第四章 受弯构件的计算原理
《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算
计算剪力值的确定
《公路桥规》规定:取离支点中心线梁高一半处的剪力 设计值 V ;其中不少于60%由混凝土和箍筋共同承担; 不超过40%由弯起钢筋(按45º弯起)承担,并且用水平 线将剪力设计值包络图分割;
箍筋设计 假设箍筋直径和种类,箍筋间距为
箍筋可减小斜裂缝宽度,从而提高斜截面上的骨料咬力。
箍筋限制了纵向钢筋的竖向位移,阻止混凝土沿纵向 钢筋的撕裂,提高了纵向钢筋的销栓作用。
可见,箍筋对提高斜截面受剪承载力的作用是多方面的和 综合性的。
2、剪力传递机理(见下图)——桁架-拱模型:
拱I: 相当于上弦压杆 拱Ⅱ、拱Ⅲ: 相当于受压腹杆
否
是否通过 是
计算结束
§4.3 受弯构件的斜截面抗剪承载力
计算依据:以剪压破坏为基础 一般是采用限制截面最小尺寸防止发生斜压破坏; 限制箍筋最大间距和最小配箍率防止发生斜拉破坏
一、基本公式及适用条件 计算图式:
基本公式:(半经验半理论)
Vu Vc Vsv Vsb Vcs Vsb
抗剪能力:
斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗 压强度,受剪承载力比剪压破坏高。
破坏性质:属脆性破坏
除上述三种主要破坏形态外,有时还可能发生局部挤压 或纵向钢筋锚固等破坏。
四、有腹筋简支梁斜裂缝出现后的受力状态
无腹筋梁斜截面受剪承载力很低,且破坏时呈脆性。 故《公桥规》规定,一般的梁内都需设置腹筋。配置腹筋是 提高梁斜截面受剪承载力的有效方法。在配置腹筋时,一般 首先配置一定数量的箍筋,当箍筋用量较大时,则可同时配 置弯起钢筋。
V fcbh00
0. 0. 0. 0. 0.1
《混凝土结构设计原理》第四章_课堂笔记
《混凝⼟结构设计原理》第四章_课堂笔记《混凝⼟结构设计原理》第四章受弯构件正截⾯承载⼒计算课堂笔记◆知识点掌握:受弯构件是⼟⽊⼯程中⽤得最普遍的构件。
与构件计算轴线垂直的截⾯称为正截⾯,受弯构件正截⾯承载⼒计算就是满⾜要求:M≤Mu。
这⾥M为受弯构件正截⾯的设计弯矩,Mu为受弯构件正截⾯受弯承载⼒,是由正截⾯上的材料所产⽣的抗⼒,其计算及应⽤是本章的中⼼问题。
◆主要内容受弯构件的⼀般构造要求受弯构件正截⾯承载⼒的试验研究受弯构件正截⾯承载⼒的计算理论单筋矩形戴⾯受弯承载⼒计算双筋矩形截⾯受弯承载⼒计算T形截⾯受弯承载⼒计算◆学习要求1.深⼊理解适筋梁的三个受⼒阶段,配筋率对梁正截⾯破坏形态的影响及正截⾯抗弯承载⼒的截⾯应⼒计算图形。
2.熟练掌握单筋矩形、双筋矩形和T形截⾯受弯构件正截⾯设计和复核的握法,包括适⽤条件的验算。
重点难点◆本章的重点:1.适筋梁的受⼒阶段,配筋率对正截⾯破坏形态的影响及正截⾯抗弯承载⼒的截⾯应⼒计算图形。
2.单筋矩形、双筋矩形和T形截⾯受弯构件正截⾯抗弯承载⼒的计算。
本章的难点:重点1也是本章的难点。
⼀、受弯构件的⼀般构造(⼀)受弯构件常见截⾯形式结构中常⽤的梁、板是典型的受弯构件:受弯构件的常见截⾯形式的有矩形、T形、⼯字形、箱形、预制板常见的有空⼼板、槽型板等;为施⼯⽅便和结构整体性,也可采⽤预制和现浇结合,形成叠合梁和叠合板。
(⼆)受弯构件的截⾯尺⼨为统⼀模板尺⼨,⽅便施⼯,宜按下述采⽤:截⾯宽度b=120, 150 , 180、200、220、250、300以上级差为50mm。
截⾯⾼度h=250, 300,…、750、800mm,每次级差为50mm,800mm以上级差为100mm。
板的厚度与使⽤要求有关,板厚以10mm为模数。
但板的厚度不应过⼩。
(三)受弯构件材料选择与⼀般构造1.受弯构件的混凝⼟等级2.受弯构件的混凝⼟保护层厚度纵向受⼒钢筋的外表⾯到截⾯边缘的最⼩垂直距离,称为混凝⼟保护层厚度,⽤c表⽰。
第四章 受弯构件正截面承载力计算
因此得出
b
1
1
fy
cu E s
第四章 受弯构件正截面承载力计算
