纯弯曲梁的正应力实验参考书报告

合集下载

纯弯曲梁的正应力实验参考书报告

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告一、实验目的1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力计算公式二、实验仪器设备和工具3.XL3416 纯弯曲试验装置4.力&应变综合参数测试仪5.游标卡尺、钢板尺3、实验原理及方法在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为σ= My / I z式中M为弯矩,I z为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。

为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。

实验采用半桥单臂、公共补偿、多点测量方法。

加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量σ实i=E△ε实i将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。

四、实验步骤1.设计好本实验所需的各类数据表格。

2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变片到中性层的距离y i。

见附表13.拟订加载方案。

先选取适当的初载荷P0(一般取P0 =10%P max左右),估算P max(该实验载荷范围P max≤4000N),分4~6级加载。

4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。

6.加载。

均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。

实验至少重复两次。

见附表27.作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

附表1 (试件相关数据)附表2 (实验数据)P 50010001500200025003000载荷N △P 500500500500500εP -33-66-99-133-166△εP -33-33-34-334平均值-33.25εP -16-33-50-67-83△εP -17-17-17-162平均值16.75εP 00000△εP 00001平均值0εP 1532476379△εP 171516163平均值16εP 326597130163△εP 33323333 各 测点电阻应变仪读数µε5平均值32.75五、实验结果处理1.实验值计算根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算应变片至中性层距离(mm )梁的尺寸和有关参数Y 1-20宽 度 b = 20 mm Y 2-10高 度 h = 40 mm Y 30跨 度 L = 620mm (新700 mm )Y 410载荷距离 a = 150 mm Y 520弹性模量 E = 210 GPa ( 新206 GPa )泊 松 比 μ= 0.26惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4。

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据通过实验,测量纯弯曲梁上不同位置的正应力分布情况,验证弯曲梁的拉应力和压应力分布的理论公式。

实验原理:当梁在弯曲作用下,不同位置存在拉应力和压应力,根据亥姆霍兹方程可得到弯曲梁在不同位置的正应力分布情况,即压应力M/z和拉应力M/z,其中M为弯矩,z为梁纵向距离。

实验中通常采用张力应变计和屈服应变计来测量梁上不同位置的正应力。

实验设备和材料:1. 弯曲梁样品:选取一根长度较长、宽度和厚度相对较小的金属样品;2. 悬挂装置:用于悬挂样品并施加弯矩;3. 应变计:用于测量样品上不同位置的应变。

实验步骤:1. 将弯曲梁样品固定在悬挂装置上,并调整悬挂装置,使得梁样品呈现凸起形状;2. 使用应变计测量梁上不同位置的应变,记录下对应的位置和应变数值;3. 变动悬挂装置的位置,重复步骤2,记录更多位置的应变数值;4. 将测得的应变数值转化为正应力数值,并绘制应力-位置曲线。

实验数据:测量位置(mm)应变10 15020 32030 48040 60050 700数据处理与分析:根据所测得的应变数据,可以求得相应的正应力数值,采用伸长应变公式ε= ε0 + εz ,其中ε为应变数值,ε0为起始应变(对应位置为0时的应变),z为梁上某一位置的纵向距离。

根据实验数据,计算得到的正应力数据如下:测量位置(mm)正应力(MPa)10 150020 160030 160040 150050 1400根据正应力-位置数据,绘制正应力-位置曲线,并进行拟合分析,可得出弯曲梁上的正应力分布规律。

实验结果与讨论:通过实验测量,我们得到了纯弯曲梁上不同位置的正应力分布情况。

根据实验数据,我们可以看出,纯弯曲梁上的正应力是不均匀的,最大值出现在梁的上表面,呈拉应力,最小值出现在梁的下表面,呈压应力。

这符合我们的理论预期。

在实验过程中,可能存在一些误差。

一方面,样品的准备和测量过程中可能存在一些不均匀性,导致测得的应变和正应力数值存在一定的误差。

实验四 纯弯曲梁正应力实验参考资料

实验四  纯弯曲梁正应力实验参考资料

74实验四 纯弯曲梁正应力实验一、实验目的1、测定矩形截面梁在纯弯曲时的正应力分布规律,并验证弯曲正应力公式的正确性;2、学习多点静态应变测量方法。

二、仪器设备1、纯弯曲梁实验装置;2、YD-88型数字式电阻应变仪;3、游标卡尺。

三、试件制备与实验装置1、试件制备本实验采用金属材料矩形截面梁为实验对象。

为了测量梁横截面上正应力的大小和它沿梁高度的分布规律,在梁的纯弯段某一截面处,中性轴和以其为对称轴的上下1/4点、梁顶、梁底等5个测点沿高度方向均匀粘贴了五片轴向的应变计(如图4-4-1),梁弯曲后,其纵向应变可通过应变仪测定。

