梁的弯曲

合集下载

直梁的弯曲

直梁的弯曲
MC,MA的坐标相连,画出 抛物线;再以直线MA,MD左 和MD右,MB的坐标,可得 全梁的弯矩图图c所示。 由图可见,在D稍右处横
截面上有绝对值最大的弯 矩,其值为
M 15kN m max
例题分析
例题4-1:管道托架如图所示,如AB长为l,作用在其上的 管道重P1与P2,单位为kN,a、b、l以m计。托架可简化 为悬臂梁,试画出它的弯矩图。
例题分析
例题4-2:卧式容器可以简化为受均布载荷的外伸梁,如图 所示受均布载荷q作用的筒体总长L,试作出其弯矩图,并 讨论支座放在什么位置使设备的受力情况最好。
解:(1)共分三个受力段, 如图建立坐标系yAx.
(2)求支座反力RC、RD RC=RD =0.5qL
例题分析
(3)列弯矩方程,画弯矩图
例题分析
解:共分为三个受力段,取 梁左端A为坐标原点,建立 坐标系,如图:
•分段列弯矩方程,画弯矩图:
M1=0 (0≤x1 ≤ a)
M
M2=-P1 (x2 -a)
(a ≤ x2 ≤ b)
M3=-P1 (x3 -a) -P2 (x3 -b)
(b ≤ x3 ≤ l)
x
x
-
-P1 (b -a) -P1 (l -a) -P2 (l -b)
bh2
IZ 12
WZ 6
IZ
D 4
64
(1
4)
WZ
D3
32
(1
4)
截面几何量Iz 与Wz
其它截面形状的Iz 和Wz(参见表4-2)
对各种型钢,Iz 和Wz值可从有关材料手册中查到
❖结论:1)梁在弯矩相同的截面上, Iz 和Wz值 越大, σmax越小,因此设计梁的截面形状时,要 尽量使Iz 和Wz值大; 2)梁在弯矩相同的截面上, Iz和Iy可能不同,Wz 和Wy可能不同,因此若将梁沿轴向转90º,其承载 能力不同。

