重要的富士变频器中常见的检测与保护电路

合集下载

富士变频器故障代码大全富士变频器常见故障及判断

富士变频器故障代码大全富士变频器常见故障及判断

富士变频器故障代码大全:富士变频器常见故障及判断富士电机是一家历史比较悠久的电机制造商,产品线非常丰富,从大功率发电机到小型家用电机制造。

在变频器方面,富士电机也是国内市场的重要参与者之一。

富士变频器因其高性价比、可靠性强而广受市场欢迎。

然而,使用变频器也难免会碰到一些故障。

本文将列举富士变频器常见故障及对应的解决方法,帮助使用者更好的维护和保养变频器设备。

一、富士变频器故障代码大全E001问题描述:变频器控制电源电压过低。

可能原因:供电电源电压过低。

解决方法:提高供电电源电压E002问题描述:变频器控制电源电压过高。

可能原因:供电电源电压过高。

解决方法:降低供电电源电压。

E003问题描述:电流检出回路故障。

可能原因:电流检出回路中断或短路,电子组件故障。

解决方法:检查电流检出回路,修补中断或替换损坏的部件。

E004问题描述: AC变频器输出主电路相电压不平衡。

可能原因:栅极驱动线路或大功率模块故障。

解决方法:检查栅极驱动线路或替换大功率模块。

E005问题描述:电池已用完。

可能原因:电池寿命到期。

解决方法:更换电池。

E006问题描述: MCU内部通信故障。

可能原因:主CPU或子CPU通信线路故障,或内部软件故障。

解决方法:检查通信线路是否正常,或升级软件。

E007问题描述: EEPROM故障。

可能原因: EEPROM存储器故障。

解决方法:更换EEPROM存储器。

E008问题描述: CPU电源电压异常。

可能原因: CPU电压不稳定。

解决方法:检查电源线路稳定性。

E009问题描述:风扇停转故障。

可能原因:风扇故障或风扇控制线路故障。

解决方法:更换风扇或检查风扇控制线路。

E010问题描述:电机绝缘故障。

可能原因:电机绝缘损坏。

解决方法:更换电机或进行绝缘检查。

E011问题描述: CNC操作器具有故障。

可能原因: CNC操作器故障。

解决方法:更换CNC操作器。

E012问题描述:内部通信故障。

可能原因:主CPU或子CPU通信线路故障,或内部软件故障。

变频器维修检测常用方法及故障总结

变频器维修检测常用方法及故障总结

常见方法变频器维修检测常用方法一)静态测试1、测试整流电路找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,正常时有几十欧的阻值,且基本平衡。

相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。

将红表棒接到N端,重复以上步骤,都应得到相同结果。

如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,说明整流桥有故障。

B.红表棒接P 端时,电阻无穷大,可以断定整流桥故障或启动电阻出现故障。

2、测试逆变电路将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。

将黑表棒N端,重复以上步骤应得到相同结果,否则可确定逆变模块有故障。

二)动态测试在表态测试结果正常以后,才可进行动态测试,即上电试机。

在上电前后必须注意以下几点:1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。

2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能会导致变频器出现故障,严重时会出炸机等情况。

3、上电后检测故障显示内容,并初步断定故障及原因。

4、如未显示故障,首先检查参数是否有异常,并将参数复归后,在空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。

如出现缺相、三相不平衡等情况,则模块或驱动板等有故障。

5、在输出电压正常(无缺相、三相平衡)的情况下,负载测试,尽量是满负载测试。

三)故障判断1、整流模块损坏通常是由于电网电压或内部短路引起。

在排除内部短路情况下,更换整流桥。

在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染的设备等。

2、逆变模块损坏通常是由于电机或电缆损坏及驱动电路故障引起。

在修复驱动电路之后,测驱动波形良好状态下,更换模块。

在现场服务中更换驱动板之后,须注意检查马达及连接电缆。

变频器中常见的检测与保护电路共11页word资料

变频器中常见的检测与保护电路共11页word资料

变频器中常见的检测与保护电路您好,欢迎来到阿里巴巴变频器中常见的检测与保护电路(2011/06/01 18:47)1引言控制系统反馈量检测的精确程度,从某种意义上说,很大程度上决定了控制系统所能达到的控制品质。