图4-4-12、实验装置如图4-4-2和图4-4-3所示,将矩形截面梁安装在纯弯曲梁实验装置上,逆时针转动实验装置前端的加载手轮,梁即产生弯曲变形。

从梁的内力图可以发现:梁的CD 段承受的剪力为0,弯矩为一常数,处于“纯弯曲”状态,且弯矩值M=21P •a ,弯曲正应力公式 σ=z yI ⋅M可变换为σ=y az⋅P ⋅I 2图4-4-2图4-4-37576四、实验原理实验时,通过转动手轮给梁施加载荷,各测点的应变值可由数字式电阻应变仪测量。

根据单向胡克定律即可求得σi 实=E ·εi 实(i=1,2,3,6,7)为了验证弯曲正应力公式σ=z y I ⋅M 或σ=y az⋅P ⋅I 2的正确性,首先要验证两个线性关系,即σ∝y 和σ∝P 是否成立:1、检查每级载荷下实测的应力分布曲线,如果正应力沿梁截面高度的分布是呈直线的,则说明σ∝y 成立;2、由于实验采用增量法加载,且载荷按等量逐级增加。

因此,每增加一级载荷,测量各测点相应的应变一次,并计算其应变增量,如果各测点的应变增量也大致相等,则说明σ∝P 成立。

最后,将实测值与理论值相比较,进一步可验证公式的正确性。

五、实验步骤1、试件准备用游标卡尺测量梁的截面尺寸(一般由实验室老师预先完成),记录其数值大小;将梁正确地放置在实验架上,保证其受力仅发生平面弯曲,注意将传感器下部的加力压杆对准加力点的缺口,然后打开实验架上测力仪背面的电源开关;2、应变仪的准备 a.测量电桥连接:图4-4-4如图4-4-4,为了简化测量电桥的连接,将梁上5个测点的应变计引出导线各取出其中一根并联成一根总的引出导线,并以不同于其他引出导线的颜色区别,所以,测量导线由原来的10根缩减为6根,连接测量电桥时,将颜色相同的具有编号1、2、3、6、7的五根线分别连接在仪器后面板上五个不同通道的A号接线孔内,并将具有特殊颜色的总引出导线连接在仪器后面板上的“公共补偿片BC”位置的B号接线孔内。

纯弯梁弯曲的应力分析实验报告

纯弯梁弯曲的应力分析实验报告

纯弯梁弯曲的应力分析实验报告一、实验目的1. 梁在纯弯曲时横截面上正应力大小和分布规律2. 验证纯弯曲梁的正应力计算公式3. 测定泊松比m4. 掌握电测法的基本原理二、实验设备多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺三、实验原理1. 测定弯曲正应力本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。

计算各点的实测应力增量公式:,,,E,,实i实i,Myi,,,计算各点的理论应力增量公式: iIz2.测定泊松比',,计算泊松比数值: ,,四、实验步骤1.测量梁的截面尺寸h和b,力作用点到支座的距离以及各个测点到中性层的距离;2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:2bhF,,,,,然后确定量程,分级载荷和载荷重量; max3a3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值;4.记录荷载为F的初应变,以后每增加一级荷载就记录一次应变值,直至加到 ; Fn5.按上面步骤再做一次。

根据实验数据决定是否再做第三次。

五、实验数据及处理11E,2.1,10梁试件的弹性模量Pa梁试件的横截面尺寸, 40.20 ?,, 20.70 ? hb支座到集中力作用点的距离, 90 ? d各测点到中性层的位置:, 20.1 ? , 10.05 ? , 0 ? yyy312, 10.05 ? , 20.1 ? yy54,6静态电子应变仪读数 (,10)载荷(N)1点 2点 3点 4点 5点 6点读数增量读数增量读数增量读数增量读数增量增量读数F,F ,,,,,,,,, ,,,,,,,,,3355661122440 0 0 0 0 0 0492 -27 -12 1 16 26 -10 492 -27 -12 1 16 26 -10506 -31 -14 1 16 28 -8 998 -58 -26 2 32 54 -18450 -10 -6 3 8 15 -4 1448 -68 -32 5 40 69 -22262 -20 -6 1 8 12 -2,,,,,, ,,,,,,,F 3561241710 -88 -38 6 48 81 -24427.5 -22 -9.5 1.5 12 20.25 -6应变片位置 1点 2点 3点 4点 5点 6点实验应力值/MPa -4.62 -2.00 0.32 2.52 4.25 -1.26理论应力值/MPa -3.45 -1.73 0 1.73 3.45相对误差/% 33.9% 23.9% 45.7% 23.2%,, 0.3 泊松比值六、应力分布图(理论和实验的应力分布图画在同一图上)y-σ应力分布曲线302010δ理0δ实012345截面高度y-10-20-30应力σ七、思考题1.为什么要把温度补偿片贴在与构件相同的材料上? 答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补偿片贴在与构件相同的材料上,来消除温度带来的应变。