梁的弯曲正应力公式

梁的弯曲正应力公式

梁的弯曲正应力公式在我们学习力学的奇妙世界里,梁的弯曲正应力公式就像是一把神奇的钥匙,能帮我们打开很多难题的大门。

先来说说梁是啥吧。

想象一下,你家里的房梁,或者是一座桥上的大梁,它们都是承受各种力量的重要结构。

梁在受到外力作用时,会发生弯曲,而这时候梁内部就会产生应力。

那梁的弯曲正应力公式到底是啥呢?它其实就是用来计算梁在弯曲时,不同位置处的应力大小的。

公式是:σ = My / I 。

这里的σ就是正应力,M 是弯矩,y 是所求应力点到中性轴的距离,I 是惯性矩。

咱们来具体讲讲这个公式里的每个部分。

先说弯矩 M ,它就像是一个大力士,决定了梁弯曲的程度和力量大小。

比如说,在一个建筑工地上,一根钢梁要承受上面重重的建筑材料的压力,这个压力让钢梁产生弯曲,而这个弯曲的力量大小就是弯矩。

再看 y ,也就是所求应力点到中性轴的距离。

中性轴就像是梁的“平衡线”,上面的部分受压,下面的部分受拉。

比如说,你拿一根竹条弯曲,中间不怎么变形的那一条线就类似中性轴。

而应力点到中性轴的距离越大,应力也就越大。

惯性矩 I 呢,它反映了梁横截面的形状和尺寸对抗弯能力的影响。

比如说,同样长度的钢梁,如果一个是实心的粗钢梁,一个是空心的细钢梁,那实心的粗钢梁惯性矩就大,抗弯能力也就更强。

我记得有一次去工厂参观,看到工人们正在加工一批钢梁。

工程师拿着图纸,嘴里不停地念叨着梁的弯曲正应力公式,计算着每根钢梁在不同工作条件下的应力情况。

他们神情专注,一丝不苟,因为哪怕一点点的误差,都可能导致钢梁在使用过程中出现问题,造成严重的后果。

在实际应用中,梁的弯曲正应力公式用处可大了。

比如在设计桥梁的时候,工程师得根据车辆的通行量、桥的跨度等因素,利用这个公式准确计算出桥梁中各个部位的应力,确保桥梁的安全稳固。

又比如在机械制造中,要设计一个能承受特定载荷的传动轴,也得靠这个公式来确定轴的尺寸和材料。

总之,梁的弯曲正应力公式虽然看起来有点复杂,但它可是力学世界里的宝贝,能帮助我们解决很多实际问题,让我们的生活更加安全和便捷。

梁的弯曲计算剪力计算公式

梁的弯曲计算剪力计算公式

梁的弯曲计算剪力计算公式在工程力学中,梁是一种常见的结构元素,用于支撑和承载荷载。

在设计和分析梁的时候,我们需要考虑到梁的弯曲和剪切力。

本文将重点讨论梁的弯曲计算和剪力计算公式,帮助读者更好地理解和应用这些公式。

梁的弯曲计算公式。

在梁的弯曲计算中,我们需要考虑梁的受力情况以及梁的几何形状。

弯曲时梁的受力情况可以用弯矩来描述,弯矩的大小和位置取决于梁的荷载和支撑条件。

在弯曲计算中,我们通常使用以下公式来计算梁的弯矩:M = -EI(d^2y/dx^2)。

其中,M表示弯矩,E表示梁的弹性模量,I表示梁的惯性矩,y表示梁的挠度,x表示梁的位置。

这个公式描述了梁在弯曲时的受力情况,可以帮助我们计算梁的弯曲应力和挠度。

梁的剪力计算公式。

除了弯曲力之外,梁在受荷载时还会产生剪切力。

剪切力是梁上各点间的内力,它的大小和位置取决于梁的荷载和支撑条件。

在剪力计算中,我们通常使用以下公式来计算梁上各点的剪切力:V = dM/dx。

其中,V表示剪切力,M表示弯矩,x表示梁的位置。

这个公式描述了梁上各点的剪切力分布情况,可以帮助我们计算梁的剪切应力和剪切变形。

梁的弯曲和剪力计算实例。

为了更好地理解梁的弯曲和剪力计算,我们可以通过一个实例来说明。

假设有一根长度为L,截面为矩形的梁,受均布荷载w作用。

我们可以根据梁的受力情况和几何形状,计算出梁的弯矩和剪切力分布情况。

首先,我们可以计算出梁的弯矩分布情况。

根据梁的受力情况和几何形状,我们可以得到梁的挠度y(x)的表达式。

然后,我们可以通过弯矩公式M = -EI(d^2y/dx^2)来计算出梁上各点的弯矩分布情况。

接着,我们可以计算出梁上各点的剪切力分布情况。

根据梁的弯矩分布情况,我们可以通过剪切力公式V = dM/dx来计算出梁上各点的剪切力分布情况。

通过以上计算,我们可以得到梁在受均布荷载作用时的弯矩和剪切力分布情况。

这些计算结果可以帮助我们更好地了解梁的受力情况,指导我们设计和分析梁的结构。

梁的弯曲

梁的弯曲

MB 0
MA 0
FAy= - M / l FBy= M / l
(2)列剪力方程和弯矩方程
弯曲内力
A
FAy= - M / l
a
x1 l
b B
C x2
FBy= M / l
AC段:距A端为x1的任意截面1-1以左研究
V x1=FAy M / l 0 x1 a M x1=FAyx1 Mx1 / l 0 x1 a
剪力和弯矩一般是随横截面的位置而变化的。横截面 沿梁轴线的位置用横坐标x表示,则梁内各横截面上的剪 力和弯矩就都可以表示为坐标x的函数,即
V=V(x)和 M=M(x) 以上两函数分别称为梁的剪力方程和弯矩方程。
弯曲内力
二、剪力图和弯矩图
为了形象地表明沿梁轴线各横截面上剪力和弯矩的变 化情况,通常将剪力和弯矩在全梁范围内变化的规律用图 形来表示,这种图形称为剪力图和弯矩图。
FBy
弯曲内力
总结与提示
截面法是求内力的基本方法。 (1) 用截面法求梁的内力时,可取截面任一侧研究,但 为了简化计算,通常取外力比较少的一侧来研究。 (2) 作所取隔离体的受力图时,在切开的截面上,未知 的剪力和弯矩通常均按正方向假定。 (3) 在列梁段的静力平衡方程时,要把剪力、弯矩当作 隔离体上的外力来看待,因此,平衡方程中剪力、弯矩的 正负号应按静力计算的习惯而定,不要与剪力、弯矩本身 的正、负号相混淆。
弯曲内力
q>0
弯曲内力
FQ=0截面
弯曲内力
三、应用规律绘制梁的剪力图和弯矩图
用规律作剪力图和弯矩图的步骤 (1) 求支座反力。 对于悬臂梁由于其一端为自由端,所以可以不求支 座反力。 (2) 将梁进行分段 梁的端截面、集中力、集中力偶的作用截面、分布 荷载的起止截面都是梁分段时的界线截面。 (3) 由各梁段上的荷载情况,根据规律确定其对应的 剪力图和弯矩图的形状。 (4) 确定控制截面,求控制截面的剪力值、弯矩值, 并作图。