检测电路是变频调速系统的重要组成部分,它相当于系统的"眼睛和触觉"。

检测与保护电路设计的合理与否,直接关系到系统运行的可靠性和控制精度。

2变频器常用检测方法和器件2.1电流检测方法图1电流互感示意图电流信号检测的结果可以用于变频器转矩和电流控制以及过流保护信号。

电流信号的检测主要有以下几种方法。

(1)直接串联取样电阻法这种方法简单、可靠、不失真、速度快,但是有损耗,不隔离,只适用于小电流并不需要隔离的情况,多用于只有几个kva的小容量变频器中。

(2)电流互感器法这种方法损耗小,与主电路隔离,使用方便、灵活、便宜,但线性度较低,工作频带窄(主要用来测工频),且有一定滞后,多用于高压大电流的场合。

如图1所示。

图1中,r为取样电阻,取样信号为:us=i2r=i1r/m(1)式中,m为互感器绕组匝数。

电流互感器测量同相的脉冲电流ip时,副边也要用恢复二极管整流,以消除原边复位电流对取样信号的影响,如图2(a)所示。

在这种电路中,互感器磁芯单向磁化,剩磁大,限制了电流测量范围,可以在副边加上一个退磁回路,以扩展其测量范围,如图2(b)所示。

电流互感器检测后一般要通过整流后再用电阻取样,如图2(a)。

由于主回路电流会有尖峰,如图3(a),这种信号用于峰值电流控制和保护都会有问题。

图2电流互感器及范围扩展随着脉宽的减小,前沿后斜坡峰值可能比前沿尖峰还低,就会造成保护电路误动作,所以要对电流尖峰进行处理。

处理的方法见图3(b),和rs并联一个不大的电容cs,再加一个合适的rc参数,就能有效地抑制电流尖峰。

如图3(c)所示。

图3电流取样信号的处理(3)霍尔传感器法它具有精度高、线性好、频带宽、响应快、过载能力强和不损失测量电路能量等优点。

变频器主电路的检测与维修

变频器主电路的检测与维修

变频器主电路的检测与维修变频器主电路检测与维修是变频器维修的一个重要部分。

变频器主电路通常由直流电源、整流桥、滤波器、逆变桥等组成,其作用是将外部交流电转化为驱动电机所需的直流电。

1. 安全检查:在进行变频器主电路的检测与维修之前,首先要确保断开电源,并使用万用表将电路所有的电容器放电,以防止电击事故的发生。

2. 线路检查:检查电源线路和接线端子,确保无短路、断路等问题。

还要检查电源线路的绝缘是否良好,避免出现漏电等安全隐患。

3. 整流桥检测:检查整流桥的正、负极和中压端子之间是否存在短路或断路等问题。

可以通过万用表的二极管测试功能进行测试,确保整流桥的正常工作。

4. 滤波器检测:检查滤波器的电容器和电感器是否损坏。

可以使用电阻表或电容表进行检测,若电容器或电感器失效,则需要进行更换。

在进行变频器主电路的维修时,需要根据具体故障情况进行相应的处理:1. 线路故障:如果发现线路存在短路、断路等问题,应及时修复或更换受损的部件。

2. 整流桥故障:如果发现整流桥存在二极管失效的情况,应及时更换损坏的二极管。

3. 滤波器故障:如果发现滤波器的电容器或电感器失效,应及时更换损坏的部件。

在进行变频器主电路的维修时,应注意以下几点:1. 选择合适的工具,如电压表、电流表、电容表等,以确保测试数据的准确性。

2. 在拆卸和安装电路元件时要格外小心,以免引起误操作或损坏其他部件。

3. 在更换电路元件时,要选择与原件型号相匹配的替代品,以确保电路的正常工作。

4. 在电路维修完毕后,应进行相关的电气安全测试,确保电路无漏电等安全隐患。

变频器主电路的检测与维修是变频器维修中的重要内容,需要进行全面的检查和准确的操作,以确保变频器的正常运行。

富士FRN200P11S-4CX变频器开关电源.驱动板检修分析

富士FRN200P11S-4CX变频器开关电源.驱动板检修分析

富士FRN200P11S-4CX变频器开关电源.驱动板检修分析1:拆下FRN200P11S-4CX变频器驱动板,测量DC+5V,时有时无,最高+1.8V至-2V,属于间歇震荡,换启动100UF/100V电容,查遍整个开关电源电路,未见异常。

后测量-13.5V输出电压发现升至—13.5后就保护停机,(以上说明开关电源芯片无问题)冷静后考虑可能是开变压器损坏。

根据此思路用500型万用电表测量开关变压器各个线圈电阻值,其结果为:+13.5V-13.5V,+5V,3组线圈共用CM应在同一个点上,但是测量结果为不通,用放大镜仔细观察,其共用CM点铜箔通过穿心铜铆钉接至反面,开关变压器下面焊接面明显焊接不良,(原因该变频器在生产线上为自动流水线焊接)加上年久使用氧化,焊接点又在开关变压器下面,板纸反面焊接良好,又有防腐层,此故障难易被发现,只有认真分析后,才能找出问题所在。

将CM点用导线连接到+5V 滤波1000UF/25V负极上。

2:驱动板调试,在CN11用隔离变压器220V/380V300W,接入AC380V后,送电后开关电源工作正常,各路输出直流电压偏低,6路驱动栅极有-3.6V截止电压,考虑CPU主板可能未接上原因吧。

3:整机调试步骤:用一块新CPU主板换上,屏蔽掉保护信号。

具体为:CPU主板温度检测可用一只15K电阻代替,拆下原机温度电阻接入也行,不接上开机报OH1。

电压检测,在驱动板上找到3只风扇电机,将+24V短接风扇控制极上,因为富士变频器用的是3线+24V轴流风机,检测无风机信号,整机不能启动运行。

在驱动板找到CN15,1接直流530V负极,3.5并接到530V正极上。

这样就可观察到6路输出脉冲。

接入CPU主板,送电后观察开关电源一切正常,各路输出直流电压正常。

负压也升至负5V了,启动变频器面板有6路输出脉冲波形。

4:富士FRN200P11S-4CX变频器,CPU主板有明显烧焦痕迹,600A保险烧断,9块300A/1400VIGBT烧坏了3块,罪魁祸首是该机开关电源坏,(无负压)驱动电路无—5V加到IGBT 栅极,造成烧毁3块IGBT,原机IGBT为3块并联的一组,U相3块完好,V相坏一块,W相坏2块,(因损坏器件还没购到)所剩6块好的,按每组2块IGBT并接于 U V W 相中,虽然输出功率变小一点,但不影响启动试机,驱动无载55KW异步电机是没问题的。

FVERE11富士变频器

FVERE11富士变频器

交流变频调速技术是现代电力传动技术重要发展方向,随着电力电子技术,微电子技术和现代控制理论在交流调速系统中的应用,变频交流调速已逐渐取代了过去的滑差调速,变极调速,直流调速等调速系统,越来越广泛的应用于工业生产和日常生活的许多领域.但由于受到使用环境,使用年限以及人为操作上的一些因数,变频器的使用寿命大为降低,同时在使用中也出现了各种各样的故障.下面我们就变频器的一些常见故障及对策和大家做一个探讨:首先我们可以对变频器做一个静态的测试,一般通用型变频器大致包括以下几个部分:1整流电路,2直流中间电路,3逆变电路,4控制电路.静态测试主要是对整流电路,直流中间电路和逆变电路部分的大功率晶体管(功率模块)的一个测试,工具主要是万用表.整流电路主要是对整流两极管的一个正反相的测试来判断它的好坏,当然我们还可以用耐压表来测试.直流中间回路主要是对滤波电容的容量及耐压的测量,我们也可以观察电容上的安全阀是否爆开,有否漏液现象等来判断它的好坏.功率模块的好坏判断主要是对功率模块内的续流两极管的判断.对于IGBT模块我们还需判断在有触发电压的情况下能否导通和关断。