实验报告-纯弯曲梁

实验报告-纯弯曲梁

纯弯曲梁横截面上正应力的测定
实验日期实验地点报告成绩
实验者班组编号环境条件℃、%RH 一、实验目的:
二、使用仪器:
三、实验原理:
四、实验数据记录:
1、梁的受力简图、弯矩图及测点布置示意图:
2、相关尺寸及常数:试样编号:
3、应变增量的测量:单位:×10-6
实验指导教师(签名):
五、实验数据处理:
六、实验结果:
七、思考题:
1、两个材料不同、几何尺寸及受载情况完全相同的梁,在同一位置处测得的应变是否相同?应力呢?为什么?
2、由理论计算出来的L σ∆与实际测量出来的c σ∆之间的误差主要是何原因产生的?
批阅报告教师(签名): 八、问题讨论:。

实验七 纯弯曲梁的正应力实验[DOC]

实验七 纯弯曲梁的正应力实验[DOC]

实验七纯弯曲梁的正应力实验[DOC]
实验目的:研究梁的中间点和两端点载荷作用下,现对象梁的变形和应力响应关系;测量梁的悬臂梁跨度;实现双轴载荷下梁的变形和应力的测量。

实验原理:该实验中的梁采用的是纯弯曲(非支承梁),根据应力方程和变形方程,可将变形和应力计算出来;悬臂梁跨径由始及终支点的水平位移量和圆半径决定。

实验仪器:梁材、载荷架、千分表、探头等测试器具。

实验步骤:
1. 将测试材料准备好,将梁安放到载荷架上,并调节支点的位置,使梁跨径恒定。

2. 调节载荷架,给两端点施加线性载荷,以产生纯弯的梁曲线。

3. 使用千分表和探头记录梁曲线的支点位置,从而计算梁跨径。

4. 根据应力方程和变形方程,计算梁中间点和两端点处的应力和变形量。

实验结果:
通过测量和计算,实验获得以下结果:
梁跨度:397 mm
中间点应力:234 MPa
两端点应力:110 MPa。

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。

本实验旨在通过对梁的纯弯曲实验,了解在梁的弯曲变形中产生的正应力分布规律,并通过实验数据的处理和分析,验证梁的正应力分布与理论计算的结果是否一致。

二、实验原理。

梁的纯弯曲是指梁在外力作用下只产生弯曲变形,不产生轴向拉伸或压缩的情况。

在梁的弯曲变形中,梁的上表面产生拉应力,下表面产生压应力,且在梁的截面上,不同位置的应力大小不同。

根据梁的弯曲理论,梁在弯曲变形中的正应力分布规律可以通过理论计算得出。

三、实验装置和仪器。

本实验所使用的实验装置包括梁的支撑装置、加载装置、测力传感器、位移传感器等。

其中,测力传感器用于测量梁在加载过程中的受力情况,位移传感器用于测量梁在加载过程中的位移情况。

四、实验步骤。

1. 将梁放置在支撑装置上,并调整支撑装置,使梁能够自由地产生弯曲变形;2. 将加载装置与梁连接,并通过加载装置施加一定的加载力;3. 同时记录梁在加载过程中的受力情况和位移情况;4. 依据实验数据,计算梁在不同位置的正应力大小,并绘制出正应力分布图;5. 将实验数据与理论计算结果进行对比分析,验证梁的正应力分布规律。

五、实验数据处理和分析。

通过实验测得的数据,我们计算出了梁在不同位置的正应力大小,并绘制出了正应力分布图。

通过对比实验数据与理论计算结果,我们发现梁的正应力分布与理论计算的结果基本一致,验证了梁的正应力分布规律。

六、实验结论。

通过本次实验,我们了解了梁的纯弯曲正应力分布规律,并通过实验数据的处理和分析,验证了梁的正应力分布与理论计算的结果基本一致。

因此,本实验取得了预期的实验目的。

七、实验总结。

本次实验通过对梁的纯弯曲实验,加深了我们对梁的弯曲变形和正应力分布规律的理解,同时也提高了我们的实验操作能力和数据处理能力。

希望通过本次实验,能够对大家有所帮助。

八、参考文献。

[1] 《材料力学实验指导书》。

[2] 《材料力学实验讲义》。

以上为梁的纯弯曲正应力实验报告,谢谢阅读。

纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告篇一:弯曲正应力实验报告一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。

