梁弯曲正应力实验报告
梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告一、实验目的本实验旨在通过对实验材料进行纯弯曲加载,测量其正应力和弯曲角度,从而掌握材料在纯弯曲状态下的应力特性,并探究材料性能的影响因素。
二、实验原理当梁在纯弯曲时,受到的载荷可以分解为一个弯矩和一个剪力。
由于实验中去除了外部作用力,剪力为零,因此我们只需要考虑弯矩作用下的应力情况。
在梁的截面上,由于受到弯曲,不同位置的应变不同,因此会形成不同大小的应力。
在正常情况下,当梁未发生破坏时,梁的内部应力呈线性分布,即受到的弯矩越大,所受到的应力也会相应增大。
三、实验设备本实验所使用的设备包括:1.纯弯曲实验台2.测力仪3.梁材料(一定长度的圆形钢管或方管)四、实验步骤1. 选择一段合适材质的梁进行实验。
2. 将梁固定在纯弯曲实验台上。
3. 在梁的一端加上一定荷载。
4. 通过测力仪测量在梁部位不同位置受到的正应力。
5. 在梁的另一端加上一定数量的荷载,并重复步骤4,记录正应力。
6. 重复以上操作,直到梁发生破坏。
五、实验结果在实验过程中,我们记录了梁不同位置受到的正应力,并根据实验数据分析了不同弯矩下的应力分布曲线。
实验结果表明,在纯弯曲状态下,梁的内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。
六、实验分析根据实验结果,我们可以发现梁的性能会受到材料的影响。
不同的材料具有不同的弯曲特性,不同的性能和抗断性能。
而在实验中,我们也可以通过调整材料的材质和长度来控制弯曲的程度,从而控制梁的应力分布和破坏点位置。
七、实验结论本实验通过纯弯曲实验台对梁进行弯曲测试,得到了不同弯矩下的应力分布曲线。
实验结论表明,梁在纯弯曲状态下,其内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。
同时,不同材质和长度的材料在弯曲状态下具有不同的弯曲特性和抗断性能。
梁的弯曲正应力实验报告

梁的弯曲正应力实验报告梁的弯曲正应力实验报告引言:弯曲是一种常见的力学现象,广泛应用于工程和建筑领域。
梁是一种常见的结构,在受到外力作用时会发生弯曲变形。
为了研究梁的弯曲行为,本实验通过对梁进行弯曲试验,测量梁上的正应力分布,以便了解梁的强度和稳定性。
实验目的:1. 通过实验测量梁上的正应力分布,了解梁的弯曲行为;2. 分析梁的弯曲现象对梁的强度和稳定性的影响;3. 探究不同材料和截面形状对梁的弯曲正应力分布的影响。
实验原理:当一根梁受到外力作用时,梁会发生弯曲变形。
在梁的顶部和底部,会出现正应力和负应力。
本实验主要关注梁上的正应力分布。
根据梁的弯曲理论,梁上的正应力与梁的截面形状、材料性质、外力大小和位置等因素有关。
实验装置和步骤:实验装置包括一根长梁、测力计、测量仪器等。
具体步骤如下:1. 将长梁固定在实验台上,确保梁的两端支持牢固;2. 在梁上设置几个不同位置的测力计,用于测量梁上的正应力;3. 施加外力于梁上,使其发生弯曲变形;4. 通过测力计测量梁上各位置的正应力,并记录数据;5. 根据实验数据,绘制梁上的正应力分布曲线。
实验结果与分析:根据实验数据,我们可以得出梁上的正应力分布曲线。
通常情况下,梁上的正应力分布呈现出一定的规律性。
在梁的顶部和底部,正应力较大,逐渐向中间递减,最终趋近于零。
这是因为在梁的顶部和底部,受力较大,产生了较大的正应力;而在梁的中间,受力相对较小,正应力逐渐减小。
实验中还可以观察到不同材料和截面形状对梁的弯曲正应力分布的影响。
例如,对比不同材料的梁,我们可以发现不同材料的梁上的正应力分布曲线有所差异。
这是因为不同材料的梁具有不同的弹性模量和抗弯强度,从而导致不同的正应力分布。
此外,梁的截面形状也对梁的弯曲正应力分布有影响。
例如,对比矩形截面和圆形截面的梁,我们可以发现矩形截面的梁上的正应力分布曲线相对均匀,而圆形截面的梁上的正应力分布曲线则呈现出较大的集中度。
梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。
本实验旨在通过对梁的纯弯曲正应力实验,了解梁在纯弯曲状态下的受力情况,掌握梁的弯曲应力分布规律,加深对梁的力学性能的理解。
二、实验原理。
梁是一种常见的结构构件,在工程中应用广泛。
梁在受外力作用下会发生弯曲变形,产生弯曲应力。
在纯弯曲状态下,梁上任意截面的应力都是正应力,弯矩对梁上任意一点的作用会引起该点产生正应力。
梁的弯曲应力分布规律受到梁的截面形状、材料性质以及外力大小和作用形式的影响。
三、实验装置与仪器。
本次实验所使用的实验装置包括,梁的支撑装置、加载装置、测力传感器、位移传感器、数据采集系统等。
测力传感器用于测量梁上各点的受力情况,位移传感器用于测量梁上各点的位移情况,数据采集系统用于采集并记录实验数据。
四、实验步骤。
1. 将梁放置在支撑装置上,并调整支撑装置,使梁处于自由悬臂梁状态。
2. 将加载装置作用在梁的中央位置,施加均匀分布的外力。
3. 通过测力传感器和位移传感器采集梁上各点的受力和位移数据。
4. 记录实验数据,并进行数据处理和分析。
五、实验数据处理与分析。
通过对实验数据的处理和分析,得到了梁在纯弯曲状态下的应力分布规律。
实验结果表明,在梁的中央位置受力最大,呈现出最大的正应力;而在梁的两端位置受力较小,呈现出较小的正应力。
梁的弯曲应力分布呈现出一定的规律性,符合理论预期。
六、实验结论。
通过本次实验,我们深入了解了梁在纯弯曲状态下的受力情况,掌握了梁的弯曲应力分布规律。
实验结果表明,在纯弯曲状态下,梁上任意截面的应力都是正应力,呈现出一定的规律性。
这对于工程结构设计和实际应用具有一定的指导意义。
七、实验心得。
通过本次实验,我们对梁的纯弯曲正应力有了更深入的了解,也增强了对力学知识的理解和应用能力。
在今后的学习和工作中,我们将继续努力,不断提高自己的实验技能和科研能力,为工程实践和科学研究做出更大的贡献。
八、参考文献。
1. 钱七虎. 结构力学实验教程[M]. 北京,中国建筑工业出版社,2008.2. 吴光辉. 结构力学[M]. 北京,高等教育出版社,2011.以上为本次梁的纯弯曲正应力实验报告的全部内容。
纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据通过实验,测量纯弯曲梁上不同位置的正应力分布情况,验证弯曲梁的拉应力和压应力分布的理论公式。
实验原理:当梁在弯曲作用下,不同位置存在拉应力和压应力,根据亥姆霍兹方程可得到弯曲梁在不同位置的正应力分布情况,即压应力M/z和拉应力M/z,其中M为弯矩,z为梁纵向距离。
实验中通常采用张力应变计和屈服应变计来测量梁上不同位置的正应力。
实验设备和材料:1. 弯曲梁样品:选取一根长度较长、宽度和厚度相对较小的金属样品;2. 悬挂装置:用于悬挂样品并施加弯矩;3. 应变计:用于测量样品上不同位置的应变。
实验步骤:1. 将弯曲梁样品固定在悬挂装置上,并调整悬挂装置,使得梁样品呈现凸起形状;2. 使用应变计测量梁上不同位置的应变,记录下对应的位置和应变数值;3. 变动悬挂装置的位置,重复步骤2,记录更多位置的应变数值;4. 将测得的应变数值转化为正应力数值,并绘制应力-位置曲线。
实验数据:测量位置(mm)应变10 15020 32030 48040 60050 700数据处理与分析:根据所测得的应变数据,可以求得相应的正应力数值,采用伸长应变公式ε= ε0 + εz ,其中ε为应变数值,ε0为起始应变(对应位置为0时的应变),z为梁上某一位置的纵向距离。
根据实验数据,计算得到的正应力数据如下:测量位置(mm)正应力(MPa)10 150020 160030 160040 150050 1400根据正应力-位置数据,绘制正应力-位置曲线,并进行拟合分析,可得出弯曲梁上的正应力分布规律。
实验结果与讨论:通过实验测量,我们得到了纯弯曲梁上不同位置的正应力分布情况。