由平衡条件: 1 fcbxb= fyAs
可得出 1fcbbh0fyAs,max ---(4-15)
可推出适筋受弯构件最大配筋率max与 b
的表达式
maxAbs,m 0 hax b
1fc fy
---(4-16)
fy h0
360 465
0.2% h 0.2% 500 0.215%,可以。
h0
465
例题2
第四章 受弯构件正截面承载力计算
已知一单跨简支板,计算跨L0=2.34m,承受均 布荷载qk=3kN/m2(不包括板自重);混凝土 强度等级为C30;钢筋采用HPB235级钢筋。可
最小配筋率ρmin
第四章 受弯构件正截面承载力计算
4.2.2适筋受弯构件截面受力的几个阶段
第一阶段 —— 截面开裂前阶段。
第二阶段 —— 从截面开裂到纵向受拉钢筋屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
第四章 受弯构件正截面承载力计算
各阶段和各特征点的截面应力 — 应变分析:
第四章 受弯构件正截面承载力计算
由式(4-16)可知,当构件按最大配筋率配筋时,由式
M1fcb(xh02 x) (4-9a)
可以求出适筋受弯构件所能承受的最大弯矩为
M m a1 x fc b 0 2b h ( 1 0 .5 b )sb b 0 2h 1 fc
其中, sb ----截面最大的抵抗矩系数,可查表。
坏。
第四章 受弯构件正截面承载力计算
受弯构件的配筋形式
P
P
梁的扭转
Mt
tds t ds
(4.3.4)
其中积分是对截面各板件厚度中线的闭路积分
任一点处的剪应力为:
Mt 2 At
A为截面中心线所围面积
(4.3.5)
闭口截面的抗扭能力要比开口截面的抗扭能力更强。
2 开口截面构件的约束扭转
特点:由于支座的阻碍或其 它原因,受扭构件的截面不 能完全自由地翘曲(翘曲受 到约束)。 结果: 截面纤维纵向伸缩受 到约束,产生纵向翘曲正应 力 ,并伴随产生翘曲剪应 力 。翘曲剪应力绕截面剪 心形成抵抗翘曲扭矩M的能 力。总扭距分为自由扭距和 翘曲扭距两部分。构件扭转 平衡方程为:
第四章 受弯构件的计算原理
梁的扭转
1 自由扭转
当作用在梁上的剪力没有通过剪力中心时梁不仅产生弯曲变形,还 将绕剪力中心发生扭转。 如果梁中的各纤维沿纵向伸长 或缩短不受约束,则为自由扭转。
z
y
A M
C
x M
B D
z
图1 工字形截面构件自由扭转
图2 自由扭转剪应力
开口薄壁构件自由扭转时,截面上只有剪应力,其分布情况为 在壁厚范围内组成一个封闭的剪力流,剪应力的方向与壁厚中心线 平行,大小沿壁厚直线变化,中心线处为零,壁内外边缘处为最大 t , t的大小与构件扭转角的变化率 成正比。此剪力流形成抵抗外 扭矩的合力矩GIt 。
板件边缘的最大剪应力t与Mt的关系为:
k I t bi ti3 3
(2)
k的取值: 槽钢: T形钢: I字钢: 角钢: k=1.12 k=1.15 k=1.20 k=1.00
M tt It
(3)
闭口薄壁构件自由扭转时,截面上的剪应力分布与开口截面完 全不同,闭口截面壁厚两侧剪应力方向相同,薄壁截面可认为剪应 力沿厚度均匀分布,方向与截面中线相切,沿构件截面任意处 t为 常数
第四章-受弯构件正截面承载力计算
3. 计算表格的制作和使用 α1fcbh0ξ=Asfy 由公式: M =α1 fcbh02ξ (1-0.5ξ)
或
M = As fy h0(1- 0.5ξ)
令 αs = ξ(1−0.5ξ)
γs = 1−0.5ξ ξ, αs, γs之间存在一一对应的关系, 可预先制
成表待查, 因此对于设计题:
M αs = α1 f cbh0 2
3. 超筋梁:
ρ > ρmax
• 开裂, 裂缝多而细,钢筋应力不高, 最终由于 压区砼压碎而崩溃。 • 裂缝、变形均不太明显, 破坏具有脆性性质。 • 钢材未充分发挥作用。 • 设计不允许。
P
P
P
P
..
(a) P P P P
...
P P (b) P P
..