其次我们可以通过变频器的显示来判断故障点的所在。

OC.过电流,这可能是变频器里面最常见的故障了。

我们首先要排除由于参数问题而导致的故障。

例如电流限制,加速时间过短都有可能导致过电流的产生。

然后我们就必须判断是否电流检测电路出问题了。

以FVR075G7S-4EX为例:我们有时会看到FVR075G7S-4EX在不接电机运行的时候面板也会有电流显示。

电流来自于哪里呢?这时就要测试一下它的三个霍尔传感器,为确定那一相传感器损坏我们可以每拆一相传感器的时候开一次机看是否会有电流显示,经过这样试验后基本能排除OC故障。

OV.过电压,我们首先要排除由于参数问题而导致的故障。

例如减速时间过短,以及由于再生负载而导致的过压等,然后我们可以看一下输入侧电压是否有问题,最后我们可以看一下电压检测电路是否出现了故障,一般的电压检测电路的电压采样点,都是中间直流回路的电压。

变频器主电路的检测与维修

变频器主电路的检测与维修

变频器主电路的检测与维修变频器主电路是电机控制系统中的一个重要组成部分,在使用过程中,常常会遇到故障,如何正确地检测和维修变频器主电路是保证电机正常运转的关键。

一、变频器主电路检测方法1、检测主电路输入是否正常检测主电路输入是否正常是变频器主电路检测的第一步,主要检测电压、频率是否符合变频器的参数要求。

可以使用测试器测量输入电压、频率,并将测量结果与变频器参数进行对比,判断输入是否正常。

3、检测主电路中的保险丝、熔断器是否正常保险丝、熔断器在主电路中起到重要的保护作用,当电流异常时,保险丝、熔断器会自动切断电路,避免损坏变频器和电机。

因此,在检测变频器主电路时,需要检查保险丝、熔断器是否正常,有无熔断或断裂现象。

4、检测主电路中的开关元件是否正常变频器主电路中的开关元件主要包括IGBT、MOS管等,这些元件在电路中起到关键作用,保证变频器正常运转。

因此,在检测变频器主电路时,需要检查这些开关元件是否正常,有无损坏、发热现象。

二、变频器主电路维修方法1、保养和清洁保养和清洁是保持变频器主电路正常运转的首要措施,可以定期对变频器进行清洗、除尘和注油,保护电路板和元件,延长使用寿命。

2、更换损坏的元件变频器主电路中的开关元件、电容器、电阻等元件有时会因为电压、电流、温度等因素受损,导致变频器不能正常工作。

如果发现这些元件损坏,需要及时更换,保证电路正常。

3、检查电线连接是否牢固电线连接不牢固会导致电流不稳定、过载等问题,影响变频器的使用效果。

因此,在维修变频器主电路时,需要检查电线连接是否牢固,如有松动现象需要重新连接。

4、检查冷却系统是否正常变频器主电路中的开关元件、电容器等元件会发热,需要通过冷却系统将热量排出,保证电路正常工作。

如果冷却系统出现故障,会导致元件过热,影响变频器的使用效果。

因此,在维修变频器主电路时,需要检查冷却系统是否正常工作,如有问题需要及时处理。

总结:正确检测和维修变频器主电路对于保证电机的正常运转非常重要。

富士变频器保护功能

富士变频器保护功能
变频器报警内容
报警名称
键盘面板显示 LED LCD
动作内容
过电流
OC1 加速时过电流 加速时 电动机过电流,输出回 OC2 减速时过电流 减速时 路之间或对地短路;驱 OC3 恒速时过电流 恒速时 动装置输出电流过大。 OU1 加速时过电压 加速时 由于电动机再生电流增 OU2 减速时过电压 减速时 加,使主回路直流电压 达到过电压检测值,过 OU3 恒速时过电压 恒速时 电压检测值为:800VDC 电源电压降低使主回路直流电压 低至欠电压检测值以下时动作, LU 欠电压 欠电压检测值为:400VDC。 Lin OH1 OH2 电源缺相 散热片过热 外部报警 3相输入电源缺任何1相时动作。 冷却风扇发生故障等,散热片温 度上升,保护动作。 控制电路端子THR动作。 驱动装置内通风散热不良时,内 部温度上升,保护动作。 电动机电流超过F10,F11的设定散热片过热 外部报警
驱动装置内过热 OH3 驱动装置内过热 电动机1过载 OL1 电动机1过载
驱动装置过载 存储器异常 CPU异常 输出电流异常
驱动装置主回路半导体元件的温 OLU 驱动装置过载 度保护,按驱动装置输出电流超 过过载额定值时动作。 Er1 Er3 Er7 存储器异常 CPU异常 自整定不良 存储器发生数据写入错误时动作 CPU出错。 自整定时驱动装置和电动机之间 的连接线开路或不良。

富士变频器常见故障及判断

富士变频器常见故障及判断

富士变频器常见故障及判断一、富士变频器常见故障及判断(1)OC报警键盘面板LCD显示:加、减、恒速时过电流。

对于短时间大电流的OC报警,一般情况下是驱动板的电流检测回路出了问题,模块也可能已受到冲击(损坏),有可能复位后继续出现故障,产生的原因根本是以下几种情况:电机电缆过长、电缆选型临界造成的输出漏电流过大或输出电缆接头松动和电缆受损造成的负载电流升高时产生的电弧效应。