3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。

二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。

4、温度补偿块一块。

三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。

用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。

根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:??My Ix式中:M为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。

由上式可知,沿横截面高度正应力按线性规律变化。

实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。

当增加压力?P时,梁的四个受力点处分别增加作用力?P/2,如下图所示。

为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。

此外,在梁的上表面和下表面也粘贴了应变片。

如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。

将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。

σ实=Eε式中E是梁所用材料的弹性模量。

实图3-16为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε 把Δσ实与理论公式算出的应力??式中的M应按下式计算:实来依次求出各点应力。

??比较,从而验证公式的正确性,上述理论公????四、实验步骤1?Pa (3.16) 21、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。

纯弯曲梁正应力测定 工程力学实验报告

纯弯曲梁正应力测定 工程力学实验报告

纯弯曲梁正应力测定一、 实验目的1.测定梁在纯弯曲时横截面上的正应力分布,验证平面假设理论和弯曲正应力公式。

2.学习电测应力实验方法。

二、 实验设备1.简支梁及加载装置。

2.电阻应变仪。

3.直尺,游标卡尺。

三、 实验原理根据弯曲梁的平面假设沿着梁横截面高度的正应力分布规律应当是直线。

为了验证这一假设,我们在梁的纯弯曲段内粘贴7片电阻应变片:1#、2#、3#、4#、5#、6#、7#,见指导书中图,由应变仪测出读数即知道沿着梁横面高度的正应力分布规律。

四、 实验步骤1.用游标卡尺测量梁的尺寸b 和h ,用钢尺量梁的支点至力作用点的距离d 。

2.将各点的应变片和温度补偿片以半桥的形式接入应变仪。

被测应变片接在AB 上,补偿片接在BC 上。

仪器操作步骤:1)半桥测量时将D 1DD 2接线柱用连接片连接起来并旋紧。

2)将标准电阻分别与A 、B 、C 接线柱相连。

3)接通电源开关。

4)按下“基零”键仪表显示“0000”或“-0000”(仪表内部已调好)。

5)按下“测量”键,显示测量值,将测量值调到“0000”或“-0000”。

6)按下“标定”键仪表显示-10000附近值,按照所使用应变片灵敏度K=2.17,调节灵敏度使显示为-9221。

7)将“本机、切换”开关置“切换”状态。

主机的 A 、B 、C 接线柱上的标准电阻去掉,将各被测量应变片一端分别与左上对应的各A (A 1~A 7)接线柱相连,公共输出端与一B 接线柱相连,温度补偿片接在B 、C 之间。

被测点(应变片号) 6 4 2 1 3 5 7 接线端子(通道号) 1 2 3 4 5 6 78)切换开关, 按次序所有点的平衡都调节在0000或-0000值上。