(c)
• 受弯小结
进行受弯构件截面各受力工作阶段的分析, 可 以详细了解截面受力的全过程, 而且为裂缝、变形 及承载力的计算提供依据。 Ia —— 抗裂计算的依据 II —— 正常工作状态, 变形和裂缝宽度计算的依据; IIIa —— 承载能力极限状态;
αs =
′ ′ ′ M − As f y (h0 − as )
α1 f cbh0
2
ξ = 1 − 1 − 2α s
x = ξ h0
当 ξ > ξb 说明As太少, 应加大截面尺寸或按As未知的 情况I分别求As及As′。 当2as′ ≤ ξ ≤ ξb 将上式求的ξ代入求As
As = ′ ′ α1 f cbξh0 + As f y fy
ρ ≤ ρmax ξ ≤ ξ b, x ≤ xb α ≤ αsb
M ≤ Mmax
工程实践表明, 当ρ在适当的比例时, 梁、板 的综合经济指标较好, 故梁、板的经济配筋率: 实心板 矩形板 T形梁
第4章受弯构件的正截面受弯承载力
11
净距30mm 钢筋直径1.5d h h0=h-60
净距25mm 钢筋直径d
b
净距25mm 钢筋直径d
12
《规范》4.2.7 构件中的钢筋可采用并筋的配置形式。直 径28mm 及以下的钢筋并筋数量不应超过3 根;直接32mm 的钢筋并筋数量宜为2 根;直径36mm 及以上的钢筋不应 采用并筋。并筋应按单根等效钢筋进行计算,等效钢筋的 等效直径应按截面面积相等的原则换算确定。
应变测点 P
P
1 1 ( ~ )L 3 4
百分表 L
弯矩M图
剪力V图
图4-4试验梁
19
适筋梁跨中弯矩M/Mu~ f的曲线如图
图4-5
M/Mu-f图
20
(4)实验过程分析: A.三阶段的划分原则: 第Ⅰ阶段:弯矩从零到受拉区边缘即将开裂,结束时称为 Ⅰa阶段,其标志为受拉区边缘混凝土达到其极限拉应 0 变 tu;
h
as
As
b
c
f
s
xn
Mcr
阶段 I a
As as
b
h0
h
c
f
s
xn
M
ft
阶段
As as
h0
h
s
22
*第Ⅰ阶段:未裂阶段
从开始加荷到受拉区混凝土开裂,梁的整个截面均参 加受力,由于弯矩很小,沿梁高量测到的梁截面上各个纤 维应变也小,且应变沿梁截面高度为直线变化。虽然受拉 区混凝土在开裂以前有一定的塑性变形,但整个截面的受 力基本接近线弹性,荷载-挠度曲线或弯矩-曲率曲线基本 接近直线。截面抗弯刚度较大,挠度和截面曲率很小,钢 筋的应力也很小,且都与弯矩近似成正比,受压区与受拉 区应力分布图形均为三角形。 在弯矩增加到Mcr时,受拉区边缘纤维的应变值即将 到达混凝土受弯时的极限拉应变实验值ε tu0,截面遂处 于即将开裂状态,称为第I阶段末,用Ia表示,受压区应 力分布图形接近三角形,受拉区应力分布图形则成曲线 23 分布。
第四章-受弯构件正截面承载力计算精选全文
【4.9】解:
h0 h as 500 60 440 mm
M1
f
' y
As'
(h0
as' )
300 226 (440 40)
27.12kN m
M 2 M M1 88 27.12 60.88kN m
s
M2
1 fcbh02
60.88 106 1.0 9.6 200 4402
返回
[4.1] 解:1.基本公式法
h0 h 40 400 40 360 mm
x h0 (1
1 2M ) 360 (1
1 fcbh02
1
2 75106
) 133.12mm
1.0 9.6 200 3602
xb b h0 0.614 360 221 .04mm x 满足
2.79%
300 1.0 14.3
0.585
b
0.55
取 b 0.55
得 s max 0.4
Mu s max 1 fcbh02 0.41.014.3 200 4402 221.48kN m
返回
第四讲作业
设计题 复核题
P75 4.7 P75 4.8 P75 4.9
P75 4.10
态,As f y
l fcbbh0 , 则max
As bh0
b
l fc
fy
。
返回
➢少筋梁与最小配筋率是如何定义的?
➢答:当钢筋混凝土梁的极限抗弯承载能力Mu。(按III 阶段计算)等于同截面素混凝土梁抗裂抵抗弯矩 M cr 时, 此钢筋混凝土梁定义为少筋梁。少筋梁与适筋梁的界限 配筋率即为最小配筋率 min 。
答案
目录
混凝土结构设计原理第4章:钢筋混凝土受弯构件正截面承载力计算
◆判别条件:f y As 1 fcb'f h'f
第一类T形截面
满足:
0M 1 fcb'f h'f h0 h'f 2 否则为第二类截面
混凝土结构设计原理
第4章
■第一类T形截面的计算公式及适用条件
图4.13 第一类T形截面计算简图
◆计算公式: 1 fcbf x f y As
0M
1
f cbf x(h0
由式(4-27)可得:
x h0
h02
M 2
fyAs(h0
1 fcb
as)
As
fyAs 1 fcbx
fy
…4-34 …4-35
混凝土结构设计原理 情形2:已知条件
第4章
M1
0M
f
' y
As'
h0
as'
x h0
h02
M1
0.51 fcb
x h0 b N
Y
x 2as'
按 A未s' 知,重新计算 和As' As
x) 2
◆适用条件: 1.防止超筋破坏: x bh0 2.防止少筋破坏 : As minbh
按 bf h的单筋
矩形截面计算
混凝土结构设计原理
第4章
■第二类T形截面的计算公式及适用条件
图4.14 第二类T形截面计算简图
◆计算公式: 1 fcbx 1 fc (bf b)hf fy As
0M
② 由式(4-27)求 Mu
Mu
fyAs(h0 as) 1 fcbx(h0
x) 2
…4-37
③ 验算: Mu M ?