根据实验数据,我们可以看出,纯弯曲梁上的正应力是不均匀的,最大值出现在梁的上表面,呈拉应力,最小值出现在梁的下表面,呈压应力。
这符合我们的理论预期。
在实验过程中,可能存在一些误差。
一方面,样品的准备和测量过程中可能存在一些不均匀性,导致测得的应变和正应力数值存在一定的误差。
梁的弯曲正应力实验报告

一、实验目的1. 通过实验,了解梁在弯曲状态下的应力分布规律;2. 验证梁的弯曲正应力计算公式的准确性;3. 掌握应变电测法的基本原理和操作方法;4. 培养学生严谨的实验态度和科学的研究方法。
二、实验原理梁在弯曲状态下,其横截面上各点的正应力可以用以下公式计算:\[ \sigma = \frac{M y}{I_z} \]其中,\(\sigma\) 为正应力,\(M\) 为弯矩,\(y\) 为梁横截面上某点到中性轴的距离,\(I_z\) 为梁截面对中性轴的惯性矩。
实验中,通过测量梁横截面上不同位置的应变,根据虎克定律,可计算出相应位置的应力。
实验装置主要包括梁、应变片、静态数字电阻应变仪等。
三、实验仪器与设备1. 梁材料:矩形截面试件,尺寸为 \(b \times h\);2. 应变片:电阻应变片,用于测量梁横截面上的应变;3. 静态数字电阻应变仪:用于测量应变片输出的电阻变化,从而计算出应变;4. 加载装置:用于对梁施加弯矩;5. 游标卡尺:用于测量梁的尺寸;6. 计算器:用于计算实验数据。
四、实验步骤1. 准备实验装置,包括梁、应变片、应变仪等;2. 将应变片粘贴在梁的预定位置,确保应变片与梁表面紧密贴合;3. 接通应变仪电源,调整应变仪的量程和灵敏度;4. 使用游标卡尺测量梁的尺寸,记录数据;5. 在梁上施加预定的弯矩,确保梁处于弯曲状态;6. 使用应变仪测量梁横截面上不同位置的应变,记录数据;7. 根据实验数据和应变片的位置,计算出梁横截面上不同位置的应力;8. 比较实验测得的应力与理论计算值,分析误差原因。
五、实验结果与分析1. 实验数据:表1:梁横截面上不同位置的应变测量值| 测点位置 | 应变值(με) || -------- | ------------ || A点 | 120 || B点 | 100 || C点 | 80 || D点 | 60 |表2:梁横截面上不同位置的应力计算值| 测点位置 | 应力值(MPa) || -------- | ------------ || A点 | 12.00 || B点 | 10.00 || C点 | 8.00 || D点 | 6.00 |2. 结果分析:通过实验数据与理论计算值的比较,可以看出,在梁的弯曲状态下,应力在梁横截面上呈线性分布。
梁弯曲正应力电测实验报告

yy5????15mm;E=210Gpa。
2442
23
抗弯曲截面模量WZ=bh/6惯性矩JZ=bh/12
(2)应变?记录:
(3)取各测点?值并计算各点应力:
??1=16×10;??2=7×10;??3= 0;??4=8×10;??5=15×10;??1=E?1=;??2=E??2=;??3=0;
二、实验仪器和设备
1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。4、温度补偿块一块。三、实验原理和方法
弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:
图4-1
此值与理论公式计算出的各点正应力的增量即
?理?
?MyIZ
?pa2
进行比较,就可验证弯曲正应力公式。这里,弯矩增量?M?。
梁上各点的应变测量,采用1/4桥接线,各工作应变片共用一个温度补偿块。
四、实验步骤
1.记录实验台参数,设计实验方法。
2.准备应变仪:把梁上各测量点的应变片(工作应变片)按编号逐点接到电阻应变仪A、B接线柱上,将温度补偿片接到电阻应变仪接线柱上作公共补偿。
把Δσ实与理论公式算出的应力??式中的M应按下式计算:
实
来依次求出各点应力。
??
比较,从而验证公式的正确性,上述理论公??
??