梁弯曲的概念

梁弯曲的概念

梁弯曲的概念梁是一种常见的结构元素,广泛应用于建筑、桥梁、机械等领域。

在工程应用中,梁可以承受各种荷载导致的弯矩和剪力。

而梁的弯曲是指梁在承受荷载的作用下产生的曲率变化。

针对梁的弯曲问题,可以利用梁弯曲理论进行力学分析和结构设计。

梁弯曲的概念实际上涉及到两个重要的力学概念:弯矩和曲率。

弯矩是由外力作用在梁上产生的,它可以使梁产生弯曲或者使梁产生剪切变形。

曲率描述了梁的弯曲程度,是弯曲轴线的弯曲半径的倒数。

在分析梁弯曲时,通常会采用欧拉—伯努力学说,即假设梁在弯曲过程中,横截面平面仍然保持垂直于位移方向。

这个假设为了简化问题,但在一些特殊情况下可能需要引入其他理论模型。

梁弯曲的特点是在横向距离上产生剪切力和弯矩。

在梁的底部表面上,由于负弯矩的存在,会产生压应力;在梁的顶部表面上,由于正弯矩的存在,会产生拉应力。

而在距离横截面中性轴较远的位置,弯矩和曲率的值较大;而在中性轴附近位置,弯矩和曲率的值较小。

对于简单支承的梁,弯曲会导致两个基本的反应:梁曲率和梁挠度。

梁的曲率是横截面在垂直于曲线切线方向上的曲率半径的倒数。

梁的挠度是指梁在一点的纵向位移。

在分析梁弯曲时,可以利用弯曲方程和边界条件求解梁的曲率和挠度。

梁弯曲的分析可以应用不同的方法,其中最常用的方法是基于理想化梁的假设和采用弯曲方程。

对于简支梁,弯曲方程可以表示为:M = EI * d²y/dx²其中M是弯矩,E是弹性模量,I是截面惯性矩,y是梁的纵向位移,x是横向距离。

这个方程可以用来描述弯曲梁的受力和变形情况。

对于常见的梁形状,如矩形梁、T形梁或I形梁等,可以通过求解弯曲方程来得到梁的曲率和挠度分布。

这些分布信息可以用来评估梁的性能、设计合理的梁结构和验证结构的可靠性。

此外,在实际工程中,还需要考虑梁的极限弯矩和极限弯矩系数。

极限弯矩是指在不发生塑性滞后的情况下,梁能够承受的最大弯矩。

而极限弯矩系数是指实际弯矩与极限弯矩之间的比值。

各种梁的弯矩计算公式

各种梁的弯矩计算公式

各种梁的弯矩计算公式在工程设计中,梁是一种常见的结构元素。

梁的弯曲是指当梁受到外力作用时,其截面发生弯曲变形。

为了计算梁的弯矩,设计者需要了解不同类型的梁及其特性。

1.矩形截面梁:矩形截面梁是最简单和常见的梁类型之一,其截面形状为矩形。

可以使用以下公式计算矩形截面梁的弯矩:M=(b*h^2*σ)/6其中,M是弯矩,b是梁的宽度,h是梁的高度,σ是应力。

2.T型截面梁:T型截面梁是梁的一种变体,其截面形状类似于字母“T”。

计算T 型截面梁的弯矩可以使用以下公式:M=((b1*h1^2*σ1)/6)+((b2*h2^2*σ2)/6)其中,M是弯矩,b1和b2是梁上下翼板的宽度,h1和h2是梁上下翼板的高度,σ1和σ2是应力。

3.I型截面梁:I型截面梁是一种常见且有效的梁形态,其截面形状类似于字母“I”。

计算I型截面梁的弯矩可以使用以下公式:M=(b1*h1^2*σ1/6)+(b2*h2^2*σ2/6)+(b3*h3^2*σ3/6)其中,M是弯矩,b1、b2和b3是梁的不同部分的宽度,h1、h2和h3是梁的不同部分的高度,σ1、σ2和σ3是应力。

4.简支梁:简支梁是一种在两端支承的梁结构,常见于桥梁和楼板等应用中。

计算简支梁的弯矩可以使用以下公式:M=(w*L^2)/8其中,M是弯矩,w是梁的均布载荷,L是梁的跨度。

5.连续梁:连续梁是一种具有多个支点的梁结构,常见于长跨度桥梁和大型建筑物中。

计算连续梁的弯矩可以使用以下公式:M=(w*L^2)/(8*n)其中,M是弯矩,w是梁的均布载荷,L是梁的跨度,n是支点的数量。

这里只是列举了几种常见梁的弯矩计算公式,实际上,基于梁的几何形状和加载条件,还可以有其他更复杂的公式。

因此,在实际工程设计中,如果遇到需要计算梁的弯矩的情况,应根据具体问题,选择适合的公式进行计算。

同时,为了确保计算结果的准确性,建议使用专业的结构分析软件进行梁的弯矩计算。

第四章梁的弯曲详解

第四章梁的弯曲详解

FQ
F yi
若外力使选取研究对象绕所求截面产生顺时针 方向转动趋势时,等式右边取正号;反之,取 负号。此规律可简化记为“顺转剪力为正”, 或“左上,右下剪力为正”。相反为负。
第4章 梁的弯曲 第二节 梁的内力计算
(2)横截面上的弯矩M,在数值上等于截面一 侧(左侧或右侧)梁上所有外力对该截面形心 的力矩的代数和。即:
例题4 简支梁受均布荷载作用,如图示, 作此梁的剪力图和弯矩图。
解:1.求约束反力由对称关系,可得:
FAy
FBy
1 2
ql
第4章 梁的弯曲 第二节 梁的内力计算
2.列剪力方程和弯矩方程
FQ (x)
FAy
qx
1 2
ql
qx
M (x)
FAy x
1 9x2 2
第4章 梁的弯曲 第二节 梁的内力计算
三、剪力方程和弯矩方程 在一般情况下,则各横截面上的剪力和弯矩都可 以表示为坐标x的函数
梁的剪力方程 FQ=FQ (x) 梁的弯矩方程 M=M(x)
第4章 梁的弯曲 第二节 梁的内力计算
四、剪力图和弯矩图
以梁横截面沿梁轴线的位置为横坐标,以垂直于 梁轴线方向的剪力或弯矩为纵坐标,分别绘制表 示FQ (x)和M(x)的图线。这种图线分别称为剪力 图和弯矩图,简称FQ图和M图。绘图时一般规定 正号的剪力画在x轴的上侧,负号的剪力画在x轴 的下侧;正弯矩画在x轴下侧,负弯矩画在x轴上 侧,即把弯矩画在梁受拉的一侧。
第4章 梁的弯曲 第二节 梁的内力计算
例题3 图所示,悬臂梁受集中力F作用, 试作此梁的剪力图和弯矩图
解: 1.列剪力方程和弯矩方程
FQ (x) F (0 ≤ x ≤ l )
M (x) Fx (0≤x ≤ l)

梁的弯曲

梁的弯曲

第九章梁的弯曲第一节平面弯曲一、平面弯曲的概念当杆件受到垂直于杆轴的外力作用或在纵向平面内受到力偶作用时(图9-1),杆轴由直线弯成曲线,这种变形称为弯曲。

以弯曲变形为主的杆件称为梁。

图9-1 受弯杆件的受力形式弯曲变形是工程中最常见的一种基本变形。

例如房屋建筑中的楼面梁,受到楼面荷载和梁自重的作用,将发生弯曲变形(9-2a、b),阳台挑梁(9-2 c、d)等,都是以弯曲变形为主的构件。

工程中常见的梁,其横截面往往有一根对称轴,如图9-3所示,这根对称轴与梁轴所组成的平面,称为纵向对称平面(图9-4)。

如果作用在梁上的外力(包括荷载和支座反力)和外力偶都位于纵向对称平面内,梁变形后,轴线将在此纵向对称平面内弯曲。

这种梁的弯曲平面与外力作用平面相重合的弯曲,称为平面弯曲。

平面弯曲是一种最简单,也是最常见的弯曲变形,本章将主要讨论等截面直梁的平面弯曲问题。

图9-2 工程中常见的受弯构件图9-3 梁常见的截面形状图9-4平面弯曲的特征二、单跨静定梁的几种形式工程中对于单跨静定梁按其支座情况分为下列三种形式:1.悬臂梁: 梁的一端为固定端,另一端为自由端(图9-5a )。

