孢曲松钠的化学发光法。

对鲁米诺各发光体系研究总结发现,鲁米诺化学发光分析法已经在各个领域都得到了广泛应用。

由于鲁米诺自身与这些氧化剂反应产生了较强的发光信号,方法的背景信号较高,这在一定程度上限
制了方法灵敏度的进一步提高。

高效液相色谱和毛细管电泳等其他分离方法的联用必将扩大化学发光分析法的应用范围,将会更好地促进现代分析化学的发展。

渭南职业技术学院院级科研课题,课题编号: wzyy201314 课题名称:不同价态锰的化学发光行为研究。

相关文档
最新文档