最新初三九年级上册数学压轴题综合测试(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初三九年级上册数学压轴题综合测试(Word版含答案)
一、压轴题
1.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点
A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.
(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;
(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.
2.阅读理解:
如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.
解决问题:
(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)
①ABM;②AOP;③ACQ
(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积
为1
2
,求k的值.
(3)点B在x轴上,以B3为半径画⊙B,若直线3与⊙B的“最美三3
B的横坐标
B
x的取值范围.
3.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.
(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.
(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?
4.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .
(1)求APC ∠和BPC ∠的度数;
(2)求证:ACM BCP △≌△;
(3)若1PA =,2PB =,求四边形PBCM 的面积;
(4)在(3)的条件下,求AB 的长度.
5.已知:在ABC 中,,90AC BC ACB ︒
=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.
(1)如图1,若点F 在边CA 上;
①求证:BE AD ⊥;
②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.
6.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(﹣3,1),点A 的坐标为(2,0),点B 的坐标为(1,﹣3),点D 在x 轴上,且点D 在点A 的右侧.
(1)求菱形ABCD 的周长;
(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,菱形ABCD 沿x 轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与AD 相切,且切点为AD 的中点时,连接AC ,求t 的值及∠MAC 的度数;
(3)在(2)的条件下,当点M 与AC 所在的直线的距离为1时,求t 的值.
7. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,
(1)求证:AE=DE ;
(2)若PB=2,求AE 的长;
(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.
8.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的
外接圆⊙O 交BD 于E .
(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径;
(2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;
(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.
9.如图,抛物线2
()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.
(1)求该抛物线的函数解析式.
(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.
(3)如图2,点E 的坐标为(03
)2
-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.
10.如图1,已知菱形ABCD 的边长为3A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为33),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.
(1)求这条抛物线的函数解析式;
(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0 ) ①是否存在这样的t ,使DF=7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与.. 抛物线在....x .轴上方的部分围成的图形中............(.包括边界....). 时,求t 的取值范围.(直接写出答案即可) 11.如图,抛物线2)12 (0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122 y x =-经过点,B C . (1)求抛物线的解析式; (2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t . ①当PCM ∆是直角三角形时,求点P 的坐标; ②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示). 12.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12 ∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.