2.简支梁: 梁的一端为固定铰支座,另一端为可动铰支座(图9-5b )。

3.外伸梁: 梁的一端或两端伸出支座的简支梁(图9-5c )。

(a ) (b ) (c )图9-5 三种静定梁第二节 梁的弯曲内力——剪力和弯矩为了计算梁的强度和刚度问题,在求得梁的支座反力后,就必须计算梁的内力。

下面将着重讨论梁的内力的计算方法。

一、截面法求内力1、剪力和弯矩图9-6 用截面法求梁的内力图9-6a 所示为一简支梁,荷截F 和支座反力R A 、R B 是作用在梁的纵向对称平面内的平衡力系。

现用截面法分析任一截面m-m 上的内力。

假想将梁沿m-m 截面分为两段,现取左段为研究对象,从图9-6b 可见,因有座支反力R A 作用,为使左段满足Σ Y =0,截面m-m 上必然有与R A 等值、平行且反向的内力Q 存在,这个内力Q ,称为剪力;同时,因R A 对截面m-m 的形心O 点有一个力矩R A · a 的作用,为满足Σ M o =0,截面m-m 上也必然有一个与力矩R A · a 大小相等且转向相反的内力偶矩M存在,这个内力偶矩M 称为弯矩。

梁的弯曲(应力、变形)

梁的弯曲(应力、变形)
和梁的跨度、截面尺寸等因素。
梁的弯曲类型
01
02
03
自由弯曲
梁在受到外力作用时,其 两端不受约束,可以自由 转动。
简支弯曲
梁在受到外力作用时,其 一端固定,另一端可以自 由转动。
固支弯曲
梁在受到外力作用时,其 两端均固定,不能发生转 动。
梁的弯曲应用场景
桥梁工程
桥梁中的梁常常需要进行弯曲变形以承受车辆和 行人等载荷。
稳定性。
06 梁的弯曲研究展望
CHAPTER
新材料的应用研究
高强度材料
随着材料科学的进步,高强度、轻质的新型 材料不断涌现,如碳纤维复合材料、钛合金 等。这些新材料在梁的弯曲研究中具有广阔 的应用前景,能够显著提高梁的承载能力和 刚度。
功能材料
新型功能材料如形状记忆合金、压电陶瓷等, 具有独特的力学性能和功能特性,为梁的弯 曲研究提供了新的思路和解决方案。
反复的弯曲变形可能导致疲劳裂纹的 产生和扩展,影响结构的疲劳寿命。
对使用功能的影响
弯曲变形可能导致结构使用功能受限 或影响正常使用。
04 梁的弯曲分析方法
CHAPTER
理论分析方法
弹性力学方法
01
基于弹性力学理论,通过数学公式推导梁在弯曲状态下的应力
和变形。
能量平衡法
02
利用能量守恒原理,通过计算梁在不同弯曲状态下的能量变化,
详细描述
常见的截面形状有矩形、工字形、圆形等。应根据梁的用途和受力情况选择合适的截面形状。例如, 对于承受较大弯矩的梁,采用工字形截面可以有效地提高梁的承载能力和稳定性。
支撑结构优化
总结词
支撑结构是影响梁弯曲性能的重要因素,合理的支撑结构可以提高梁的稳定性,减小梁 的变形。

梁的弯曲

梁的弯曲

弯曲的定义:承受的外力作用线垂直于杆轴线。

在这种外力作用下,杆轴线由直线变为曲线。

这种变形称之为弯曲。

平面弯曲:梁变形后的轴线变成一条在纵向对称面内的平面直线,这类弯曲称之为平面弯曲。

按照支撑情况可以把梁分为悬臂梁、简支梁、外伸梁三种。

内力的计算一、内力方程:内力与截面位置坐标(x )间的函数关系式。

Q=Q (x )————剪力方程 M=M (x )————弯矩方程 方法:截面法xY M m la l P Y Q Y A C A⋅=∴=-==∴=∑∑ , 0)( , 0PalAB1. 弯矩:M构件受弯时,横截面上其作用面垂直于截面的内力偶矩。

2. 剪力:Q构件受弯时,横截面上其作用线平行于截面的内力。

二、剪力图与弯矩图 1、求出支座反力2、写出剪力与弯矩的内力方程(含x 的方程)3、将写出的内力方程整理成含x 的已知函数关系,取特殊点描点连线即可。

(端点,与x 、y 轴的坐标点)弯曲构件横截面上的(内力)应力 1、弯矩M ———正应力σz I My=σ(弯曲正应力计算公式)maxZ Z y I W =(Wz —截面的抗弯截面系数) z t W M =max ,σ几种常见截面的 Iz 和 Wz 园截面: 644z d I π=323z d W π=空心截面: )1(6444z απ-=D I )1(3243z απ-=D W矩形截面: 123z bh I = 62z bh W =空心矩形截面: 12123300z bh h b I -= )2//()1212(03300z h bh h b W -=关于正应力的强度校核:① 校核强度: [m a xσ≤zW M② 设计截面尺寸:[m a xσM W z ≥③ 计算许可载荷:[max σz W M ≤2、剪力Q ——剪应力t*=zzbI QS 1τ其中Q 为截面剪力;S z 为y 点以下的面积对中性轴之静矩 Iz 为整个截面对z 轴之惯性矩;b 为y 点处截面宽度。