混凝土结构设计原理
第四章受弯构件计算
第 四 章第四章 受弯构件的计算原理§4-1 §4-2 §4-3 §4-4 §4-5 §4-6 概述 受弯构件的强度和刚度 梁的扭转 梁的整体稳定 梁板件的局部稳定 梁腹板的屈曲后强度§4.1 概述受弯构件——承受横向荷载和弯矩构件,称之为梁(beam)。
梁——凡以弯曲为主要变形的杆件通常均称为梁。
《材料力学》受弯构件的形式:按截面形式分: 实腹式梁和格构式梁; 按制作方法分: 型钢梁和组合(截面)梁 按受力形式分: 单向弯曲梁与双向弯曲梁梁的计算内容强度 (屈曲后强度) 承载能力极限状态 整体稳定 局部稳定 正常使用极限状态 两类 刚度(挠度)抗弯强度 抗剪强度 局部压应力 折算应力五项(三个方面)§4.2 受弯构件的强度和刚度4.2.1 弯曲强度 1.工作性能(1)弹性阶段VmaxMmaxσx xfy弹性阶段的最大弯矩:M xe = M y = f yWnxM xe = σWnxσx xM e = σ W nx(2)弹塑性阶段 分为M y = f yW nxaε max ≥ f y E和ε < f y E 两个区域。
(3)塑性工作阶段 弹性区消失,形成塑性铰 。
afyfyfyM p = f yW pnxσx xM x = σ W nx M y = f yW nxM p = f y (S1nx + S 2nx ) = f yW pnx式中:aS1nx、S2nxWpnx分别为中和轴以上、以下截面对中 和轴x轴的面积矩; 截面对中和轴的塑性模量。
afyfyfyM p = f yW pnx塑性弯矩 M p = f yWpnx 与弹性最大弯矩 M x = f yW nx 之比:γF=M Mxp xW = Wpnx nxγF只取决于截面几何形状而与材料的性质无关 的形状系数。
XY AwY对X轴 对Y轴γ F = 1 .07 ( A1 = Aw )A1Xγ F = 1 .52. 抗弯强度计算梁设计时只是有限制地利用截面的塑性,如工字形截面 塑性发展深度取a≤h/8。
第四章受弯构件斜截面承载力计算
f
Teacher Chen Hong
⒊斜压破坏(<1)
主压应力的方向沿支座与 荷载作用点的连线。承载 力取决于混凝土的抗压强 度。
P
2019年10月14日星期一
斜压破坏 diagonal compression failure
f
Teacher Chen Hong
Teacher Chen Hong
2019年10月14日星期一
按每根(或每组)钢筋的的面积比例划分出各根(或各组) 钢筋的所提供的受弯承载力Mui,Mui可近似取
M ui
Asi As
Mu
Teacher Chen Hong
2019年10月14日星期一
根据M图的变化将钢筋弯起时需绘制Mu图,使得Mu图
Teacher Chen Hong
2019年10月14日星期一
板的斜截面承载力是满足要求的,所以斜截面承载力主要 是针对于梁和厚板而言的。 斜截面的受弯承载力是通过对纵筋和箍筋的构造要求来保 证的。而斜截面的受剪承载力是在梁具有一个合理截面的 基础上,通过配置腹筋(箍筋+弯起筋)来满足的。
Teacher Chen Hong
Teacher Chen Hong
3>、计算配置腹筋:
A、只配箍筋:
2019年10月14日星期一
确定n ? ? Asv1 ? Asv nAsv1
由 nAsv1 V 0.7 ftbh0 s 1.25 f yvh0nAsv1
s
1.25 f yvh0
V 0.07 ftbh0
2019年10月14日星期一
4-3 保证斜截面受弯承载力 的构造措施
混凝土结构设计原理-04章-受弯构件的正截面受弯承载力
fsd
即:
截面应力图
截面等效应力图
fcdb x k1 fcdb xc
x 2 xc yc 2 1 k2 xc
令:x xc ,可求出 21 k2 ,
k1
21 k2
对 C50 及以下混凝土, 1.0 , 0.8 ;C80时, 0.94
0.74 ,中间内插值。《公路桥规》直接取 1.0。
k2 xc
cu c c d c
0
式中k1、k2与混凝土的 强度等级有关,对C50 及以下混凝土,积分 可得 k1=0.797
k2=0.588
4.3 正截面受弯承载力计算原理
第4章 受弯构件的正截面受弯承载力
3.等效矩形应力图
fcd
等效原则:
合力大小C 相等
合力点位置 yc不变
fsd
4.3 正截面受弯承载力计算原理
第4章 受弯构件的正截面受弯承载力
4.适筋梁与超筋梁的界限及界限配筋率 (1)界限破坏
适筋破坏:受拉钢筋先屈服,