小容量(7.5G11以下)变频器的24V风扇电源短路时也会造成OC3报警,此时主板上的24V风扇电源会损坏,主板其它功能正常。

假设出现“1、OC2〞报警且不能复位或一上电就显示“OC3〞报警,那么可能是主板出了问题;假设一按RUN键就显示“OC3〞报警,那么是驱动板坏了。

(2)OLU报警键盘面板LCD显示:变频器过负载。

当G/P9系列变频器出现此报警时可通过三种方法解决:首先修改一下“转矩提升〞、“加减速时间〞和“节能运行〞的参数设置;其次用卡表测量变频器的输出是否真正过大;最后用示波器观察主板左上角检测点的输出来判断主板是否已经损坏。

(3)OU1报警键盘面板LCD显示:加速时过电压。

当通用变频器出现“OU〞报警时,首先应考虑电缆是否太长、绝缘是否老化,直流中间环节的电解电容是否损坏,同时针对大惯量负载可以考虑做一下电机的在线自整定。

另外在启动时用万用表测量一下中间直流环节电压,假设测量仪表显示电压与操作面板LCD显示电压不同,那么主板的检测电路有故障,需更换主板。

当直流母线电压高于780VDC时,变频器做OU报警;当低于350VDC时,变频器做欠压LU报警。

(4)LU报警键盘面板LCD显示:欠电压。

如果设备经常“LU欠电压〞报警,那么可考虑将变频器的参数初始化(H03设成1后确认),然后提高变频器的载波频率(参数F26)。

假设E9设备LU欠电压报警且不能复位,那么是(电源)驱动板出了问题。

(5)EF报警键盘面板LCD显示:对地短路故障。

变频器主电路的检测与维修

变频器主电路的检测与维修

变频器主电路的检测与维修1.使用万用表检测电路元件变频器主电路中包括电容器、电感、继电器、电阻等多种电路元件,这些元件是电路正常运转的关键。

在检测变频器主电路时,首先要使用万用表对这些电路元件进行检测。

具体操作步骤如下:1)将变频器断电,并使用万用表将电容器的电压放电至零。

2)使用万用表对电容器的电压进行测试,检查是否正常。

3)对电感、继电器、电阻等元件进行相似的测试,确保它们的工作状态良好。

2.检查电路连接接下来,需要对变频器主电路的电路连接进行检查。

主要包括以下几个方面:1)检查电路连接是否松动或接触不良,确保各个连接端子都紧固可靠。

2)检查电路板上的焊点是否出现开路或短路现象,如有需要及时修复。

变频器的主电路中,电路板上的元件也是容易出现故障的地方。

在检测过程中,需要对电路板上的元件进行仔细检查,并及时发现并处理问题。

具体操作方法如下:1)观察电路板上是否有元件烧损、变形、氧化等现象,如果有需要及时更换。

2)使用万用表对电路板上的元件进行检测,确保其工作正常。

4.检测继电器继电器在变频器主电路中扮演着重要的角色,负责控制电路的通断。

在检测过程中,要特别关注继电器的工作状态。

具体操作步骤如下:1)使用万用表检测继电器的触点是否通断正常。

2)检查继电器线圈是否有断路或短路现象。

3)如有必要,可以拆卸继电器进行更详细的检测和清洁。

1.更换故障元件当检测发现变频器主电路中的某些元件出现故障时,需要及时更换这些故障元件。

具体操作步骤如下:1)断开电源,确保安全操作。

2)将故障元件进行拆卸,并用同型号的新元件进行更换。

3)更换后,进行开机测试,确保新元件工作正常。

2.清洁电路板在长时间使用后,变频器主电路上可能会积聚一些灰尘或杂质,影响电路的正常工作。

需要定期对电路板进行清洁。

具体操作方法如下:1)使用清洁剂和软刷对电路板进行清洁,确保无尘、无污染。

2)清洁后,要等其完全干燥后再接通电源进行测试。

3.检查接线端子接线端子的松动或接触不良会导致变频器主电路的故障,因此在维修过程中要特别关注接线端子的检查。

变频器主电路的检测与维修

变频器主电路的检测与维修

变频器主电路的检测与维修
变频器是现代工业领域中的一种重要电力设备,因此,它的使用非常普遍。

在工业生产过程中,变频器主电路往往遇到各种问题,如断路、短路、过电流等。

如果不及时检测和维修,这些问题可能会引起灾难性的后果,因此,变频器主电路的检测和维修至关重要。

1. 直流电压检测法:使用直流电压检测法可以检测电路中的各个部分,如整流变压器、整流电路、滤波电容、逆变电路等。

方法是,在没有连接交流输入电压的情况下,连接直流电源,然后逐个检查每个部分的电压变化情况。

1. 整流变压器故障:如果整流变压器故障,就需要更换整流变压器。

通常会更换同型号的整流变压器,确保变频器电路的工作正常。

3. 整流电路故障:如果整流电路故障,就需要检测整流电路的硅堆是否损坏,然后更换损坏的硅堆,以确保变频器电路的工作正常。

总之,对于变频器主电路的检测和维修,我们需要有足够的知识和技能,以便能够及时发现电路故障,并采取正确的措施。

只有这样,才能保障工业生产的正常进行,降低生产成本,提高效率。

富士变频器常见故障及判断解决方法变频器_软启动器

富士变频器常见故障及判断解决方法变频器_软启动器

富士变频器常见故障及推断解决方法 - 变频器_软启动器变频调速器作为一种高效节能的电机调速装置在黄哗港煤炭装卸设备中得到了广泛应用。

其中接受较多的日本富士变频器,使用多年后已渐入故障高发期。

下面就富士变频器的一些常见故障及推断解决方法介绍如下。

一、OC1、OC2、OC3故障故障显示OC1、OC2、OC3,是富士变频器最常见的故障之一,它指变频器加速、减速和恒速中过电流,此故障产生的缘由有以下几种。

1.加减速时间过短,这是最常见的过电流现象。

可依据不同的负载状况相应调整加减速时间,就能消退此故障。

2.大功率晶体管损坏也可能引起OC报警。

从早期的用于G2(P2),G5(P5),G7(P7)系列的GTR模块,到G9(P9)系列的IGBT模块,以至IPM模块,无论从封装技术还是爱护性能,都有了很大提高,高耐压、大电流、高频、低耗、静音、多爱护功能已成为大功率晶体管模块的进展趋势。