梁弯曲知识点总结

梁弯曲知识点总结

梁弯曲知识点总结一、弯曲概念在物理学和工程力学中,弯曲是指在材料受到外力作用下,产生一种曲率变化的变形形式。

在梁的情况下,当梁受到外部载荷作用时,梁将发生一种曲率变化,即梁的一部分受到压力而另一部分受到拉力,使得梁产生一种弯曲的变形形式。

梁的弯曲是梁理论研究的重要内容之一。

二、弯曲的原理梁的弯曲原理是由梁的弯矩和弯曲应力来描述的。

梁在弯曲时,横截面上的各个点受到的弯矩不同,由于弯矩的不平衡,在梁的上表面产生的张力,下表面产生的压力,产生了一种称为弯曲应力的内力形式。

弯曲应力的作用下,梁在弯曲的过程中产生了曲率变化,弯曲原理是用来描述梁在弯曲时的变形和内力情况的。

三、梁的弯曲方程梁的弯曲方程是用来描述梁在弯曲时的曲率和弯矩之间的关系的。

梁的弯曲方程可以通过力学原理和材料力学原理来推导出来。

梁的弯曲方程可以用来计算梁在受载时的弯曲变形和各个截面上的应力情况,对于工程结构的设计和分析具有非常重要的意义。

梁的弯曲方程通常包括以下几个方面:1.梁的弯曲变形方程:描述梁在弯曲时产生的曲率变化和曲线形状;2.梁的弯矩方程:描述梁在受力状况下产生的弯矩大小和分布情况;3.梁的弯曲应力方程:描述梁在弯曲状况下产生的应力大小和分布情况。

梁的弯曲方程是梁理论的核心内容,对于工程结构的设计和分析具有重要的意义。

四、梁的弯曲理论梁的弯曲理论是研究梁在受载时的弯曲变形和内力情况的理论。

梁的弯曲理论是以弹性理论和材料力学为基础的,通过对梁在弯曲时的力学原理和材料力学原理进行分析和推导,得出了梁在弯曲时的各种数学模型。

梁的弯曲理论可以应用于工程结构的设计和分析中,能够比较准确地描述梁在受载时的变形和内力情况,为工程结构的安全和稳定性提供理论依据。

梁的弯曲理论包括以下几个方面:1.梁的弯曲变形分析:描述梁在受载时产生的形状和曲率变化;2.梁的弯曲应力分析:描述梁在受载时产生的应力大小和分布情况;3.梁的弯曲挠度分析:描述梁在受载时产生的挠度大小和分布情况;4.梁的弯曲裂缝分析:描述梁在受载时产生的裂缝情况。

力学基础-(八) 梁的弯曲

力学基础-(八) 梁的弯曲

ql FQ (l ) 2
用两点式画出剪力图的斜直线。
x
4. 画弯矩图
M(0) 0
ql 2 M(l / 2)
8
M(l) 0
用三点坐标描出弯矩图的二次曲线。
13
任务八 梁的弯曲
弯曲剪力图和弯矩图
2.画剪力图和弯矩图的简便方法
(1)集中力作用处
剪力图有突变,突变幅值等于力 的大小,方向与力同向。
x
(4)集中力偶作用处 剪力图不变化。
弯矩图有突变,突变幅值等于力偶矩的大小,方向顺时针向上突变,反之 向下。
14
任务八 梁的弯曲
弯曲剪力图和弯矩图
应用举例
例 图示跨长为l的简支梁AB,中点C 作用集中力F,试用简便画法画
梁剪力图和弯矩图。
F
A
l/2 FA=F/ FQ 2 F/
C l/2
B FB=F/
MA
A FA
x
l
FQ
F
F B
x
M
Fl
x
从上例可以得出
结论1:无荷载作用的梁段上 剪力图为常量; 弯矩图为斜直线。
确定直线两点的坐标,A点的临近截 面A+的弯矩值
MA+=-Fl
B点的临近截面B -的弯矩值 MB-=-F·=0
12
任务八 梁的弯曲
弯曲剪力图和弯矩图
应用举例
例 图示的简支梁AB,作用均布荷载q,建立剪力、弯矩方程,画梁的
MA
A FA
x
l
FQ
F
M
-Fl
F
B
xC
FA
x
FQ
ql/
2
xM
l/2
ql/