然后混凝土受压区边缘达到极限压
应变。
超筋破坏:受拉钢筋不屈服,
混凝土受压区边缘达到极限压应变。
界限破坏:受拉钢筋屈服的同 时混凝土受压区边缘达到极限压应
适筋、超筋、界限破坏时的截面应变
4.1 梁、板的一般构造
第4章 受弯构件的正截面受弯承载力
常用直径为8mm、10mm、12mm和14mm。 ■ 板内钢筋: 受力钢筋宜采用HPB300、HRB400和HRBF400钢筋。 常用直径为8mm、10mm、12mm和14mm。 分布钢筋宜采用HPB300、HRB335钢筋。 常用直径为6mm、8mm。 ■ 钢筋净距、保护层及有效高度 截面有效高度h0为受拉钢筋合力点至受压区边缘的距离。 h0 h as
第四章-受弯构件正截面承载力-双筋截面(第四课)精选全文
4.5 双筋截面的正截面受弯承载力计算
第四章 受弯构件
s
Mu2
1 fcbh02
215.7 106
1.0 19.1 200 4402
0.292
1 1 2s 1 1 2 0.292
0.355
b 0.55, 满足使用条件(1) x b0 0.355 440 156mm
第四章 受弯构件
【解】 由附表(纵向受力钢筋的混凝土保护层最小厚度表)知,环境 类别为一级,假定受拉钢筋放两排,设保护层最小厚度为 故设αs=60mm,则 h0=500-60=440mm 由混凝土和钢筋等级,查附表(混凝土强度设计值表、 普通钢筋强度设计值表),得: fc=19.1N/mm2,fy=300N/mm2,fy’=300N/mm2, 由表4-5知: α1=1.0,β1=0.8
As As1 As2 941 1986 2927 .0mm 2
受拉钢筋选用6 2φ5_mm,As=2945.9mm2。
4.5 双筋截面的正截面受弯承载力计算
第四章 受弯构件
[例4-7]
截面复核
已知:矩形截面梁b× h=200 ×500mm;弯矩设计值
M=330kNm,混凝土强度等级为C40,钢筋采用HRB335级 钢筋,即Ⅱ级钢筋;环境类别为一级 。
4.5 双筋截面的正截面受弯承载力计算
第四章 受弯构件
情况2: 双筋矩形截面分解求解的计算图示:
As
As
As
As1
As2
纯钢筋部分
fy'As'
fy'As'
单筋部分
M
fcbx
M1
M2
fcbx
fyAs
fyAs1
第四章 钢筋混凝土受弯构件斜截面承载力计算
配箍率sv
Asv nAsv1 sv bs bs
A Asv——设置在同一截面内的箍筋截面面积; sv nAsv1 Asv1——单肢箍筋截面面积; n——箍筋肢数; s——箍筋沿梁轴向的间距; b——梁宽。
1、仅配箍筋时梁的受剪承载力计算公式:
(1)规范对承受一般荷载的矩形、T形和工形截面的受 弯构件(包括连续梁和约束梁)给出计算公式:
规范对集中荷载作用下(包括作用有多种荷载,且 集中荷载对支座截面或节点边缘所产生的剪力值占 总剪力值的75%以上的情况)的矩形截面独立梁(包 括连续梁和约束梁)给出了计算的公式:
Asv 0.2 Vcs f c bh0 1.25 f yv h0 1.5 s
——计算剪跨比, a / h0 a——集中荷载作用点至支座截面或节点边缘的距离。
<1.4时,取
=1.4;当 >3时,取 =3。
T形和工形截面梁按式(4-4)计算 。
1、仅配箍筋时梁的受剪承载力计算公式:
V
1
d
Vcs 所配的箍筋不能满足抗剪要求。
解决办法:
箍筋加密或加粗; 增大构件截面尺寸; 提高砼强度等级。 纵筋弯起成为斜筋或加焊斜筋;
纵筋可能弯起时,用弯起的纵筋抗剪可收到 较好的经济效果。
Vcs 0.07 f c bh0 1.25 f yv
Asv h0 s
fc—— 砼轴心抗压强度设计值; b —— 矩形截面的宽度 或T形、工形截面的腹板宽 度; h0 ——截面有效高度; fyv——箍筋抗拉强度设计值, 不大于310N/mm2。
试验表明,承受集中荷载为主的矩形截面梁,按式 (4-7) 计算不够安全。
(0.3 f c bh0 ) (0.2 f c bh0 )
混凝土结构设计原理 第四章 受弯构件正截面承载力的计算
3.2 梁板结构的一般构造
第4章 受弯构件正截面承载力
分布钢筋的作用:
抵抗混凝土收缩和温度变化所引起的内力; 浇捣混凝土时,固定受力钢筋的位置; 将板上作用的局部荷载分散在较大的宽度上,以便 使更多的受力钢筋参与工作; 对四边支撑的单向板,可承受在计算中没有考虑的 长跨方向上实际存在的弯矩。
板中单位长度上的分布钢筋,其截面面积不应小于 单位长度上受力钢筋截面面积的15%,且配筋率不宜小于 0.15%。间距不应大于250mm,直径不宜小于6mm。