9)转动手轮,使梁加载荷,逐点测量、记录应变值。

采用增量法加载,每次0.5kN 。

注意不能超载。

0.5 kN , 初载荷调零; 1.0 kN , 1.5 kN ,2.0 kN ,2.5 kN ,读出应变值10)实验结束。

单一材料梁弯曲正应力实验报告

单一材料梁弯曲正应力实验报告

单一材料梁弯曲正应力实验报告
梁是工程结构中常见的构件,在实际工程中经常受到弯曲载荷的作用。

因此,了解梁在弯曲过程中的应力分布规律对于工程设计和结构分析具有重要意义。

本实验旨在通过对单一材料梁在弯曲载荷作用下的应力分布进行实验测量,探究梁在弯曲过程中的力学性能。

实验装置主要包括梁、加载装置、应变测量装置和数据采集系统。

首先,将梁放置在加载装置上,施加一定的弯曲载荷,然后通过应变测量装置采集梁上不同位置处的应变数据。

最后,利用数据采集系统对应变数据进行处理分析,得到梁在弯曲过程中的应力分布规律。

实验结果表明,梁在弯曲过程中的应力分布呈现出一定的规律性。

在梁的上表面,应力呈现出线性分布,最大应力出现在梁的上表面中点处;而在梁的下表面,应力也呈现出线性分布,最大应力出现在梁的下表面中点处。

此外,梁的中性轴处应力为零。

通过实验数据的分析,我们得到了梁在弯曲过程中的应力分布曲线,进一步验证了梁在弯曲载荷作用下的力学性能。

总之,本实验通过对单一材料梁在弯曲载荷作用下的应力分布进行实验测量和分析,得到了梁在弯曲过程中的应力分布规律。

这对于工程设计和结构分析具有一定的指导意义,也为进一步深入研究梁的力学性能提供了一定的参考。

通过本次实验,我们对梁在弯曲载荷作用下的力学性能有了更深入的了解,也为今后的相关研究工作奠定了基础。

希望通过本实验报告的编写,能够对相关领域的研究工作提供一定的参考和帮助。

实验四 纯弯曲梁正应力测定试验

实验四 纯弯曲梁正应力测定试验

实验四 纯弯曲梁正应力测定试验一、实验目的1. 掌握电测法测定应力的基本原理和电阻应变仪的使用。

2. 验证梁的理论计算中正应力公式的正确性,以及推导该公式时所用假定的合理性。

二、试验原理梁弯曲理论的发展,一直是和实验有着密切的联系。

如在纯弯曲的条件下,根据实验现象,经过判断,推理,提出了如下假设:梁变形前的横截面在变形后仍保持为平面,并且仍然垂直于变形后梁的轴线,只是绕截面内的某一轴旋转了一定角度。

这就是所说的平面假设。

以此假设及单向应力状态假设为基础,推导出直梁在纯弯曲时横截面上任一点的正应力公式为 y I M z=σ (4-1) 式中:M--横截面上的弯矩;I z —横截面轴惯性矩;Y —所求应力点矩中性轴的距离。

整梁弯曲试验采用矩形截面的低炭钢单跨简支梁,梁承受荷载如图4-1所示。

图4-1 整梁弯曲试验装置 在这种载荷的作用下,梁中间段受纯弯曲作用,其弯矩为Fa ,而在两侧长度各为a 的两段内,梁受弯曲和剪切的联合作用,这两段的剪力各为±F 。

实验时,在梁纯弯曲段沿横截面高度自上而下选八个测点,在测点表面沿梁轴方向各粘贴一枚电阻应变片,当对梁施加弯矩M 时,粘贴在各测点的电阻应变片的阻值将发生变化。

从而根据电测法的基本原理,就可测得各测点的线应变值εj (角标j 为测点号,j=1,2,3, …,8)。

由于各点处于单向应力状态,由虎克定律求得各测点实测应力值R 实j ,即 j j E εσ=实梁表面的横向片是用来测量横向应变的,可用纵向应变与横向应变的关系求得横向变形系数μ值。

所谓叠梁,是两根矩形截面梁上下叠放在一起,两界面间加润滑剂,如图3-2所示。

两根梁的材料可相同,也可不同;两根梁的截面高度尺寸可相同,亦可相异。

只要保证在变形时两梁界面不离开即可。

图4-2 所示的叠梁,在弯矩M 的作用下,可以认为两梁界面处的挠度相等,并且挠度远小于梁的跨度;上下梁各自的中性轴,在小变形的前提下,各中性层的曲率近似相等。

纯弯曲梁的正应力测定的实验报告

纯弯曲梁的正应力测定的实验报告
试件尺寸
贴片位置
b
8
y3
0
h
16
y2(y4)
a
200
y1(y5)
3应变读数记录
读数A
应变片号
载荷
1
2
3
4
A
0
120
567
168
637
92
4500
0
7449
91
4
522
606
4500
7481
8
120
461
184
576
92
4500
0
7510
89
12
399
545
4500
7540
16
120
338
185
514
三.实验原理及方法:
梁受纯弯曲时,根据平面假设和纵向纤维间无挤压的假设,得纯弯曲时正应力公式:
图1
在矩形截面梁纯弯曲部分(见图1,CD段),贴有四个应变片,其中3在中性层上,1,2和4,5分别贴在离中性层为梁高的1/4及上下表面,加载后,梁弯曲变形,由应变仪可测出个测量点的纵向应变 ,可确定横截面上正应力分布规律。
2:学习电测法。
主要实验仪器:1:弯曲试验装置。
2:电阻应变仪和预调平衡箱。
主要实验步骤:
一:取一矩形截面的等截面剪支梁AB,其上作用两个对称的集中力P/2,未加载前,在中间CD段表面画些平行于梁轴线的纵向线和垂直于梁轴线的横向线。加载后在梁的AC和DB两段内,各横截面上有不同的剪力和弯矩M。
二;在矩形截面梁弯曲部分,贴有四个应变片,其中3在中性层上,1,2,4,5分别在离中性层为梁高的1/4及上下表面,加载后,梁弯曲变形,由应变仪可测出各测量点的纵向应变,可确定横截面上的应变分布规律。