梁的弯曲概念

梁的弯曲概念

梁的弯曲概念梁的弯曲概念是指材料在作用力下发生弯曲变形的现象。

梁是一种常见的结构元素,广泛应用于建筑、机械、航空航天等领域。

在实际工程中,梁往往承受各种外部载荷,如重力、风载荷、地震载荷等。

因此,了解梁的弯曲行为对于结构设计和分析非常重要。

梁的弯曲行为可以通过经典的梁理论来描述。

经典梁理论假设梁是细长且直线的,在其轴向上受到均匀分布的轴向力和转矩,而其弯曲刚度足够大,可以忽略在轴向变形产生的内力,通过简化的数学模型来分析梁的弯曲行为。

在这种理论下,梁的弯曲变形可以用弯曲挠度和曲率来描述。

弯曲挠度是指梁在弯曲过程中沿截面上某一点的位移。

根据梁的弯曲方向和弯曲曲率的不同,可以分为正弯曲和负弯曲。

在梁的中性轴上,弯曲曲率为零,挠度最大。

根据梁的不同截面形状和外载荷的不同,梁的弯曲挠度可以用不同的数学表达式来计算。

曲率是指梁在弯曲过程中的曲率半径的倒数。

曲率反映了梁曲线的弯曲程度,曲率越大,梁的弯曲程度越大。

根据经典梁理论,梁的曲率与横截面的二阶惯性矩之比成正比。

对于不同形状和材料的截面,其曲率特性也有所不同。

在梁的弯曲过程中,材料内部产生了一系列力和应变。

根据材料力学理论,梁的弯曲行为可以用应变-应力关系来描述。

在弯曲曲率较小的情况下,弯曲应变可以通过材料的线弹性理论来描述。

根据胡克定律,弯曲应变与弯曲曲率成正比,弯曲应力与弯曲挠度成正比。

这种线性关系被称为小形变理论。

然而,在某些情况下,梁的弯曲程度较大,线弹性假设不再成立。

这时,需要考虑材料的非线性行为,如屈服、塑性变形和蠕变等。

这就需要使用非线性理论来描述梁的弯曲行为。

梁的弯曲行为对于结构设计和分析非常重要。

首先,了解梁的弯曲特性有助于确定合适的梁截面形状和材料。

其次,可以通过对梁的弯曲行为进行分析,评估梁的结构安全性和承载能力。

最后,可以根据梁的弯曲行为来制定适合的施工、保养和维护方案,以延长梁的使用寿命。

综上所述,梁的弯曲概念和行为在结构工程中占据重要地位。

梁的弯曲变形应用原理

梁的弯曲变形应用原理

梁的弯曲变形应用原理简介梁是一种常见的结构元素,用于承受和传递载荷。

在实际应用中,梁常常会发生弯曲变形,这种变形有着重要的应用原理和工程意义。

本文将介绍梁的弯曲变形的应用原理,以及它在工程领域中的具体应用。

梁的弯曲变形原理当梁受到外部载荷作用时,其会发生弯曲变形。

梁的弯曲变形主要是由内力矩引起的,内力矩是梁截面上的剪力和弯矩引起的。

弯曲变形原理可以用以下几个要点来描述:1.梁撑杆法:梁在弯曲时,可以看做由无数撑杆组成的系统。

每个撑杆受到不同大小的拉伸或压缩力,整个梁发生的弯曲变形是各撑杆弹性变形的综合效果。

2.中性轴和截面旋转:梁弯曲时,存在一个中性轴,该轴是在截面内法线应力为零的位置。

梁在弯曲时,截面内部会发生旋转,上部受拉,下部受压,截面的变形呈现出弯曲的形态。

3.弯矩与曲率关系:梁的弯曲变形与弯矩和曲率有关。

弯矩是横截面上的合力矩,而曲率则是截面内部形成的曲线的曲率半径的倒数。

根据弯矩和曲率之间的关系,可以计算出梁的变形情况。

梁的弯曲变形应用梁的弯曲变形在工程领域中有着广泛的应用。

下面列举了梁的弯曲变形应用在不同工程中的具体案例:1. 建筑结构设计在建筑结构设计中,梁的弯曲变形是必须考虑的因素之一。

通过合理的梁的尺寸和形状设计,可以满足建筑物的结构强度和刚度要求,保证建筑物的安全性和稳定性。

2. 桥梁工程在桥梁工程中,梁的弯曲变形对于桥梁的承载能力和结构安全性影响重大。

通过分析梁的弯曲变形情况,可以确定桥梁的设计参数,保证桥梁承受车辆和行人的荷载,确保桥梁的正常使用和运行。

3. 机械设计梁的弯曲变形在机械设计中也有着广泛的应用。

例如,在起重机设计中,梁的弯曲变形会导致起重机的运动效果失真,因此需要精确计算梁的弯曲变形,以确保起重机的稳定性和可靠性。

4. 航天器设计在航天器设计中,梁的弯曲变形是非常重要的考虑因素。

航天器需要承受巨大的重力和惯性力,梁的弯曲变形对于航天器的结构强度和稳定性至关重要。

梁的弯曲变形

梁的弯曲变形

案例三:工业厂房的弯曲变形
总结词
工业厂房在生产过程中,由于设备、货物等重量的影响,会产生弯曲变形,影响结构的稳定性。
详细描述
工业厂房在生产过程中,需要承受设备、货物等重量的影响。这些重量会导致厂房产生弯曲变形。如果变形过大, 将会影响厂房的正常使用和安全性。因此,对于工业厂房的弯曲变形问题,需要进行定期检测和维护,确保其正 常运转和安全性。
发展高效数值模拟方法
开发更精确、高效的数值模拟方法, 用于预测和控制梁的弯曲变形,为实 际工程应用提供指导。
优化梁的结构设计
基于对弯曲变形的深入理解,优化梁 的截面形状、尺寸和连接方式,提高 其承载能力和稳定性。
弯曲变形的未来发展趋势
跨学科交叉研究
加强与材料科学、物理学、计算科学等学科的交叉合作,引 入新技术和方法,推动梁的弯曲变形研究的发展。
04
梁的弯曲变形案例分析
案例一:桥梁的弯曲变形
总结词
桥梁在车辆、人群等外部载荷作用下, 会产生弯曲变形,影响结构的稳定性。
VS
详细描述
桥梁作为大型结构物,在长期承受车辆、 人群等外部载荷的作用下,会发生弯曲变 形。这种变形不仅会影响桥梁的美观性, 更严重的是会降低结构的稳定性,甚至引 发安全事故。因此,对于桥梁的弯曲变形 问题,需要进行定期检测和维修,确保其 安全性能。
梁的弯曲变形
• 梁的弯曲变形概述 • 梁的弯曲变形分析 • 梁的弯曲变形与结构安全 • 梁的弯曲变形案例分析 • 梁的弯曲变形研究展望
01
梁的弯曲变形概述
定义与类型
定义
梁的弯曲变形是指梁在受到外力 作用时发生的弯曲现象,导致梁 的轴线由直线变为曲线。
类型
根据弯曲变形的程度和性质,可 以分为弹性弯曲、塑性弯曲和脆 性弯曲等类型。