大功率晶体管模块的损坏主要有以下几种缘由:(1)输出负载短路;(2)负载过大,大电流持续消灭;(3)负载波动很大,导致浪涌电流过大。

3.大功率晶体管的驱动电路损坏导致过流报警。

富士G7S、G9S分别使用了PC922和PC923两种光祸作为驱动电路的核心部分。

由于内置放大电路设计简洁,被包括富士变频器在内的多家变频器厂家广泛使用。

驱动电路损坏的最常见现象就是缺相,或三相输出电压不平衡。

4.检测电路的损坏导致变频器显示OC报警。

检测电流的霍尔传感器由于受温湿度等环境因素的影响,工作点很简洁飘移,导致OC报警。

二、开关电源损坏开关电源损坏的特征是变频器上电无显示。

富士G5S接受两级开关电源,先把中间直流回路的直流电压由500V左右转换成300V左右,然后再通过一级开关电源输出5V、24V等多路电源。

开关电源损坏常见的有开关管击穿、脉冲变压器烧坏以及次级输出整流二极管损坏。

滤波电容使用时间过长,导致电容特性变化,带载力量下降,也很简洁造成开关电源损坏。

变频器主电路的检测与维修

变频器主电路的检测与维修

变频器主电路的检测与维修
变频器主电路由整流、滤波、逆变等模块组成,控制着电机的运行。

在变频器使用过程中,由于负载和环境等原因,主电路可能会出现故障,需要进行检测与维修。

1. 故障检测
变频器停机、告警,电机无法启动。

1.2 检查方式:
(1)检查变频器及外部设备的电源是否正常。

(2)检查变频器的状态指示灯,查看是否有报警指示灯亮起。

(1)整流模块故障,电流失控。

(2)电机故障,阻力过大。

(3)逆变模块故障,输出波形失真。

2. 维修方法
2.1 整流模块故障
(1)检查整流模块的二极管和电容器是否正常,是否有短路、开路或漏电现象。

(2)如出现故障,需替换故障模块或更换整个主电路板。

2.2 电机故障
(2)检查电机轴承是否正常,是否损坏。

总之,变频器主电路在使用过程中一旦出现故障,需要及时检测和维修,以确保正常运行。

在进行检查和维修时,需要遵循安全规范,做好防护措施。

同时,应根据具体情况采取相应的检测和维修措施。

重要的富士变频器中常见的检测与保护电路

重要的富士变频器中常见的检测与保护电路

富士变频器中常见的检测与保护电路标签:杂谈1 引言控制系统反馈量检测的精确程度,从某种意义上说,很大程度上决定了控制系统所能达到的控制品质。

检测电路是变频调速系统的重要组成部分,它相当于系统的“眼睛和触觉”。

检测与保护电路设计的合理与否,直接关系到系统运行的可靠性和控制精度。

2 变频器常用检测方法和器件2.1 电流检测方法图1 电流互感示意图电流信号检测的结果可以用于变频器转矩和电流控制以及过流保护信号。

电流信号的检测主要有以下几种方法。

(1) 直接串联取样电阻法这种方法简单、可靠、不失真、速度快,但是有损耗,不隔离,只适用于小电流并不需要隔离的情况,多用于只有几个kva的小容量变频器中。

(2) 电流互感器法这种方法损耗小,与主电路隔离,使用方便、灵活、便宜,但线性度较低,工作频带窄(主要用来测工频),且有一定滞后,多用于高压大电流的场合。

如图1所示。

图1中,r为取样电阻,取样信号为:us=i2r=i1r/m (1)式中,m为互感器绕组匝数。

电流互感器测量同相的脉冲电流ip时,副边也要用恢复二极管整流,以消除原边复位电流对取样信号的影响,如图2(a)所示。

在这种电路中,互感器磁芯单向磁化,剩磁大,限制了电流测量范围,可以在副边加上一个退磁回路,以扩展其测量范围,如图2(b)所示。

电流互感器检测后一般要通过整流后再用电阻取样,如图2(a)。

由于主回路电流会有尖峰,如图3(a),这种信号用于峰值电流控制和保护都会有问题。

图2 电流互感器及范围扩展随着脉宽的减小,前沿后斜坡峰值可能比前沿尖峰还低,就会造成保护电路误动作,所以要对电流尖峰进行处理。

处理的方法见图3(b),和rs并联一个不大的电容cs,再加一个合适的rc参数,就能有效地抑制电流尖峰。

如图3(c)所示。

图3 电流取样信号的处理(3) 霍尔传感器法它具有精度高、线性好、频带宽、响应快、过载能力强和不损失测量电路能量等优点。

其原理如图4所示。

图4中,ip为被测电流,这是一种磁场平衡测量方式,精度比较高,若lem的变流比为1:m,则取得电压us也符合式(1)。

富士变频器常见故障及判断报告

富士变频器常见故障及判断报告

富士变频器常见故障及判断、富士变频器常见故障及判断1对于键盘面板显示报警加、减、恒速时过电流。

:(1)OC LCD一般情况下是驱动板的电流检测回路出报警短时间大电流的OC有可能复位后继续出现故损坏了问题模块也可能已受到冲击)(电机电缆过长、电缆选型临界产生的原因基本是以下几种情况障:造成的输出漏电流过大或输出电缆接头松动和电缆受损造成的负载变频器的电流升高时产生的电弧效应。