4.2 梁板结构的一般构造
第4章 受弯构件正截面承载力
弯起钢筋 架立钢筋
腰筋
箍筋
纵向钢筋
梁的钢筋构造
梁中钢筋由纵向受力钢筋、弯起钢筋、箍筋和架立钢筋组 成,纵向受力钢筋的作用是承受由弯矩在梁内产生的拉力。 常用直径:10~32mm。 当h ≥ 300mm,直径不小于10mm;当h<300mm,直径 不小于8mm。
第4章 受弯构件正截面承载力
梁的配筋率ρ 很小,梁拉区开裂后,钢筋 应力趋近于屈服强度,即开裂弯矩Mcr趋近于拉 区钢筋屈服时的弯矩 My,这意味着第Ⅱ阶段的 缩短,当ρ 减少到当 Mcr=My 时,裂缝一旦出现,
钢筋应力立即达到屈服强度,这时的配筋百分
率ρ 称为最小配筋率ρ
min。
min b max
h0
h
第4章 受弯构件正截面承载力
正截面受弯的三种破坏形态
(1) 适筋破坏形态——破坏始自受拉区 钢筋的屈服
受拉钢筋先屈服,受压区混凝土后 压坏,破坏前有明显预兆——裂缝、变 形急剧发展,为“塑性破坏”。
(2) 超筋破坏形态——破坏始自受压混 凝土的压碎
受压区混凝土先压碎,钢筋不屈服, 破坏前没有明显预兆,为“脆性破坏”。 钢筋的抗拉强度没有被充分利用。
[工学]钢结构设计原理课件 第4章 受弯构件计算
V hwtw
fv
Ix——毛截面惯性矩; t——计算点处板件的厚度;
fv——钢材抗剪设计强度。
max
1.2V hwtw
fv
第4章 受弯构件的计算原理
4.2.3 局部压应力
当梁上有集中荷载(如吊车轮压、次梁传来的集中力、支座反 力等)作用时,集中荷载由翼缘传至腹板,且该荷载处又未设置支 承加劲肋时,腹板边缘存在沿高度方向的局部压应力。为保证这部 分腹板不致受压破坏,应计算腹板上边缘处的局部承压强度。
式中: 2c2c 3 21f (4.2.10)
M、V—验算截面的弯矩及剪力;
In—验算截面的净截面惯性矩; y1—验算点至中和轴的距离; S1—验算点以上或以下截面面积对中和轴的面积矩;
图4.2.4 腹板边缘局部压应力分布
第4章 受弯构件的计算原理
腹板边缘处的局部承强度的计算公式为:
即要保证局
c
F
tw lz
f
式中:
(4.2.7)
部承压处的局部 压应力不超过材 料的屈服强度。
F—集中荷载,动力荷载作用时需考虑动力系数
—集中荷载放大系数(考虑吊车轮压分配不均匀),重级工作制吊车
梁=1.35,其它梁=1.0;
WpxS1nS2n S1n 、S2n —中和轴以上、下净截面对中和轴的面积矩。
xp
Mp My
Wnp fy Wnx fy
Wnp Wnx
xp—截面绕x轴的塑性系数。
塑性系数与截面形状有关,而与材料的性质无关,所以又称截 面形状系数。
第4章 受弯构件的计算原理
2.抗弯强度计算
规范引入有限塑性发展系数x和y来表征截面抗弯强度的提高。 梁设计时只是有限制地利用截面的塑性,塑性发展深度取a≤h/8~
第四章钢筋混凝土受弯构件正截面承载力计算-精选文档
三、截面尺寸和配筋构造
1. 板
分布钢筋
h0
c15mm
d
h
d 8 ~ 12 mm
h 0 h20
板厚的模数为10mm
A、受力钢筋:
三、截面尺寸和配筋构造
1)直径一般6mm、8mm、10mm、12mm。 2)间距:当板厚h≤150mm时,不宜大于200mm;当板厚 >150mm时,不宜大于1.5h且不宜大于250mm。
第四章 受弯构件正截面受力性能
湖南城市学院土木工程学院 混凝土结构设计原理课程组
第四章 受弯构件正截面受力性能
教学内容: 1、受弯构件截面的基本构造要求; 2、受弯构件正截面的受力特性; 3、建筑工程中受弯构件正截面承载力的计算方 法; 4、公路桥涵中受弯构件正截面承载力的计算方 法。 教学重点: 1、受弯构件正截面的受力特性; 2、建筑工程中受弯构件正截面承载力的计算方 法(各种截面形式的截面设计与强度复核)
四、受弯构件的试验研究
1. 试验装置
试验 梁 荷载分 配梁 P 外加荷 载 应 变 计
h0
h
数据采集 系统
L/3 L
位移 计
L/3
b
As
四、受弯构件的试验研究
2. 试验结果 当配筋适中时----适筋梁的破坏过程
c
c
c
MI
Mcr
MII
sAs t<ft c t=ft(t =tu)
sAs s<y
三、截面尺寸和配筋构造