梁的弯曲实验实验报告

梁的弯曲实验实验报告

梁的弯曲实验实验报告梁的弯曲实验实验报告摘要:梁的弯曲实验是一种常见的力学实验,通过对梁的施加不同的外力,观察梁的弯曲变形情况,探究梁在外力作用下的力学性质。

本实验通过设计不同材料和不同截面形状的梁,测量其弯曲变形与外力之间的关系,分析梁的强度和刚度。

引言:梁是工程中常见的结构元件,广泛应用于建筑、桥梁、机械等领域。

了解梁的力学性质对于设计和优化结构具有重要意义。

梁的弯曲实验是研究梁的力学性质的常用方法之一。

实验目的:1. 掌握梁的弯曲实验的基本原理和方法。

2. 通过实验测量和分析,了解梁的强度和刚度与外力之间的关系。

3. 通过对不同材料和截面形状的梁进行实验,比较不同梁的力学性质。

实验器材:1. 实验台2. 不同材料和截面形状的梁3. 弹簧测力计4. 支撑架5. 测量尺6. 实验记录表格实验步骤:1. 将实验台调整水平,确保实验的准确性。

2. 将梁放置在支撑架上,调整支撑点的位置,使梁的长度适当。

3. 在梁的中间位置放置弹簧测力计,记录其初始读数。

4. 通过调整弹簧测力计上的螺母,施加不同的外力到梁上。

5. 记录不同外力下梁的弯曲变形情况,并测量弹簧测力计的读数。

6. 将实验数据整理并分析,得出梁的弯曲性质。

实验结果:通过实验测量和数据分析,我们得到了不同外力下梁的弯曲变形情况和弹簧测力计的读数。

我们发现,随着外力的增加,梁的弯曲变形也增加,弹簧测力计的读数也相应增加。

这表明梁的弯曲变形与外力之间存在一定的线性关系。

同时,我们还比较了不同材料和截面形状的梁的弯曲性质。

实验结果显示,不同材料和截面形状的梁在相同外力下的弯曲变形和弹簧测力计的读数存在差异。

这说明梁的材料和截面形状对其弯曲性质有重要影响。

讨论与分析:根据实验结果,我们可以得出以下结论:1. 外力与梁的弯曲变形之间存在线性关系,外力越大,梁的弯曲变形越大。

2. 梁的材料和截面形状对其弯曲性质有重要影响,不同材料和截面形状的梁在相同外力下的弯曲变形存在差异。

梁弯曲

梁弯曲
例如:AC和DB段。
称为横力弯曲
(bending by transverse force)。
横截面上只有弯矩没有剪力。
例如:CD段。
称为纯弯曲(pure bendin而另一端为可动 铰支座的梁 悬臂梁:一端为固定端, 另一端为自由端的梁 外伸梁:简支梁的一端或两端 伸出支座之外的梁
载荷简化
(1)分布载荷q(x) ――连续作用在一段长度 的载荷。
例如:自重、惯性力、液压等, 单位: N/m。
q(x)
a d
b
x
(2)集中力P
dx
(3)集中力偶 M
剪力和弯矩
例 一悬臂梁,其尺寸及梁上荷载如图8-9所示,求截面1-1上的剪力和 弯矩。
解: 对于悬臂梁不需求支座反力,可取右段梁为研究对象,其受力图如 图 (b)所示。
如取1-1截面右段梁为研究对象,可得出同样的结果。
一、梁弯曲时的内力—剪力与弯矩 1、剪力Q和弯矩M---剪力是横截面切向分布内力的合力; 弯矩M是横截面法向分布内力的合力偶矩。 (1)用截面法,根 据静力平衡求内力
∑FY=0: Q=RA-P1
∑MA=0: M=P1.a+Q.x
=P1.a+(RA-P1).x
2.求弯矩的规律 计算弯矩时,对截面左(或右)段梁建立力矩方程,经过移项后可得
M MC左

M MC右
上两式说明:梁内任一横截面上的弯矩在数值上等于该截面一侧所有外力(包 括力偶)对该截面形心力矩的代数和。将所求截面固定,若外力矩使所考虑的梁 段产生下凸弯曲变形时(即上部受压,下部受拉),等式右方取正号;反之取负号, 此规律可记为“下凸弯矩正”。
梁的平面弯曲
3、纵向对称面— 通过梁的轴线和 横截面的对称轴 的平面。

梁的弯曲

梁的弯曲

各横截面只有弯矩M,而无剪力Q,称为纯弯曲。
变形几何关系
纯弯曲梁变形后各横截面仍保持为一平面,仍然垂 直于轴线,只是绕中性轴转过一个角度,称为弯曲问 题的平面假设。
中 性 层
中 性 轴
# 中性层和中性轴
• 中性层
梁弯曲变形时,既 不伸长又不缩短的纵向 纤维层称为中性层。
y
x
z
对矩形截面梁来讲,就是位于上下中间这一层。
R Ax
左边固定铰支座,有两个约束反力 P B
l/2
x
RBy
右边活动铰支座,1个约束反力
X 0
RAx 0
RAy RBy P 0
RBy l P l / 2 0
RAy
l
RBy P / 2
Y 0 M 0
A
RAy P / 2
叠加法:
1、不是简单形状叠加,是纵坐
梁的弯曲中3 种主要类型
简支梁 悬臂梁
一端固定铰支座 一端活动铰支座 外伸梁
一端固定
一端自由 一端固定铰支座 活动铰支座位于梁 中某个位置
求支座反力的平衡方程
求解梁弯曲问题必须在梁上建立直角坐标系 求支座反力要利用外载荷与支座反力的平衡条件
X 0, Y 0, M 0
举例说明 y A
弯曲变形是工程构件 最常见的基本变形
工程实际中的弯曲问题
P
P P P
P P P
P
弯曲的概念
P
q
M
RA
RB
当直杆受垂直其轴线的横向外力或者在杆轴平面内的外 力偶作用时,杆的轴线将由直线变成曲线,称为弯曲。 产生弯曲变形的杆称为梁
梁受到与其轴线垂直的横向力作用发生弯曲变形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Y 0 :
RA P1 Q 0 Q RA P1
M
RA P1 a M 0 M RA P1 a
0
0:
与前面三种基本变形不同的是,弯曲内力有两类: 剪力和弯矩 y 截取弯曲梁的某个横截面 在截面形心建立直角坐标系
(c)外伸梁
4.作用在梁上的荷载可分为:
F1
M
(a)集中载荷
集中力
q(x)
集中力偶
q
(b)分布载荷
任意分布载荷 均布载荷
13
4、求支座反力的平衡方程
求解梁弯曲问题必须在梁上建立直角坐标系
求支座反力要利用外载荷与支座反力的平衡条件
X 0, Y 0, M 0
举例说明 y A
R Ax
y
x
z
对矩形截面梁来讲,就是位于上下中间这一层。
• 中性轴
中性层与横截面的交线。
梁弯曲时,实际上各个截面绕着中性轴转动。
如果外力偶矩如图作用在梁上,该梁下部将伸长、上部 将缩短
20
弯曲正应力分布规律
• 与中性轴距离相等的点, 正应力相等; • 正应力大小与其到中 性轴距离成正比; • 弯矩为正时,正应力 以中性轴为界下拉上 压; • 弯矩为负时,正应力上拉下压; • 中性轴上,正应力等于零
2
在内部液体和自重的作用下,卧式容 器会发生弯曲变形。
起吊重物时,桥式吊车的吊车梁就会发 生弯曲变形
安装在室外的受到风载的作用的塔设备
受管道重量的作用要发生变形的管道托架
工程实际中的弯曲问题
P P P
P P P
7
梁的概念