小容量以下24V)(7.5G11风扇电源会报警此时主板上的风扇电源短路时也会造成OC324V报警且不能复位或损坏主板其它功能正常。

若出现“、”12OC若一按报警”一上电就显示“则可能是主板出了问题;3OC则是驱动板坏了。

报警键就显示“”3RUN OC系列当键盘面板显示变频器过负载。

报警LCD OLU:G/P9(2)首先修改一下“转矩提升”变频器出现此报警时可通过三种方法解决:其次用卡表测量变频、“加减速时间”和“节能运行”的参数设置;最后用示波器观察主板左上角检测点的输出器的输出是否真正过大;来判断主板是否已经损坏。

当通用变频报警显示键盘面板加速时过电压。

:(3)OU1LCD首先应考虑电缆是否太长、绝缘是否老化器出现“”报警时OU同时针对大惯量负载可以考虑直流中间环节的电解电容是否损坏做一下电机的在线自整定。

另外在启动时用万用表测量一下中间直显示电压不同若测量仪表显示电压与操作面板流环节电压LCD需更换主板。

当直流母线电压高于则主板的检测电路有故障变频器做欠压报警当低于时时变频器做;350VDC780VDC OU 如果设欠电压。

键盘面板显示报警报警。

:LCD LU(4)LU则可考虑将变频器的参数初始化备经常“欠电压”报警(H03LU设备然后提高变频器的载波频率。

若设成参数后确认)(1F26)E9驱动板出了问题。

欠电压报警且不能复位则是电源)LU(系列变频键盘面板显示对地短路故障。

报警LCD:G/P9(5)EF器出现此报警时可能是主板或霍尔元件出现了故障。

富士变频器常见故障及判断

富士变频器常见故障及判断

富士变频器常见故障及判断一、富士变频器常见故障及判断(1)OC报警键盘面板LCD显示:加、减、恒速时过电流。

对于短时间大电流的OC报警,一般情况下是驱动板的电流检测回路出了问题,模块也可能已受到冲击(损坏),有可能复位后继续出现故障,产生的原因根本是以下几种情况:电机电缆过长、电缆选型临界造成的输出漏电流过大或输出电缆接头松动和电缆受损造成的负载电流升高时产生的电弧效应。

小容量(7.5G11以下)变频器的24V风扇电源短路时也会造成OC3报警,此时主板上的24V风扇电源会损坏,主板其它功能正常。

假设出现“1、OC2〞报警且不能复位或一上电就显示“OC3〞报警,那么可能是主板出了问题;假设一按RUN键就显示“OC3〞报警,那么是驱动板坏了。

(2)OLU报警键盘面板LCD显示:变频器过负载。

当G/P9系列变频器出现此报警时可通过三种方法解决:首先修改一下“转矩提升〞、“加减速时间〞和“节能运行〞的参数设置;其次用卡表测量变频器的输出是否真正过大;最后用示波器观察主板左上角检测点的输出来判断主板是否已经损坏。

(3)OU1报警键盘面板LCD显示:加速时过电压。

当通用变频器出现“OU〞报警时,首先应考虑电缆是否太长、绝缘是否老化,直流中间环节的电解电容是否损坏,同时针对大惯量负载可以考虑做一下电机的在线自整定。

另外在启动时用万用表测量一下中间直流环节电压,假设测量仪表显示电压与操作面板LCD显示电压不同,那么主板的检测电路有故障,需更换主板。

当直流母线电压高于780VDC时,变频器做OU报警;当低于350VDC时,变频器做欠压LU报警。

(4)LU报警键盘面板LCD显示:欠电压。

如果设备经常“LU欠电压〞报警,那么可考虑将变频器的参数初始化(H03设成1后确认),然后提高变频器的载波频率(参数F26)。

假设E9设备LU欠电压报警且不能复位,那么是(电源)驱动板出了问题。

(5)EF报警键盘面板LCD显示:对地短路故障。

变频器主电路的检测与维修

变频器主电路的检测与维修

变频器主电路的检测与维修
1. 主电路检测
在进行变频器主电路检测之前,需要先断开变频器的电源,并等待其停止运转,确保
安全。

主电路检测主要包括以下内容:
检查主电路的连接,特别是电源输入连接是否牢固可靠。

若连接疏松或脱落,会导致
电压波动或电流过大等问题,进而引起变频器的损坏。

使用万用表或电压表检查电源电压是否正常。

电压过高或过低都会影响变频器的工作,严重时还可能出现故障。

1.3 检查电容器
主电路中的电容器容易受到电网电压的冲击,因此需要定期对电容器进行检测和更换。

检查时应注意是否存在渗漏、变形和短路等情况,如有问题应及时更换。

继电器是变频器主电路中的重要部件,一旦发生故障可能导致整个变频器停工。

因此,需要对继电器进行定期检查和清洁,注意继电器触点的清洁和弹性是否正常。

当变频器出现运行不稳定,电机运行产生异响等情况时,可能是电容器损坏导致的。

此时需要更换电容器,具体操作需要按照操作手册进行。

2.2 更换继电器
2.3 更换主电路保险丝
当变频器出现电源电压突然下降或变频器无法启动等情况时,可能是主电路保险丝熔
断导致的。

此时需要更换主电路保险丝,但需注意更换时电源电缆应切断电源并等待变频
器冷却后再进行更换操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