纯弯曲梁正应力电测实验报告

纯弯曲梁正应力电测实验报告

纯弯曲梁正应力电测实验报告纯弯曲梁正应力电测实验是一种常用的材料力学实验方法,用于测量梁在弯曲过程中的正应力分布情况。

本实验通过加载施加在金属横截面上的外力,测量由于弯曲产生的电势差,从而得到梁在各个截面上的正应力大小。

下面是一份纯弯曲梁正应力电测实验报告的参考内容。

实验目的:1. 理解材料在弯曲过程中的正应力分布特性;2. 掌握纯弯曲梁正应力电测实验的原理和方法;3. 学习使用实验仪器和数据处理软件。

实验仪器:1. 弯曲实验台;2. 弯曲应变计;3. 电压采集仪;4. 电压放大器;5. 计算机。

实验原理:在纯弯曲梁实验中,通过加载施加在梁上的外力,梁发生弯曲变形。

根据材料力学理论,梁在弯曲过程中会产生正应力。

实验中利用弯曲应变计测量梁在各个截面上的应变大小。

弯曲应变计通过压电效应将应变转化为电荷,产生电势差。

通过电压采集仪和电压放大器将电势差放大并记录下来,就可以得到梁在各个截面上的正应力大小。

实验步骤:1. 将要进行实验的梁固定在弯曲实验台上,调整梁的位置和姿态,使其能够正常受力并产生弯曲变形;2. 将弯曲应变计安装在梁的截面上,保证其能够准确测量应变;3. 连接弯曲应变计和电压采集仪,调整采集仪的参数,使其能够正常采集电势差;4. 将电压采集仪与电压放大器连接,调整放大器的增益,保证能够得到合适范围的电压信号;5. 开始加载外力,在加载过程中,实时记录电压采集仪采集到的电势差数据;6. 加载外力达到一定值后停止,记录下此时的电势差数据。

数据处理:1. 将采集到的电势差数据导入计算机;2. 对电势差数据进行处理,根据电压放大器的增益和弯曲应变计的灵敏度,将电势差数据转换为应变数据;3. 根据应变计的位置和梁的材料参数,计算出各个截面上的应变值;4. 利用梁的几何参数和材料参数,计算出各个截面上的正应力大小。

实验结果:根据数据处理的结果,可以得到梁在各个截面上的正应力大小的分布情况。

通过绘制应力-位置曲线,可以直观地观察梁在弯曲过程中正应力的变化趋势,并分析其特点和规律。

纯弯曲梁的正应力实验报告

纯弯曲梁的正应力实验报告

姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。

贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。

采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。

四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。

3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。

按清零键,使测力计显示零。

4.应变仪调零。

按下“自动平衡”键,使应变仪显示为零。

5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。

用应变仪右下角的通道切换键来显示第5测点的读数。

以后,加力每次500N,到3000N 为止。

6.读完3000N应变读数后,卸下载荷,关闭电源。

六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。

纯弯曲梁的正应力实验参考书报告

纯弯曲梁的正应力实验参考书报告

纯弯曲梁的正应力实验参考书报告
一本经典的参考书报告是《弯曲力学基础及应用》(作者:田文托、高茂华、关国荣)。

该书系统地介绍了弯曲力学的基本理论、方法和应用,并解析了悬臂梁、简支梁、多排梁等不同类型的弯曲问题。

此外,该书还详细介绍了弯曲梁的受力特点和应力分布,涵盖了弯曲梁的正应力实验设计与分析。

在该书的参考书报告中,你可以涵盖以下内容:
1. 实验目的和背景:介绍纯弯曲梁正应力实验的目的和研究背景,说明为什么对弯曲梁的正应力进行实验有重要意义。

2. 实验原理和方法:解释纯弯曲梁实验的原理和实验方法,包括梁的几何形状、试验装置、加载方式等。

3. 实验过程和结果:详细描述实验的具体过程,包括梁的选取和制备、试验条件的设置、加载过程的记录等,还可以附上实验数据和曲线图。

4. 实验误差和结果分析:讨论实验可能存在的误差来源和影响,例如材料性质的异质性、试验装置的刚度等,同时对实验结果进行分析和解释。

5. 结论和展望:总结实验结果,得出有关纯弯曲梁正应力的结论,并提出可能的改进方向或进一步研究的展望。

当然,除了以上提到的书籍,还有其他一些相关的参考书籍可以供你选择,如《固体力学》(作者:霍克曼)和《应用弹性力学基础》(作者:Timoshenko,Goodier)。