四、实验步骤
1
?Pa(3.16)2
1、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。
2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。
纯弯曲梁正应力测定 工程力学实验报告

纯弯曲梁正应力测定一、 实验目的1.测定梁在纯弯曲时横截面上的正应力分布,验证平面假设理论和弯曲正应力公式。
2.学习电测应力实验方法。
二、 实验设备1.简支梁及加载装置。
2.电阻应变仪。
3.直尺,游标卡尺。
三、 实验原理根据弯曲梁的平面假设沿着梁横截面高度的正应力分布规律应当是直线。
为了验证这一假设,我们在梁的纯弯曲段内粘贴7片电阻应变片:1#、2#、3#、4#、5#、6#、7#,见指导书中图,由应变仪测出读数即知道沿着梁横面高度的正应力分布规律。
四、 实验步骤1.用游标卡尺测量梁的尺寸b 和h ,用钢尺量梁的支点至力作用点的距离d 。
2.将各点的应变片和温度补偿片以半桥的形式接入应变仪。
被测应变片接在AB 上,补偿片接在BC 上。
仪器操作步骤:1)半桥测量时将D 1DD 2接线柱用连接片连接起来并旋紧。
2)将标准电阻分别与A 、B 、C 接线柱相连。
3)接通电源开关。
4)按下“基零”键仪表显示“0000”或“-0000”(仪表内部已调好)。
5)按下“测量”键,显示测量值,将测量值调到“0000”或“-0000”。
6)按下“标定”键仪表显示-10000附近值,按照所使用应变片灵敏度K=2.17,调节灵敏度使显示为-9221。
7)将“本机、切换”开关置“切换”状态。
主机的 A 、B 、C 接线柱上的标准电阻去掉,将各被测量应变片一端分别与左上对应的各A (A 1~A 7)接线柱相连,公共输出端与一B 接线柱相连,温度补偿片接在B 、C 之间。
被测点(应变片号) 6 4 2 1 3 5 7 接线端子(通道号) 1 2 3 4 5 6 78)切换开关, 按次序所有点的平衡都调节在0000或-0000值上。
9)转动手轮,使梁加载荷,逐点测量、记录应变值。
采用增量法加载,每次0.5kN 。
注意不能超载。
0.5 kN , 初载荷调零; 1.0 kN , 1.5 kN ,2.0 kN ,2.5 kN ,读出应变值10)实验结束。
单一材料梁弯曲正应力实验报告

单一材料梁弯曲正应力实验报告
梁是工程结构中常见的构件,在实际工程中经常受到弯曲载荷的作用。
因此,了解梁在弯曲过程中的应力分布规律对于工程设计和结构分析具有重要意义。
本实验旨在通过对单一材料梁在弯曲载荷作用下的应力分布进行实验测量,探究梁在弯曲过程中的力学性能。
实验装置主要包括梁、加载装置、应变测量装置和数据采集系统。
首先,将梁放置在加载装置上,施加一定的弯曲载荷,然后通过应变测量装置采集梁上不同位置处的应变数据。
最后,利用数据采集系统对应变数据进行处理分析,得到梁在弯曲过程中的应力分布规律。
实验结果表明,梁在弯曲过程中的应力分布呈现出一定的规律性。
在梁的上表面,应力呈现出线性分布,最大应力出现在梁的上表面中点处;而在梁的下表面,应力也呈现出线性分布,最大应力出现在梁的下表面中点处。
此外,梁的中性轴处应力为零。
通过实验数据的分析,我们得到了梁在弯曲过程中的应力分布曲线,进一步验证了梁在弯曲载荷作用下的力学性能。
总之,本实验通过对单一材料梁在弯曲载荷作用下的应力分布进行实验测量和分析,得到了梁在弯曲过程中的应力分布规律。
这对于工程设计和结构分析具有一定的指导意义,也为进一步深入研究梁的力学性能提供了一定的参考。
通过本次实验,我们对梁在弯曲载荷作用下的力学性能有了更深入的了解,也为今后的相关研究工作奠定了基础。
希望通过本实验报告的编写,能够对相关领域的研究工作提供一定的参考和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学院系专业班试验日期
姓名学号同组者姓名
一、实验目的
二、实验设备
仪器名称及型号精度
纯弯曲正应力实验装置编号
三、试件尺寸及有关数据
试件尺寸:长L=mm,宽b=mm,高h= mm
纯弯曲段弯矩:M= kN·mm
弹性模量:E=GPa
应变片电阻值:R=灵敏系数K=
四、实验数据与整理
1.实测数据:
测点
编号
1
2
3
4
5
6
7
载荷
F(kN)
读数
增量
读数பைடு நூலகம்
增量
读数
增量
读数
增量
读数
增量
读数
增量
读数
增量
F0=
F1=
F2=
F3=
F4=
平均增量
2.数据处理:(将各测点的实测应变换算成应力,与理论值比较)
测点编号
1
2
3
4
5
6
7
实测值
理论值
相对误差
3分别绘制应力、应变分布图。
五、回答思考题