富士变频器中常见的检测与保护电路标签:杂谈1 引言控制系统反馈量检测的精确程度,从某种意义上说,很大程度上决定了控制系统所能达到的控制品质。

检测电路是变频调速系统的重要组成部分,它相当于系统的“眼睛和触觉”。

检测与保护电路设计的合理与否,直接关系到系统运行的可靠性和控制精度。

2 变频器常用检测方法和器件2.1 电流检测方法图1 电流互感示意图电流信号检测的结果可以用于变频器转矩和电流控制以及过流保护信号。

电流信号的检测主要有以下几种方法。

(1) 直接串联取样电阻法这种方法简单、可靠、不失真、速度快,但是有损耗,不隔离,只适用于小电流并不需要隔离的情况,多用于只有几个kva的小容量变频器中。

(2) 电流互感器法这种方法损耗小,与主电路隔离,使用方便、灵活、便宜,但线性度较低,工作频带窄(主要用来测工频),且有一定滞后,多用于高压大电流的场合。

如图1所示。

图1中,r为取样电阻,取样信号为:us=i2r=i1r/m (1)式中,m为互感器绕组匝数。

电流互感器测量同相的脉冲电流ip时,副边也要用恢复二极管整流,以消除原边复位电流对取样信号的影响,如图2(a)所示。

在这种电路中,互感器磁芯单向磁化,剩磁大,限制了电流测量范围,可以在副边加上一个退磁回路,以扩展其测量范围,如图2(b)所示。

电流互感器检测后一般要通过整流后再用电阻取样,如图2(a)。

由于主回路电流会有尖峰,如图3(a),这种信号用于峰值电流控制和保护都会有问题。

图2 电流互感器及范围扩展随着脉宽的减小,前沿后斜坡峰值可能比前沿尖峰还低,就会造成保护电路误动作,所以要对电流尖峰进行处理。

处理的方法见图3(b),和rs并联一个不大的电容cs,再加一个合适的rc参数,就能有效地抑制电流尖峰。

如图3(c)所示。

图3 电流取样信号的处理(3) 霍尔传感器法它具有精度高、线性好、频带宽、响应快、过载能力强和不损失测量电路能量等优点。

其原理如图4所示。

图4中,ip为被测电流,这是一种磁场平衡测量方式,精度比较高,若lem的变流比为1:m,则取得电压us也符合式(1)。

在通用变频器中霍尔传感器已成为电流检测的主力。

2.2 电压检测方法电压信号检测的结果可以用于变频器输出转矩和电压控制以及过压、欠压保护信号。

电压信号的检测可用电阻分压、线性光耦、电压互感器或霍尔传感器等方法。

3) 霍尔电压传感器法:原理与霍尔电流传感器类似,如图5所示。

(4) 线性光耦法: 霍尔电压传感器具有反应速度快和精度高的特点,但是在小功率的变频器中,采用霍尔传感器的成本昂贵,而采用高性能的光耦则可降低成本。

像hp公司生产的线性光耦hcnr200/201等具有很高的线性度和灵敏度,可精确地传送电压信号。

图6是一个用hcnr200/201测量电压的实际电路,光耦实际上起直流变压器的作用。

图6中,原边运放采用的是单电源供电的lm2904,副边运放采用精密运放op07。

在测量直流高压时,应先采用电阻分压降压,以得到一个未经隔离的低压直流信号,然后经过线性光耦隔离将其变换成与之成正比的直流电压送入a/d转换测量。

另外,完全可以利用光耦的线性和隔离功能结合直接串联分流器测量电流。

2.3 转速检测方法图5 霍尔电压检测方法图6 高压直流电压线性光耦测量电路变频调速系统的主要应用领域是电气传动系统,为实现诸如矢量控制等一类的高性能控制。

系统中常常需要检测电机的转速,主要有2种方法:(1) 测速发电机:测速发电机工作可靠,价格低廉,但存在非线性和死区的问题,且精度较差。

(2) 光电编码器:光电编码器与传动轴连接,它每转一周便发出一定数量的脉冲,用微处理器对脉冲的频率或周期进行测量,即可求得电机转速。

光电编码器可以达到很高的精度,且不受外部的影响,可以用于高精度的控制中。

采用光电脉冲编码器检测转速,通常有3种方法:a) m法:即测频法。

在一定时间t内,对编码器输出的脉冲计数,从而得到与转速成正比的脉冲数m,若光电脉冲编码器一周输出p个脉冲,则转速为n=60m/(pt),n的单位为r/min。

该法适用于中高速检测,因为转速越高,一定时间内的脉冲数就越多,分辨率和精度就越高。

b) t法:即测周期法,通过测量编码器发出脉冲的周期来计算电机转速。

脉冲周期的测量是借助某一时钟频率确定的时钟脉冲来间接获得。

若时钟频率为fc,测得的时钟脉冲数为m,则转速为n=60fc/(mp),n的单位为r/min。

该法与测频法相反,适用于较低转速。

c) m/t法:结合了m法和t法各自的特点,由定时器确定采样周期t,定时器的定时开始时刻总与编码器的第一个计数脉冲前沿保持一致,在t时间内得到脉冲数m1,同时,另一个计数器对标准的时钟脉冲进行计数,当t定时结束时,只停止对编码器的计数,而t结束后光电脉冲编码器输出第一个脉冲前沿时,才停止对标准时钟脉冲的计数,并得到计数值m2,其持续时间为td=t+δt。

其时序如图7所示。

可以推导出此时转速可表示为n=60fsm1/(pm2)。

m/t法是转速检测的较为理想的手段,可在宽的转速范围内实现高精度的测量,但其硬件和数据处理的软件相对复杂。

图7 m / t法的时序3 电流检测与保护电路3.1 电流传感器检测的过流保护电路变频器驱动的负载―电动机不同于其它负载(如电热炉、电解、电镀等),它是将电能转换为机械能的装置,既有电气行为又有机械旋转运动,电机启动带来的电气和机械冲击问题历来是工程师们关注的焦点,无论是电气绝缘破损还是机械故障都可能使变频器因过电流而损坏,过电流故障从来就是变频器最常见的故障,也是损坏变频器最主要的原因。