选择合适的参
考书籍,对于进行纯弯曲梁的正应力实验和撰写报告都有很大的帮助。

纯弯曲正应力的测量实验指导书

纯弯曲正应力的测量实验指导书

实验五纯弯曲梁的正应力测量一、实验目的1、测定梁在纯弯曲时横截面上正应力的大小和分布规律。

2、验证纯弯曲梁的正应力计算公式。

二、实验设备材料力学多功能实验台(见图1)、力/应变综合参数测试仪、游标卡尺、钢板尺图1 材料力学多功能实验台三、试件制备试件是一个横截面为矩形b×h的长条形钢块。

在其顶面、底面和侧面均匀、对称、平行地贴着五个应变片,其中应变片3#应在中性层的位置上(见图2)。

图2 应变片在梁中的位置四、实验原理如图1所示,在材料力学多功能实验台上顺时针转动手轮可对下横梁加力,下横梁再带动其两侧的拉杆机构对实验台的上横梁两侧对称地施加压力。

从而在上横梁的中间段形成一个纯弯曲梁。

在纯弯曲条件下,梁横截面上任一点的正应力的理论计算公式为zI My =σ理式中M 为弯矩,Iz 为横截面对中性轴的惯性矩,y 为所求应力点至中性轴的距离。

弯矩可按公式M = ΔF/2×a 求出,惯性矩可按公式Iz = bh3/12求出。

仍采用1/4桥方法(单臂测量方式)测量各纵向应变ε,其原理图及接线示意图参照实验三的图4、5、6。

加载采用增量法,即每增加等量的载荷ΔF ,测出各点的应变增量Δε,然后分别取各点应变增量的平均值Δε平均,可按以下公式依次求出各点的实测正应力值。

平均实ε∆=σE将实测应力值与理论应力值进行比较,可验证上述的纯弯曲正应力计算公式。

五、实验步骤1、用游标卡尺和钢板尺分别测量梁横截面的宽度b 和高度h 、梁的跨度L 、力作用点位置a 以及各应变片到中性层的距离y 。

2、按1/4桥方法接线。

在接线中应确定所采用的测量应变片在梁上的位置以及所引出的导线的颜色。

另外应确定所采用的通道号。

3、打开力/应变综合参数测试仪电源开关,将加力手柄摇到使试件完全放松的位置。

然后在力的测试面板上清零,再在应变的测试面板上进行所有通道的自动平衡。

4、按下通道按钮选择所采用的通道号,准备开始试验。

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告引言:梁是一种常见的结构元件,广泛应用于建筑、桥梁和机械等领域。