在实际工程和生活中,常常会遇到发生弯曲 的杆件。例如,桥式吊车的大梁、受风力载 荷作用的直立塔设备等。这些杆状构件,当 受到垂直于杆轴的外力或在杆轴平面内受到 外力偶的作用时,杆的轴线将由直线变成曲 线,这种变形称为弯曲变形。工程上把以弯 曲变形为主的杆件统称为梁。
z
Q
M
x
剪力与截面平行,用Q表示 弯矩作用面在纵向对称面内 方向沿Z 轴方向 用M 表示
18
变形几何关系
纯弯曲梁变形后各横截面仍保持为一平面,仍然垂 直于轴线,只是绕中性轴转过一个角度,称为弯曲问 题的平面假设。
中 性 层
中 性 轴
19
中性层和中性轴
• 中性层
梁弯曲变形时,既 不伸长又不缩短的纵向 纤维层称为中性层。
25
举例:
求图示简支梁 x 截面的弯矩 在x 处截开,取左半部分分析 画出外力、约束反力、弯矩 x 截面剪力、力矩平衡方程
y
A
q B
x
l
x
q
qx
Y 0
M 0
左边固定铰链支座,有两个约束反力 P B
l/2
右边活动铰链支座,1个约束反力 x
X 0
A
RAx 0
RAy
l
RBy P / 2
RBy
Y 0 M 0
RAy P / 2
RAy RBy P 0
RBy l P l / 2 0
14
再以悬臂梁为例
假设该悬臂梁承受均布载荷 Rx 固定端有3个约束反力 建立平衡方程求约束反力 MA
研究对象:等截面的直梁,且外力作用在梁对称面内的平
面力系。 1.梁的计算简图:梁轴线代替梁,将荷载和支座加到轴 线上。 2.梁的支座简化(平面力系): a)活动铰链支座 b)固定铰链支座 c)固定端
FRx
MR
FR
FRx
FRy
FRy
12
3.静定梁—仅用静力平衡方程即可求得反力的梁
(a)悬臂梁
(b)简支梁
M P x a RAy x 0 1
Y 0
Q RAy P 1
M RAy x P x a 1
24
说明:
1、一般情况下,x 方向的约束反力为零。 2、如果不求剪力,可以不建立 y 方向的 平衡方程。 3、不考虑剪力时,弯矩平衡方程一定要 建立在截面的中心。
21
M
M
2、剪力和弯矩正负号的规定
剪力正负号

Q Q

对所取截面上任一点的力矩顺时针为正,逆时针为负
剪力的计算法则:梁内任意指定截面内的剪 力,在数值上等于该截面一侧所用横向外力 的代数和,凡是对该截面中性轴形成顺时针 转向力矩的外力取正值,反之取负值。
22
弯矩正负号
M M M


M
使梁下凹为正,向上凸为负
弯矩的计算法则:任一横截面内的弯矩在数 值上等于该截面一侧所有横行外力对该截面 中性轴取矩的代数和,凡向上的外力,其矩 取正值,向下的外力,其矩取负值。
3、截面法求剪力和弯矩
y
RAx
A a P1 P2
m
B
x
RB
x
RAy RAx a P1
m
Q
M 对截面中心建立力矩平衡方程
RAy
M 0
RAy P Q 0 1
8
平面弯曲的概念
我们以矩形截面梁为例说明的弯曲
矩形截面梁有一个纵向对称面 当外力都作用在该纵向对称面内,弯曲也 发生在该对称面内,我们称之为平面弯曲。 因此,我们可以用梁轴线的变形代表梁的弯曲
9

通过梁的轴线和截面对称
轴的平面叫做纵向对称面。

在多数情况下,梁上的外力
均垂直于梁的轴线,并作用在
纵向对称面内,在这样的外力
y
q
A Ry
l
B
x
X 0
Rx 0
Y 0
M
A
Ry q l 0
l M A ql 0 2
Ry ql
1 2 M A ql 2
15
0
第二节
梁的内力分析
剪力和弯矩 剪力和弯矩的正负号规定 截面法求内力 剪力图和弯矩图
16
1、剪力和弯矩

梁弯曲时横截面上一般 存在两个内力分量,其 中力Q称为剪力,力偶 矩M称为弯矩。它们的 大小,方向或转向可根 据截面法确定。
作用下,梁的轴线在纵向对称
面内弯曲成为一条平面曲线,
这种弯曲变形称为平面弯曲。
10
梁的类型
名 称 图 示 简支梁 外伸梁 悬臂梁
特 点
一端是固定铰链 用一个固定铰链 一端固定,另 支座A,另一端 支座A和一个活动 一端自由 是活动铰链支座 铰链支座B支承, B 但有一端或两端 伸出支座以外 11
二、 梁的荷载及计算简图
பைடு நூலகம்第四章 直梁的弯曲
1. 2.
3.
本章基本要求: 了解梁弯曲的变形性质。 熟悉梁横向截面上的内力计算,弯矩方程, 弯矩图的求解。 掌握弯曲正应力的计算,强度条件和变 形计算。
1
第一节 弯曲概念与梁的分类
弯曲变形的宏观表现与实例
梁的弯曲是材料力学 部分最重要的内容
弯曲变形是工程构件最常见的基本变形
相关文档
最新文档