(3)对钢筋混凝土薄腹梁或需作疲劳验算的钢 筋混凝土梁,应在下部1/2梁高的腹板内沿两 侧配置直径为8~14mm、间距为100~ 150mm的纵向构造钢筋,并应按下密上疏的 方式布置。在上部1/2梁高的腹板内,纵向构 造筋可按腰筋要求布置。 3)箍筋 (1)作用:①骨架作用;②防止纵筋压曲;③ 抗剪作用(直接参与抗剪;抑制梁侧斜裂缝 发展;参与斜截面抗弯) (2)配置要求:见第五章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 各截面上大小不同的翘曲正应力,为与之平衡,产生剪应力 (shear stress),称为翘曲剪应力或扇性剪应力(curl shear stress)。
扭转平衡方程(torsion balanced equation):
M z M t M
(4.3.6)
③ 约束扭转时,截面上各纵向纤维有不同伸长或缩短,因而纵 向纤维必有弯曲变形,弯曲扭转。
(postbuckling strength of beam web plate)
§4.1 概述(introduction)
受弯构件(members in bending)——承受横向荷载(lateral load)和弯矩(bending moment)构件,称之为梁(beam)。 梁——凡以弯曲(bending)为主要变形(deformation)的杆件通常 均称为梁。《材料力学》(material mechanics)
§4.2 受弯构件的强度和刚度 (strength and stiffness of flexural members)
Vmax
Mmax
σ
x x
fy
弹性阶段的最大弯矩:
M xe M y f yWnx
M xe Wnx
Wnx :净截面模量(跟强度有关)
σ
x x
M e W nx
M y f yWnx
截面塑性发展系数,对于工字形截面梁:
x 1.05; y 1.2 其他截面见表4.2.1。
(a) =1.2——适用于所考虑边缘纤维处没有加宽翼缘的截面 (如矩形截面、工字形截面绕弱轴弯曲等),这些截面都较 大的塑性发展潜力。 (b)=1.05——适用 于所考虑 边缘纤维 为 加宽翼 缘 的截 面 (如矩形截面、工字形截面),这些截面发展塑性变形增大, 抵抗弯矩的潜力较小。 (c) =1.15——适用于圆管形截面,其塑性发展潜力在以上两 条之间。
l z a 2.5hy b
a--集中荷载沿梁跨度方向的支承长度,对吊车轮压可 取为50mm;
hy--自梁承载边缘到腹板计算高度边缘的距离;
hr--轨道的高度,计算处无轨道时取0;
b --梁端到支座板外边缘的距离,按实际取,但不得 大于2.5hy。
ho
t1
b 腹板的计算高度ho的规定: 1.轧制型钢(rolling section),两内孤起点间距; 2.焊接组合截面,为腹板高度(web plate height); 3.铆接时为铆钉(rivet)间最近距离。 b
强度(strength) (屈曲后强度)
承载能力极限状态 (limit state of carrying capacity)
整体稳定 (overall buckling) 局部稳定 (local buckling)
抗弯强度(flexural strength) 抗剪强度(shear strength) 局部压应力(local compression) 折算应力(reduced stress)
第 四 章
第四章 受弯构件的计算原理
§4-1 概述 (introduction)
§4-2 受弯构件的强度和刚度
(strength and stiffness of beam members)
§4-3 梁的扭转(torsion) §4-4 梁的整体稳定(overall buckling) §4-5 梁板件的局部稳定(local buckling) §4-6 梁腹板的屈曲后强度
梁设计时只是有限制地利用截面的塑性(plasticity),如
工字形截面塑性发展深度取a≤h/8。(h/8 ~ h/4)
fy
x x
a
(1)单向弯曲梁
Mx f xWnx
a
(4.2.2)
(2)双向弯曲梁
My Mx f xWnx yWny
(4.2.3)
式中:
x , y
《规范》规定:
[T ], [ Q ]
其挠度的算法可用材料力学算法解出,也可用简便算法。 等截面简支梁(simply supported beam):
v 5 M xkl M xkl [v] l 48 EI x 10 EI x l
翼缘截面改变的简支梁(simply supported beam):
b
(d)当翼缘外伸宽度b与其厚度t之比满足:
Y
X X
235 b 235 13 15 fy t fy
时, x
t
1.0
Y