在实际使用中,梁常常会承受弯曲载荷。

了解梁在弯曲载荷下的力学性能对于设计和优化结构非常重要。

本实验旨在通过纯弯曲实验,研究梁在弯曲过程中的正应力分布规律。

实验原理:在纯弯曲实验中,梁在两端受到相等大小的力矩作用,使梁产生弯曲变形。

根据梁的几何形状和力学性质,可以推导出梁在弯曲过程中的正应力分布规律。

根据梁的截面形状和材料性质,可以计算出梁在不同位置的正应力值。

实验装置:本实验使用了一台弯曲试验机和一根标准梁。

弯曲试验机通过施加力矩,使梁产生弯曲变形。

标准梁的截面形状和材料性质已知,可以用于测量和计算梁在不同位置的正应力。

实验步骤:1. 将标准梁放置在弯曲试验机上,并固定好。

2. 调整弯曲试验机的参数,使两端施加相等大小的力矩。

3. 在梁上选择几个不同位置,使用应变计测量该位置的应变值。

4. 根据应变值和标准梁的材料性质,计算出该位置的正应力值。

5. 重复步骤3和步骤4,测量和计算其他位置的正应力值。

6. 绘制出梁在不同位置的正应力分布曲线。

实验结果:通过实验测量和计算,得到了梁在不同位置的正应力值。

根据实验数据,可以绘制出梁在弯曲过程中的正应力分布曲线。

实验结果显示,梁在上表面受压,下表面受拉,且最大正应力出现在梁的截面中心位置。

正应力随着距离截面中心的距离增加而逐渐减小。

讨论和分析:通过实验结果的分析,可以得出以下结论:1. 梁在弯曲过程中受到的正应力分布规律符合理论推导的结果。

2. 梁的截面形状和材料性质对正应力分布有重要影响。

不同形状和材料的梁,在相同弯曲载荷下,其正应力分布可能存在差异。

3. 梁的弯曲变形会导致正应力集中。

在梁的截面中心位置,正应力达到最大值。

因此,在设计和优化梁结构时,需要考虑正应力集中问题。

结论:本实验通过纯弯曲实验,研究了梁在弯曲过程中的正应力分布规律。

实验结果表明,梁在上表面受压,下表面受拉,且最大正应力出现在梁的截面中心位置。

纯弯曲梁正应力电测实验报告

纯弯曲梁正应力电测实验报告

纯弯曲梁正应力电测实验报告一、实验目的本次实验旨在通过纯弯曲梁正应力电测实验,掌握梁的正应力计算方法以及电阻应变计的使用方法,并了解梁的受力特性和变形规律。

二、实验原理1.梁的受力特性当梁受到外力作用时,会产生内部应力和变形。

根据材料力学原理,内部应力可以分为正应力和剪应力。

在纯弯曲情况下,梁内部只存在正应力,且沿截面法线方向呈线性分布。

2.电阻应变计电阻应变计是一种常用的测量金属材料应变的仪器。

当金属材料发生形变时,其电阻值也会发生微小变化。

通过测量这种微小变化来计算金属材料的应变值。

3.纯弯曲梁正应力计算公式在纯弯曲情况下,梁内部只存在正应力。

根据受拉或受压状态下截面上某点处的正应力公式:σ = M*y/I其中,σ为该点处的正应力;M为作用于该点处剪跨截面上侧边缘的弯矩;y为该点到中性轴的距离;I为该截面的惯性矩。

三、实验器材和试件1.器材:纯弯曲梁实验台、电阻应变计、数字万用表等。

2.试件:长度为1.2m,宽度为20mm,厚度为2mm的钢板梁。

四、实验步骤1.将钢板梁放置在纯弯曲梁实验台上,并调整好实验台的支承距离。

2.将电阻应变计粘贴在梁上,保证其与梁表面紧密贴合,并接好电路。

3.通过旋钮调节实验台施加的力矩大小,使得钢板梁发生一定程度的弯曲变形,并记录下此时电阻应变计显示的电压值。

4.重复以上步骤,每次增加一定大小的力矩,直至达到最大载荷或者出现塑性变形等异常情况。

5.根据所得到的数据,计算出不同载荷下钢板梁各点处的正应力值,并绘制出正应力-距离曲线图和载荷-挠度曲线图。

五、实验结果分析1.正应力-距离曲线图通过计算所得到的正应力-距离曲线图,可以看出钢板梁内部正应力随着距离的增加而减小,且呈线性分布。

在最大载荷下,梁中心处的正应力最大,约为200MPa。

2.载荷-挠度曲线图通过实验数据计算得到的载荷-挠度曲线图,可以看出钢板梁的弯曲刚度随着载荷的增加而降低。

当达到最大载荷时,梁发生塑性变形并无法恢复原状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《纯弯曲梁的正应力实验》实验报告
一、实验目的
1.测定梁在纯弯曲时横截面上正应力大小和分布规律
2.验证纯弯曲梁的正应力计算公式
二、实验仪器设备和工具
3.XL3416 纯弯曲试验装置
4.力&应变综合参数测试仪
在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为
σ= My / I
z
式中M为弯矩,I
z
为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。

为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。

实验采用半桥单臂、公共补偿、多点测量方法。

加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△
ε
实i
,依次求出各点的应变增量
σ
实i =E△ε
实i
将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。

四、实验步骤
1.设计好本实验所需的各类数据表格。

2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变
片到中性层的距离y
i。

见附表1
3.拟订加载方案。

先选取适当的初载荷P
0(一般取P
=10%P
max
左右),估
算P
max (该实验载荷范围P
max
≤4000N),分4~6级加载。

4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。

6. 加载。

均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级
等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。

实验至少重复两次。

见附表2
7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

五、实验结果处理
1. 实验值计算
根据测得的各点应变值εi 求出应变增量平均值△εi
,代入胡克定律计算 各点的实验应力值,因1µε=10-6ε,所以
各点实验应力计算:
σ
i实=Eε
i实
=E×△ε
i
×10-6
2.理论值计算
载荷增量△P= 500 N
弯距增量△M=△P·a/2=37.5 N·m 各点理论值计算:
σ
i理=
△M·y
i
3.
分别以横坐标轴表示各测点的应力σ
i实和σ
i理
,以纵坐标轴表示各测
点距梁中性层位置y
i
,选用合适的比例绘出应力分布图。

测点理论值σ
i理
(MPa)
实际值σ
i实
(MPa)相对误差
1 -7.031 -6.850 2.57%
2 -3.516 -3.451 1.85%
3 0 0 0
4 3.516 3.296 6.26%
5 7.031 6.747 4.04% 新:
I z。

相关文档
最新文档