那么变频器过电流的原因是什么呢?其实,输出短路、电机绕组破损、机械负载堵转、电机加速过快、逆变主开关器件失效、干扰造成的误导通(即直通)等都能导致变频器过电流。

过流保护最简单的方法是熔断器保护法,但这种保护动作慢,不足以实现快速保护,尤其是不能直接保护igbt、mosfet等熔通达时间小的高性能器件。

图8所示的检测电路中,有一些能检测各种过流信号,经处理后可送到ic控制芯片的保护端(shot down or close),或直接封锁开关管的驱动脉冲,如图8(b)所示。

图8 过流保护电路图8中的过流保护都是可以自恢复的,也就是说,当过流现象消失后,也就不再保护。

在实际电路中,过流一般都是不正常现象,或者说是故障。

所以,过流保护应该是不可以自恢复的,需要停电排除故障后人工恢复逆变电路的工作。

这种不可以自恢复的电路可以用反馈自锁或者用可控硅电路实现,如图9所示。

图9 不可恢复的过流保护电路3.2 开关管过流状态自识别保护我们知道,开关管的导通压降是和导通电流有关的,当开关管过流时,其导通压降会明显上升。

因此,我们可以通过检测开关管的导通压降,与正常值比较,并与截止状态相区别,从而识别出开关管的过流状态,以gto为例,实际电路如图10所示。

图10 gto门极驱动和过流状态自识别保护电路图10中,要开通gto时,○a 点电位由低变高,0 点出现一个正脉冲,t4导通,○d 点变低,○e 点变高,○f 点变低,t5截止,t6导通,gto导通。

gto导通后,○d 点保持低电平。

当发生过流时,○d 点变高,当高于○e 点时(设置的过流点),○f 变高,t5导通,t6截止,t7导通,gto关断,实现过流保护。

在许多开关管驱动芯片或厚膜电路中都设置了这一项功能。

例如,exb841型igbt厚膜驱动电路中,6号端就是通过二极管d来识别igbt开关管过流状态并通过保护电路来保护的。

而且,这种保护电路还可以实现软关断功能。

3.3 变频器实用电流检测及过流保护电路举例如图11所示为日本fuji公司设计的变频器常用的电流检测及过流保护电路。

其设计思路和原理如下。

图11 变频器常用的电流检测及过流保护电路电流检测信号来自逆变器u、v两相输出端的霍尔电流传感器,霍尔元件通过插座cn2获得15v电源。

u、v两相电流检测信号经首级运放a6和a5放大20倍后送入二级运放a8和a7。

调整二级运放的放大倍数即可整定过流保护动作值。

u、v两相电流通过反相加法器a9叠加获得w相电流信号。

u、v、w各相电流分别同时送入两个比较器的正、反相输入端。

比较器正、反相输入端的参考电压分别为+10v和-10v。

当三相电流正常时其对应的电压在±10v 之间,六个比较器相与后输出为1,此信号经三极管反相后送入由多谐振荡器d4528组成的单稳态触发器,-q输出为0,比较器a17、a18输出信号也应为0,保护电路不动作。

一旦过流,比较器相与后输出信号为0,d4528 的输入信号(5脚)为1,其输出经单稳延时后才变为1,通过三极管vt2放大后去关闭igbt的驱动信号并通知cpu发出过电流报警信号。

单稳态触发器的作用是这样的:在延时期间若电流恢复正常,则d4528的输出信号不改变,这就避免了一些干扰信号或瞬间尖峰电流造成的保护电路误动作,保证了变频器正常工作。

4 电压检测与保护电路4.1 变频器直流侧电压检测与保护电路尽管我们在分析spwm变频器原理的时候经常假设变频器直流侧电压是不变的,但事实上它一直是波动的。

交流电网电压的波动、负载瞬变、整流器功率器件的断续导电、或者输入电源缺相等等都会引起直流电压变化。

实际上,无论是对主电路器件及电动机的保护,还是对直流侧和交流输出电压的计量和显示,乃至高性能控制策略的实施都经常需要直流电压的瞬时值或有效值。

例如近年来人们已经发现性能优越的矢量控制对直流中间环节电压和负载的扰动十分灵敏,当装置运行在弱磁条件下时,中间直流电压的降低可能导致电流失控和失去磁场的方位,几乎所有的解决方案都需要精密检测直流环节的电压,因此合理设计直流测电压检测电路显得非常重要。

变频器主电路中间环节的电压信号的检测可采用电阻分压、线性光耦、电压互感器或霍尔传感器等。

图12 直流电压检测与控制及保护电路(1) 基于线性光耦的电压检测与保护电路图12所示为常用的基于线性光耦的电压检测与保护电路,它具有直流电压实时检测、直流过压保护、欠压保护及制动单元启停等功能,并为控制电路和显示电路提供信号。

直流侧电压采用电阻进行分压降压,经过线性光耦tlp559后分压变为弱电电压信号。

然后经逻辑比较和线性运算电路处理输出与上述四种功能对应的信号。

(a) 直流电压检测电路直流电压经r501和r502分压转变弱电信号,经线性光耦tlp559变换和隔离后再通过r186调节,送入电压跟随器,以增强带载能力。

电路由ic120,ic121a,ic121b,ic121c及电阻组成。

由于直流侧电压很高,测量范围上限一般定为850v,若测量范围定为0~850v,因受a/d转换器位数的限制,则测量和显示分辨率低,影响控制和显示精度。

相关文档
最新文档