需要计算疲劳强度的梁 (fatigue strength) :
x y 1.0
4.2.2 抗剪强度(shear strength)
1. 薄壁构件的剪力流理论和剪力中心(shear center)
v M xkl 3 I x Ix1 [v] (1 ) l 10 EI x 25 I x l
I I
x
跨中毛截面抵抗矩
支座附近毛截面抵抗矩
x1
I
x1
I
x
§4.3 梁的扭转(beam’s torsion)
翘曲变形(warping deformation)—当构件发生扭转时,构件截 面上纤维沿纵向发生的位移(displacement),使截面不再保持平 面。
原因:
受压翼缘(compressive flange plate) 应力达临应力,其弱轴为 1 -1轴,但
1 Y
X
1
X
由于有腹板作连续支承,(下翼缘和
腹板下部均受拉,可以提供稳定的支 承),只有绕y轴屈曲,侧向屈曲后, 弯矩平面不再和截面的剪切中心 (shear center)重合,必然产生扭转。 梁维持其稳定平衡状态所承担的最大荷载或最大弯矩,称为 临界荷载或临界弯矩(critical moment)。 Y
§4.4 受弯构件的整体稳定
(overall buckling of beam members ) 4.4.1 梁整体稳定的概念(concept)
整体稳定(overall buckling)—构件突然发生侧向弯曲(lateral bend)(绕弱轴弯曲)和扭转(torsion),并丧失承载力的现象, 称为梁的弯曲扭转屈曲(弯扭屈曲)或梁的整体稳定。 侧向弯曲,伴随扭转——出平面弯扭屈曲 。
纯弯曲梁的临界弯矩Mcr(critical moment)
M M Z Y Y
u
X X
z
Y M Z Y’
v
dv dz
Z
v
M
M
Y
Z’
图 1
u
du du dz M
dz
Z
图 3
X X’
M
Z’
图 2
z
M Y Y’
v
M
dv dz
图1
Z
X
Z’
Y
在y’z’平面内为梁在最大刚度平面内弯曲,其弯矩的
平衡方程(equilibrium equation)为:
t1
4.2.4 折算应力(reduced stress)
2 2 c c 3t 2 1 f
(4.2.10)
My 其中: I nx
, c
1
应带各自符号,拉为正。 计算折算应力的设计值增大系数。
, c 异号时, 1 1.2 ; , c 同号时或 c 0, 1 1.1
d v EIx 2 M dz
2
(4.4.5)
M
z
u
M
du dz
——集中荷载增大系数,重级工作制吊车(heavyduty crane) 为1.35,其他为1.0;
c
F
t w lz
f
lz --集中荷载(concentrated load)在腹板(web plate)计算高度边缘 的假定分布长度: 跨中集中荷载: 梁端支座反力:
l z a 5hy 2hR
4.3.1 自由扭转(圣维南扭转、均匀扭转、纯扭转)
(pure torsion)
① 纵向位移(longitudinal displacement)不受约束,截面能自由 翘曲; ② 截面上的剪力流的特征: ③ 剪力流形成的扭矩(torque)为: M t
GI t (4.3.1)
4.3.2 约束扭转(开口薄壁构件)
x
x
t
max
Vmax
Mmax
t
max
Vy S x Ix t
fv
(4.2.4)
4.2.3 局部压应力(local compression stress)
当梁的翼缘(flange plate)受有沿腹板(web plate)平面作用的固
定集中荷载(concentrated load)且荷载处又未设置支承加劲肋时,
a
M p f yW pnx
(2)弹塑性阶段(elasto-plastic stage)
(3)塑性工作阶段(plastic stage)
弹性区消失,形成塑性铰(pastic hinge) 。
a
fy
fy
fy
σ
x x
M x Wnx M y f yWnx
式中:
a
M p f yW pnx
Wpnx
或有移动的集中荷载时,应验算腹板高度边缘的局部承压强度 (local bearing strength)。
c
F
t w lz
f
(4.2.7)
F ——集中力(concentrated force),对动力荷载(dynamic load) 应考虑动力系数(dynamic coefficient);
剪力流理论: 薄壁构件弯曲剪应力分布规律(剪力流理论): ①截面各点剪应力(shear stress)均为顺着薄壁截面的中轴线